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Abstract— We consider the problem of motion and commu-
nication planning under uncertainty with limited information
from a remote sensor network. Because the remote sensors
are power and bandwidth limited, we use event-triggered (ET)
estimation to manage communication costs. We introduce a fast
and efficient sampling-based planner which computes motion
plans coupled with ET communication strategies that minimize
communication costs, while satisfying constraints on the proba-
bility of reaching the goal region and the point-wise probability
of collision. We derive a novel method for offline propagation
of the expected state distribution, and corresponding bounds on
this distribution. These bounds are used to evaluate the chance
constraints in the algorithm. Case studies establish the validity
of our approach and demonstrate computational efficiency and
asymptotic optimality of the planner.

I. INTRODUCTION

As robots become more capable, they also become more
adept at autonomously exploring remote environments, es-
pecially those that are hostile to humans. Examples include
deep ocean, planetary, and subterranean exploration. Because
of inaccessibility and limited resources, these robots must
be able to operate efficiently and safely. However, these are
often competing objectives, i.e., safer performance requires
more resources [1]. This problem is exacerbated when robots
are part of a network: frequent information communication
increases the probability of safely completing the mission,
but can also lead to unacceptable resource consumption.
This work focuses on this problem and aims to develop a
framework for robot motion and communication planning
that guarantees safety while minimizing resource cost.

Consider the case of a robot in a lunar exploration scenario
with a network of remote sensors. The robot is tasked to
navigate to a scientifically interesting location and avoid
craters and boulders. The robot relies on the sensor network
for localization, but the remote sensors have limited battery
life, and transmitting information is costly. The network
must also limit communication due to bandwidth constraints.
Hence, the robot should find a motion and communication
plan that minimizes the resource cost on the sensors while
guaranteeing safety.

A ubiquitous technique to manage communication cost
is event-triggered (ET) estimation [2]–[5], where commu-
nication only occurs when the information is deemed useful.
This typically takes the form of a threshold on some useful
quantity, e.g., the Kalman Filter (KF) innovation [3]–[5]. ET
allows the user to lower resource consumption by changing
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this threshold, thus reducing the volume of transmitted infor-
mation and trading off estimation accuracy with resource use.
Work [6] introduces a method that guarantees optimal trade-
offs by accounting for both task performance and resources.
While providing a comprehensive Pareto Front and optimal
ET thresholds, that method does not generate a motion plan;
it also requires heavy computation power, resulting in lengthy
computation times and precluding onboard implementation.

Sampling-based motion planners are well established tools
that can rapidly find solutions to complex problems [7]–
[11]. The first developed planners deal with determinis-
tic dynamics and operate solely in the state space [8],
[12]. Later formulations extend those algorithms to obtain
asymptotically-optimal planners such as SST and SST* [11],
and incorporate motion uncertainty via chance constraints on
the probability of collision (e.g., CC-RRT), [9], [10], [13].
These techniques have recently been extended to accom-
modate measurement uncertainty with Gaussian belief trees
[14], [15], and feedback-based information roadmaps [16].
However, while these fast and efficient methods have been
extended to accommodate other uncertainties, no sampling-
based motion planning algorithm currently exists that incor-
porates ET estimation.

In this paper, we develop a sampling-based algorithm for
motion and ET-communication (METC) planning that, for a
given system and environment, generates both a motion and
ET estimation threshold plan. This algorithm is fast and effi-
cient, and provides guarantees on the point-wise probability
of collision and reaching the goal (i.e., safety constraints),
while minimizing communication cost. We first derive an
offline method to predict the expected state distribution, and
provide the corresponding bounds for this distribution. Using
these results, we then derive a sampling-based algorithm that
generates the METC plans. We show the efficacy of our
methods in several case studies. The results show that we
can successfully generate plans for a variety of environments,
these plans are valid with respect to the safety constraint, and
optimality increases with increased computation time. We
additionally compare the results of our algorithm to a Pareto
optimal strategy in [6], showing that we can generate plans
with similar performance with orders of magnitude smaller
computation time.

In summary, our contributions are: (i) a derivation of
propagation equations for the distribution across states under
ET estimation, (ii) a derivation of the bounds for these
distributions, (iii) an algorithm for generating METC plans
that minimize communication costs while respecting a safety
constraint, and (iv) a series of case studies and benchmarks
that demonstrate the algorithm’s efficiency and optimality.
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II. PROBLEM FORMULATION

We consider a scenario where a lunar robot must navigate
to a scientifically interesting goal region while avoiding
obstacles. The robot receives measurements from resource
and bandwidth constrained remote sensors. The goal is
to generate METC plans that respect a safety constraint
on obstacle collision and reaching the goal region, while
simultaneously minimizing communication cost. Below, we
formalize this problem.

A. Robot Motion and Remote Sensor Models

The motion of the robot is uncertain and described by

xk+1 = Axk +Buk + wk, wk ∼ N (0, Q), (1)

where xk ∈ X ⊆ Rn is the state, uk ∈ U ⊆ Rp is the control,
A ∈ Rn×n and B ∈ Rn×p, and wk ∈ Rn is a random
variable that represents a zero-mean Gaussian distributed
noise with covariance Q ∈ Rn×n.

The robot receives measurements from a remote sensor
network (e.g. beacons that provide one-way ranging mea-
surements). We assume that the robot communicates with the
closest sensor, and therefore only fuses one measurement at
a time. For ease of presentation, we assume that the remote
sensors are identical, but we emphasize that extending to
different models is trivial. Hence, the sensor network can be
represented as a single sensor with model

yk = Cxk + vk, vk ∼ N (0, R), (2)

where yk ∈ Rm is the measurement, C ∈ Rm×n, and vk ∈
Rm is a random variable that represents zero-mean Gaussian
distributed sensor noise with covariance R ∈ Rm×m.

The initial state of the robot is described by a Gaussian
distribution x0 ∼ N (x̂0,Σ0), with mean x̂0 ∈ Rn and
covariance Σ0 ∈ Rn×n. We assume the robot is fully
controllable and observable, and that the covariance matrices
Q and R are positive definite.

B. Event-triggered Estimation

Due to process and measurement noise, the robot’s true
state is unknown. Hence, an estimator maintains a probability
distribution over the states, xk ∼ b(xk), called the belief.
Note that this is an online estimate conditioned on observed
measurements. To conserve communication costs, the system
operates with the KF innovation-based ET estimator pre-
sented in [5], where measurements are only communicated
when they are “surprising”. That work derives a recursive
minimum mean square error (MMSE) estimator under the
assumption that the belief is Gaussian (see Sec. III-B for de-
tails). For a given a threshold δk ∈ ∆ = R>0, measurement
yk is surprising if the norm of the Mahalanobis (whitening)
transformation of zk = yk−Cx̂k is larger than threshold δk.

We define γk ∈ {0, 1} to be the triggering indicator,
i.e., γk = 1 if the measurement is sent, and γk = 0
otherwise. When γk = 0, the robot is implicitly informed
that yk is not surprising; the key advantage of ET filter is the
exploitation of this information to improve state estimation.
In this framework, the threshold δk is a design parameter,

which trades off estimation accuracy with resource cost. We
seek a method for optimally setting this threshold.

C. Controller

The robot is equipped with a trajectory following con-
troller. Given a nominal trajectory as a sequence of nominal
control inputