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Abstract— In this paper, we propose a method to create
visuomotor mobile manipulation solutions for long-horizon
activities. We propose to leverage the recent advances in simu-
lation to train visual solutions for mobile manipulation. While
previous works have shown success applying this procedure
to autonomous visual navigation and stationary manipulation,
applying it to long-horizon visuomotor mobile manipulation
is still an open challenge that demands both perceptual and
compositional generalization of multiple skills. In this work, we
develop Mobile-EMBER, or M-EMBER, a factorized method
that decomposes a long-horizon mobile manipulation activity
into a repertoire of primitive visual skills, reinforcement-learns
each skill, and composes these skills to a long-horizon mobile
manipulation activity. On a mobile manipulation robot, we find
that M-EMBER completes a long-horizon mobile manipulation
activity, cleaning kitchen, achieving a 53% success rate.
This requires successfully planning and executing five factor-
ized, learned visual skills.

I. INTRODUCTION

Mobile manipulators, robots combining locomotion and
interaction capabilities, have the potential to undertake multi-
ple long-horizon activities in human environments. Different
from short-horizon stationary manipulation such as pushing
or grasping, long-horizon mobile manipulation activities re-
quire the correct combination of multiple sensorimotor skills
to be accomplished. Moreover, given the large variability in
human environments combined with the challenge of moving
the base between interactions, mobile manipulation solutions
for the real world have additional demands in generalization
and ask for new approaches to learning general visuomotor
solutions.

To acquire generalized visuomotor behaviors for station-
ary manipulation in the real world, the robot learning com-
munity has resorted to two main procedures: 1) training
in simulation [1–8], or 2) training from real-world visual
datasets [9–15]. This latter approach has been favored lately,
even though the generalization obtained is restricted to that
demonstrated in the datasets. In long-horizon mobile ma-
nipulation, however, the breadth of generalization demanded
extends beyond objects. This, combined with the length and
compositional variability of each activity (i.e., the same ac-
tivity may require a different ordering of the same skills to be
achieved), renders collecting a sufficiently broad distribution
of real-world data less feasible. On the other hand, reaching

the necessary generalization for mobile manipulation could
be obtained from non-real-world trajectories.

When it comes to domain transfer, multiple solutions
have been proposed for visual stationary manipulation and
navigation, but they fall short when applied to mobile
manipulation. The most common approach is to try to narrow
the domain gap [16–20]. While successful in stationary
manipulation and navigation, these methods may not be
sufficient for long-horizon mobile manipulation that demands
not only perceptual generalization but also compositionality
in the solution. Other methods have also achieved success
in navigation and stationary manipulation by choosing input
modalities that have lower domain gap [3–7, 21]. While
sufficing for navigation and some stationary manipulation, it
is unclear if the input modalities chosen in these methods are
sufficient for the fine-grained skills involved in many mobile
manipulation activities. Finally, a family of adaptive learn-
ing [22–28] and system identification [29–33] algorithms
have also achieved success in domain transfer in legged
locomotion. While these methods narrow the domain gap
in dynamics and action-state transition, it is not yet clear
whether these methods can learn visuomotor solutions for a
mobile manipulator.

To tackle long-horizon mobile manipulation solutions
in the real world, we propose Mobile-EMBER, or
“M-EMBER”– a factorized method based on the EMBER
framework [34]. Concretely, an activity is first factorized into
a repertoire of primitive visuomotor skills, and M-EMBER
reinforcement-learns each skill in simulation, and transfers
and recomposes these skills into a long-horizon mobile
manipulation solution for the activity, achieving levels of
robustness beyond what EMBER could do (see Sec. V).
Thanks to the factorization of skills, M-EMBER copes with
initial and task conditions and is able to handle a mobile
manipulation activity.

We demonstrated with extensive evaluations on a real-
world mobile manipulator that M-EMBER can complete
a long-horizon activity (cleaning kitchen) with 53%
success by learning five different visuomotor skills in a sim-
ulator, concatenating them autonomously into sequences, and
generalizing more robustly than existing mobile manipulation
solutions.
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II. RELATED WORK

A. Robot learning via domain transfer

Domain transfer has a rich history in stationary robotic
manipulation [1–8], navigation [35–40], and legged locomo-
tion [22–28] [29–33]. This includes the use of photorealism
(e.g. photorealistic rendering [1, 2, 35, 41–43] or Generative
Adversarial Networks [41, 44–46]) and domain randomiza-
tion [16–20] to narrow the domain gap. In comparison,
M-EMBER develops a factorized algorithm for long-horizon
mobile manipulation, which demands both perceptual gen-
eralization as well as compositional generalization that can
factorize and reuse learned visuomotor skills. Previous works
also investigated the use of alternative observations [3–7, 21]
to narrow the domain gap. M-EMBER accepts images as
input and performs more fine-grained mobile manipulation
than pick-and-place tasks. Finally, adaptive learning [22–28]
and system identification [29–33] algorithms have achieved
success in narrowing the dynamics sim-to-real gap. In com-
parison, M-EMBER attempts to narrow the domain gap in
mobile manipulation.

B. Learning mobile manipulation in simulation or real world

Prior robot learning methods have achieved success in
mobile manipulation in simulation [47–49] or the real
world [50–59]. Some of these methods collect data in a
continuous, online manner [50, 52, 53], while others break
data collection into primitives [54, 55] to learn to per-
form long-horizon mobile manipulation. Inspired by these
works, M-EMBER performs long-horizon mobile manipula-
tion, which demands perceptual generalization and compo-
sitional generalization that can factorize and reuse learned
visuomotor skills.

C. Reinforcement learning for stationary manipulation

Reinforcement learning (RL) has a rich history of be-
ing used for robotic control from locomotion [60–62],
navigation [35–40], to stationary manipulation [63–65].
Indeed, prior methods in model-free [66–72] and model-
based RL [73–84] achieved remarkable success in station-
ary manipulation. Drawing inspiration from these works,
M-EMBER extends EMBER [34], a previous work in this
category, to performing long-horizon mobile manipulation.

III. PRELIMINARIES

A. Modeling long-horizon mobile manipulation

In this work, we consider the problem of performing a
long-horizon mobile manipulation activity: M. We model
the activity’s environment as a controlled Markov process
represented by the tuple E = ⟨S, ρ0,A, T , γ,H⟩, with an
observation space of N cameras of resolution H×W , which
are H = W = 112, and the robot’s 19 joint angles, and thus
s ∈ S = R{N × 112 × 112 × 3 + 19}, an initial state
distribution ρ0, an action space a ∈ A (see Sec. IV), a
dynamics model T : S × A × S → R, a discount factor
γ ∈ [0, 1), and a finite horizon H . We assume the goal
of an activity is defined by a set of symbolic predicates in

first-order logic that we obtain from BEHAVIOR [85, 86], a
dataset of everyday activities defined in a domain-definition
language (BDDL) similar to PDDL [87]. For example, the
BEHAVIOR cleaning kitchen activity is defined as:

{∀ cupboard ∈ cupboards: {∀ object ∈ cupboard:
(IN object bucket)} ∧ (¬ OPENED cupboard) ∧
(¬ DUSTY cupboard)} ∧ {∀ drawer ∈ drawers:

{∀ object ∈ drawer: (IN object bucket)} ∧
¬ (OPENED drawer)}

In plain words, this means the goal is to relocate objects
inside each cupboard and drawer in the environment into a
bucket on the floor and ensure that cupboards and drawers
are closed and that cupboards are not dusty. Performance
of the robot in this activity is binary: “success” if the
symbolic goal state is satisfied within a finite amount of
real-clock time, or “failed” otherwise. Let K denote the total
number of unique mobile manipulation skills the robot has
learned in simulation (in cleaning kitchen, K = 5),
and k ∈ [1,K] denote the kth skill in the robot’s skill
repertoire. Here, each skill is a solution for a different
Markov Decision Process (MDP) Mk = ⟨E ,Rk⟩, where the
robot’s environment E is shared across activities and skills,
and Rk : S × A → R is the reward function for the kth

skill. This paper will use “primitives” vs. “skills” as well as
“factorize” vs. “decompose” interchangeably.

B. Factorization via Example-Driven Model-BasEd RL
(EMBER)

M-EMBER is a factorized long-horizon mobile manip-
ulation extension of EMBER [34]. The goal of this work
is to provide a preliminary solution to long-horizon mobile
manipulation activities. To this end, EMBER is not enough: it
is unable to cope with the variability and task length involved
in mobile manipulation activities. Mobile manipulation may
require a large amount of data to cover the activity distribu-
tion, and M-EMBER overcomes this challenge by training
mobile manipulation skills in simulation and applying them
to a long-horizon mobile manipulation activity.

IV. MOBILE-EMBER

Mobile-EMBER, or “M-EMBER”, is designed to over-
come the limitations of EMBER and to be able to perform
long-horizon mobile manipulation. Below, we first describe
how a long-horizon mobile manipulation activity is factor-
ized into a repository of visuomotor mobile manipulation
skills during training, and recomposed to solve the long-
horizon activity at test time. We then discuss how M-EMBER
learns each factorized visuomotor skill in simulation. Finally,
we describe how M-EMBER enables the factorized visuomo-
tor skills to be used in the real world.



Fig. 1: High-Level Overview of M-EMBER for cleaning kitchen activity. To begin, the human first specifies the activity using
a symbolic goal state g (Fig. 1 [e]). For training, the activity is factorized into a repertoire of primitive skills [a] that M-EMBER learns
using RL in simulation along with per-skill success detectors [b,c]. In order to detect relevant objects in the environment, M-EMBER
also grounds the robot’s raw pixel observations into a symbolic representation of the current state [b,g]. At test time, the per-skill success
detectors are used to 1) map the input [f] –raw pixel observations (N 112×112 images) and proprioceptive information (joint angles)–
into a symbolic representation of the current state [g] to check full-activity completion [h] and perform long-horizon planning [a], and 2)
during execution of a skill [d] to detect whether a skill has succeeded [c]. Long-horizon planning is performed by a symbolic planner [a]
that computes the sequence of skills to perform [i] and executes the first skill of this sequence [j] based on both the goal [e] and current
symbolic state [g]. This procedure repeats until the current symbolic state [g] matches the goal state [e], after which robot execution
terminates successfully [k]. Modules [b,c,d] are learned modules elaborated in Sec. IV and Fig. 2.

A. Skill decomposition and recomposition of a long-horizon
mobile manipulation activity

To begin, the human first specifies the activity using a
symbolic goal state g (Fig. 1 [e]). During training, the long-
horizon mobile manipulation activity is factorized into a
repository of skills based on the symbolic representation
of this goal state. To verify that the visuomotor skills are
successful, each skill is trained together with a “success
detector” that will determine visually when the symbolic
component of the activity goal has transitioned to the desired
value. In order to detect relevant objects in the environment,
M-EMBER also grounds the mobile manipulation robot’s
observations into a symbolic representation of the current
state (Fig. 1 [b,g]).

To perform the long-horizon activity at test time,
M-EMBER first computes the current symbolic condition
of the environment by passing the visual observations
(112×112 images) and proprioceptive information (Fig. 1
[f]) to the skills’ learned success detectors (Fig. 1 [b]). Using
both the goal (Fig. 1 [e]) and the current symbolic state
(Fig. 1 [g]), the symbolic planner computes the sequence of
skills to perform (Fig. 1 [i]) and executes the first skill of
this sequence (Fig. 1 [j]). This procedure repeats until the
current symbolic state (Fig. 1 [g]) matches the goal state
perfectly (Fig. 1 [e]), after which robot execution terminates
successfully (Fig. 1 [k]).

B. Learning Each Factorized Skill in Simulation

M-EMBER learns to perform each skill by learning three
individual components per skill (see Fig. 2): a variational
autoencoder (VAE) (fk

vae in Fig. 2), success detectors (fk
R in

Fig. 2), and Q-functions (fk
Q in Fig. 2). The VAE reduces

the dimensionality of the robot’s pixel observation into a

latent representation that is used as input for the success
detectors and the Q-functions; the success detectors allow
M-EMBER to learn a binary reward function for each skill;
and Q-functions are learned from the binary reward func-
tions and allow M-EMBER to perform visuomotor control.
Accordingly, the VAE optimization objective is:

min
fk

vae

Est,at∼D

[
− Lvae(st)

]
where D is the dataset of RL trajectories, and Lvae is the
evidence lower bound (ELBO) for the VAE:

max
p,q

Eq(z|s) [log p (s | z)]−DKLq(z | s)p(z)

The optimization objective for the success detector (Fig. 2
a) is

max
fk
R

Es+∼D+,z+∼fk
enc(·|s+)

[
log

(
fk
R(z+)

)]
+ Es−∼D,z+∼fk

enc(·|s+)

[
log

(
1− fk

R(z−)
)]

Here, D+ and D− are the datasets of images labeled as
positive and negative, s+ and s− are the images sampled
from D+ and D−. The Q-function optimization objective is:

min
fk
Q

Est,at,st+1∼D[
fk
Q (zt, at)−

(
fk
R (zt+1) + γfk

R (zt+1) f
k
Qtarget

)]2
where

fk
R(z) ≡ 1{fk

R(z) > 0.5}
zt ∼ fk

vae(· | st)
zt+1 ∼ fk

vae(· | st+1)



Fig. 2: Low-Level Visualization of M-EMBER’s Skill-Learning Process. M-EMBER learns to perform each skill by learning three
individual components for each skill: a variational autoencoder (VAE) (fk

vae in Fig. 2), success detectors (fk
R in Fig. 2), and Q-functions

(fk
Q in Fig. 2). The VAE reduces the dimensionality of the robot’s pixel observation that is used as input for the success detectors and the

Q-functions; the success detectors allow M-EMBER to learn a binary reward function for each skill; and Q-functions are learned from
the binary reward functions and allow M-EMBER to perform visuomotor control. Kindly see the EMBER paper [34] for details.

Finally, the Q-value target is:

fk
Qtarget

= max
at+1

fk
Q(zt+1, at+1)

It is computed by maximizing over 200 randomly and
uniformly sampled actions a1:200t+1 . There are three signifi-
cant differences between M-EMBER and EMBER: 1) while
EMBER learns and rolls out a latent dynamics model for
MBOLD [84] planning, M-EMBER does not learn or use a
latent dynamics model given its poor empirical performance
in the real world, which we quantify in Sec. V. Instead,
we directly apply cross-entropy method (CEM) on actions
sampled from the action space and Q-values queried from
the learned Q-functions [67, 72]. 2) In addition to per-camera
images, M-EMBER takes as input the image in which the
object resides in (“In-view Image” in Fig. 2) as well as the
masked image (“Masked Image” in Fig. 2) from the object
of interest. These two additional images signal to the learned
M-EMBER model which camera the object of interest resides
in. 3) The VAE in M-EMBER is per-skill instead of shared
across skills as in EMBER.

C. Training learned visuomotor skills to be used in real-
world conditions

To allow learned visuomotor skills to be used in real-world
conditions, we use photorealism and domain randomization
in a simulator built on top of iGibson [88–90]. To execute ac-
tions in the real world, M-EMBER commands small changes
in the pose of the robot’s two end-effectors (6D) and base
(3D), and joint positions of the head, torso and two grippers.

D. Photorealism and domain randomization

We apply photorealistic rendering to the iGibson simu-
lator [88–90] to increase the photorealism of the simulated
scenes. We then randomize rendered scenes across 14 di-
mensions:

• Object instance: each object is randomized across in-
stances within the same category

• Object placement: when learning each skill, each object
is placed in the environment with a randomized 6-DOF
pose

• Object scale: each object in the environment is random-
ized across dimensions and scales

• Object texture: texture is randomized across object
texture maps

• Indoor lighting condition: lighting direction, types, sur-
face area, and intensity are randomized in the indoor
environment

• Outdoor lighting condition: dome lighting direction and
intensity are randomized

• Initial robot placement: the robot is initially randomly
(2-DOF position and 1-DOF rotation) placed in the
kitchen

• Initial camera viewpoint: the initial viewpoint of the
camera is randomized by the starting joint configuration
of the robot, so long as the objects are still visually
accessible by at least one of the robot cameras

• Camera parameters: each training environment is ran-
domized across intrinsic and extrinsic camera parame-
ters

• Outdoor environment texture: outdoor texture is ran-
domized across HDR environment maps

• Indoor interior randomization: ceilings, walls, and
floors are randomized across textures maps

• Scene randomization: each training environment is ran-
domized across rooms and floor plans

• Physics: each training environment is randomized
across 0.5-3.5x frictional and inertial coefficients

• Robot arm texture: each training environment is ran-
domized across 20-25 robot arm textures



Fig. 3: Train and Validation Environments. Fig. (a) exhibits a subset of simulated kitchen environments in which the TIAGo robot learns
each mobile manipulation primitive skill. The TIAGo robot is equipped with two Robotiq parallel-jaw grippers and cameras capturing
images at 3Hz. To narrow the domain gap, we use a real world kitchen for validation (Fig. (b)), and then evaluate M-EMBER on three
kitchens.

V. EXPERIMENTS

Experiments in this paper aim to answer four main ques-
tions: 1) Can M-EMBER’s factorized and learned primitive
skills generalize? 2) Does latent dynamics prediction in
EMBER contribute or degrade M-EMBER’s performance?
3) Can M-EMBER perform long-horizon activities? 4) How
much do photorealism and domain randomization each con-
tribute to M-EMBER’s performance?

A. Experimental setup

To answer these questions, we conduct experiments
of both factorized primitive skills and the long-horizon
cleaning kitchen BEHAVIOR [85] activity across
three kitchens and dozens of object instances (Fig. 4). In
Fig. 3, TIAGo, a bi-manual mobile manipulator, has access
to cameras capturing 112×112 images at 3Hz, as well as
360◦ 2D LiDAR scans.

B. Comparisons

We compare M-EMBER to two prior methods:
EMBER [34] (M-EMBER with MBOLD [84] planning)
and BEE [91] (M-EMBER with Visual Foresight, which
uses success detectors instead of the Q-functions for
model predictive control). We also compare M-EMBER
to “M-EMBER with scripted skills”, which scripts instead
of learning skills. The training data for experiments
are collected from the same simulator, which contains
photorealism and domain randomization techniques outlined
in Section IV-C.

C. Factorized skill performance

We compare all methods across five factorized skills:
grasp, place, open, close, and wipe. M-EMBER achieves
higher success rates across three kitchens and 50+ object
instances (Fig. 4). In contrast, EMBER and BEE achieve
lower success rates for each skill due to the difficulty of
using latent dynamics models trained from simulation in the
real world.

D. Long-horizon activity performance

For long-horizon experiments, this paper investigates the
cleaning kitchen activity, in which the robot is placed
in a kitchen, which contains cupboards or drawers. Each
cupboard or drawer is closed initially, and there are object
instances placed in it. There is a bucket (Fig. 4) randomly
placed on the floor. There is a piece of wiping cloth (Fig. 4)
laying in each cupboard for the robot to wipe the cupboard
shelf clean. After wiping, the cloth should also be placed in
the bucket. The goal of this activity is to put objects in each
cupboard and drawer into the bucket, wipe cupboards clean,
and close cupboards and drawers. Wiping is “clean” if the
majority of the surface area of the cupboard shelf reachable
by the robot is wiped.

In Table I, we find that “M-EMBER (Ours)” completes
the activity with 53.3% success. In comparison, “M-EMBER
with Scripted Skills” achieves single-digit success rates due
to the use of scripted, non-learning skills, while EMBER
and BEE achieve no success due to poor performance of
the latent dynamics models in the real world. Empirically,
we observe three major failure cases of M-EMBER in this
activity: 1) collision with the kitchen cupboards or drawers;
2) leaving at least one object inside a cupboard or drawer;
3) failed object grasp attempts that let to objects becoming
no longer reachable.

E. Ablation studies

We conduct ablations to quantify the performance contri-
bution of photorealism and domain randomization. To quan-
tify the contribution of photorealism, we ablate M-EMBER
by turning off photorealism in simulation. In Table I, we find
that M-EMBER’s long-horizon mobile manipulation activity
success rates degrade by 53.3%, quantifying the importance
of photorealistic rendering in M-EMBER’s performance. To
ablate domain randomization, we shrink the range of ran-
domization across each dimension of randomization specified
in Section IV-C by 50%. In Table I, we find that M-EMBER’s
long-horizon mobile manipulation activity success rates de-
grade by 30%, quantifying the importance of rendering



(a) Validation (L), Test (R) Buckets (b) Validation (L), Test (R) Object Instances (c) Validation (L), Test (R) Clothes

Fig. 4: Validation and Test buckets, object instances, and wiping clothes used in real-robot experiments

TABLE I: Successful trials (out of 30) and percentages of cleaning kitchen activity. K: number of skills composed in each trial.

cleaning kitchen
M-EMBER Prior Method 1: Prior Method 2: Prior Method 3: Ablation 1: Ablation 2:

(Ours) M-EMBER w/ EMBER (M-EMBER w/ BEE (M-EMBER w/ M-EMBER w/o M-EMBER w/ 50%
Scripted Skills MBOLD planning) [34] Visual Foresight) [91] Photorealism Domain Randomization

Kitchen 1 5/10 0/10 0/10 0/10 0/10 2/10
Kitchen 2 5/10 1/10 0/10 0/10 0/10 2/10
Kitchen 3 6/10 0/10 0/10 0/10 0/10 3/10

Total 16/30 (53.3%) 1/30 (3.3%) 0/30 (0%) 0/30 (0%) 0/30 (0%) 7/30 (23.3%)

randomized environments and objects to M-EMBER’s per-
formance.

VI. CONCLUSION

In this work, M-EMBER develops a factorized algorithm
for long-horizon mobile manipulation by factorizing and
reusing learned skills. Nevertheless, the domain gap is im-
mense, which is not only reflected in the low success rates
achieved in experiments but also in the limited settings and
activities the M-EMBER algorithm can handle. We hope that
this work demonstrates the difficulty of mobile manipulation
as an open research problem.

VII. APPENDIX: ADDITIONAL IMPLEMENTATION
DETAILS AND CLARIFICATIONS

1) Using Raw Pixels vs. Depth or RGB-D as Visual
Observations: While M-EMBER uses images as input due
to legacy considerations, it is a limitation that it currently
cannot accept depth input (inclusively or exclusively) as part
of its visual observations. Such important extension from raw
pixels to depth image is left for future work.

2) Proprioceptive Information as Non-visual Observa-
tions: In additional images, M-EMBER takes as input
proprioceptive information as non-visual observations. Such
proprioceptive information comprises robot joint angles (e.g.
head, torso, arms, and grippers).

3) Use of 360◦ 2D LiDAR: The 360◦ 2D LiDAR readings
of the robot provide fail-safe mechanisms for the robot and
are not visible to the learning modules in M-EMBER.

4) Simulation Environments: The simulation environ-
ments used in this paper are those produced from the iGibson
simulator.

5) Using additional photorealistic datasets: While iGib-
son is used as the primary simulator in this paper, extending
training environments to other widely used ones such as

Matterport, Replica as well as Habitat (including the Re-
arrangement Challenge) is respectfully left for future work.
The authors agree to some extent that submissions to this
challenge are probably more realistic baselines for the chosen
formulation.

6) The stringent demands of generalization abilities of
solutions to the mobile manipulation problem: The authors
would like to clarify that the combinatorial nature of the
mobile manipulation problem is what makes the demands of
the generalization abilities of mobile manipulation solutions
particularly stringent.

7) On the use of “unclear” in discussions of related
works: The authors acknowledge that instead of conjecturing
that it is “unclear” the existing methods will work, they could
have explained how they empirically validate these concerns
and propose their approach as a solution. However, given the
empirical weakness of their own solutions, the authors have
opted out of adopting a stronger connotation at this time.

8) Mobile vs. stationary manipulation: The authors ac-
knowledge that the paper might come off as suggesting
that mobile manipulation is a totally different problem than
stationary manipulation. However, the authors would like to
clarify that they do not think mobile manipulation is a fun-
damentally different problem from stationary manipulation.

VIII. ACKNOWLEDGMENTS

The authors would first like to give their special thanks to
William Chong, Marion Lepert, and Wesley Guo from the
Department of Mechanical Engineering of Stanford Univer-
sity for their outstanding mechanical support for the robot.
The authors would also like to thank the entire Stanford Vi-
sion and Learning Lab (SVL) for its wonderful support, such
as experimental setup, hardware support, and computational
resources.



REFERENCES

[1] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and
S. Birchfield, “Deep object pose estimation for semantic robotic
grasping of household objects,” arXiv preprint arXiv:1809.10790,
2018.

[2] H. Ha and S. Song, “Flingbot: The unreasonable effectiveness of
dynamic manipulation for cloth unfolding,” in Conference on Robot
Learning, PMLR, 2022, pp. 24–33.

[3] J. Varley, C. DeChant, A. Richardson, J. Ruales, and P. Allen,
“Shape completion enabled robotic grasping,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2017, pp. 2442–2447.

[4] J. Mahler et al., “Dex-net 1.0: A cloud-based network of 3d objects
for robust grasp planning using a multi-armed bandit model with
correlated rewards,” in 2016 IEEE international conference on
robotics and automation (ICRA), IEEE, 2016, pp. 1957–1964.

[5] J. Mahler et al., “Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” arXiv
preprint arXiv:1703.09312, 2017.

[6] J. Mahler, M. Matl, X. Liu, A. Li, D. Gealy, and K. Goldberg,
“Dex-net 3.0: Computing robust vacuum suction grasp targets in
point clouds using a new analytic model and deep learning,” in 2018
IEEE International Conference on robotics and automation (ICRA),
IEEE, 2018, pp. 5620–5627.

[7] J. Mahler et al., “Learning ambidextrous robot grasping policies,”
Science Robotics, vol. 4, no. 26, eaau4984, 2019.

[8] Y. Chebotar et al., “Closing the sim-to-real loop: Adapting simu-
lation randomization with real world experience,” in 2019 Interna-
tional Conference on Robotics and Automation (ICRA), IEEE, 2019,
pp. 8973–8979.

[9] S. Dasari et al., “Robonet: Large-scale multi-robot learning,” in
CoRL, 2019. arXiv: 1910.11215 [cs.RO].

[10] A. Mandlekar et al., “Roboturk: A crowdsourcing platform for
robotic skill learning through imitation,” in Conference on Robot
Learning, 2018.

[11] E. Jang et al., “Bc-z: Zero-shot task generalization with robotic
imitation learning,” in Conference on Robot Learning, PMLR, 2022,
pp. 991–1002.

[12] F. Ebert et al., “Bridge data: Boosting generalization of robotic
skills with cross-domain datasets,” arXiv preprint arXiv:2109.13396,
2021.

[13] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta, “R3m:
A universal visual representation for robot manipulation,” arXiv
preprint arXiv:2203.12601, 2022.

[14] A. S. Chen, S. Nair, and C. Finn, Learning generalizable robotic
reward functions from ”in-the-wild” human videos, 2021. arXiv:
2103.16817 [cs.RO].

[15] S. Bahl, A. Gupta, and D. Pathak, “Human-to-robot imitation in the
wild,” arXiv preprint arXiv:2207.09450, 2022.

[16] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ international
conference on intelligent robots and systems (IROS), IEEE, 2017,
pp. 23–30.

[17] J. Tobin et al., “Domain randomization and generative models for
robotic grasping,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 3482–3489.

[18] X. Ren et al., “Domain randomization for active pose estimation,” in
2019 International Conference on Robotics and Automation (ICRA),
IEEE, 2019, pp. 7228–7234.

[19] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-
to-real transfer of robotic control with dynamics randomization,”
in 2018 IEEE international conference on robotics and automation
(ICRA), IEEE, 2018, pp. 3803–3810.

[20] Y. Du, O. Watkins, T. Darrell, P. Abbeel, and D. Pathak, “Auto-
tuned sim-to-real transfer,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA), IEEE, 2021, pp. 1290–1296.

[21] U. Viereck, A. Pas, K. Saenko, and R. Platt, “Learning a visuomotor
controller for real world robotic grasping using simulated depth im-
ages,” in Conference on robot learning, PMLR, 2017, pp. 291–300.

[22] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M.
Hutter, “Learning robust perceptive locomotion for quadrupedal
robots in the wild,” Science Robotics, vol. 7, no. 62, eabk2822,
2022. eprint: https://www.science.org/doi/pdf/10.
1126/scirobotics.abk2822.

[23] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor
adaptation for legged robots,” arXiv preprint arXiv:2107.04034,
2021.

[24] Z. Fu, A. Kumar, J. Malik, and D. Pathak, “Minimizing energy
consumption leads to the emergence of gaits in legged robots,” in
Conference on Robot Learning, PMLR, 2022, pp. 928–937.

[25] Z. Fu, A. Kumar, A. Agarwal, H. Qi, J. Malik, and D. Pathak, “Cou-
pling vision and proprioception for navigation of legged robots,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 17 273–17 283.

[26] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M.
Hutter, “Learning robust perceptive locomotion for quadrupedal
robots in the wild,” Science Robotics, vol. 7, no. 62, eabk2822,
2022.

[27] P. Fankhauser, M. Bjelonic, C. D. Bellicoso, T. Miki, and M. Hutter,
“Robust rough-terrain locomotion with a quadrupedal robot,” in
2018 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, 2018, pp. 5761–5768.

[28] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Sci-
ence robotics, vol. 5, no. 47, eabc5986, 2020.

[29] J. Tan et al., “Sim-to-real: Learning agile locomotion for quadruped
robots.,” in Robotics: Science and Systems, 2018.

[30] W. Yu, V. C. Kumar, G. Turk, and C. K. Liu, “Sim-to-real transfer
for biped locomotion,” in 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2019, pp. 3503–3510.

[31] A. Allevato, E. S. Short, M. Pryor, and A. Thomaz, “Tunenet:
One-shot residual tuning for system identification and sim-to-real
robot task transfer,” in Conference on Robot Learning, PMLR, 2020,
pp. 445–455.

[32] A. A. David, S. E. Schaertl, M. Pryor, and A. L. Thomaz, “Itera-
tive residual tuning for system identification and sim-to-real robot
learning,” Autonomous Robots, vol. 44, no. 7, pp. 1167–1182, 2020.

[33] Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. Panne, “Learning
locomotion skills for cassie: Iterative design and sim-to-real,” in
Conference on Robot Learning, PMLR, 2020, pp. 317–329.

[34] B. Wu, S. Nair, L. Fei-Fei, and C. Finn, “Example-driven model-
based reinforcement learning for solving long-horizon visuomotor
tasks,” in 5th Annual Conference on Robot Learning, 2021.

[35] P. Anderson et al., “Sim-to-real transfer for vision-and-language nav-
igation,” in Conference on Robot Learning, PMLR, 2021, pp. 671–
681.

[36] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless navi-
gation,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2017, pp. 31–36.
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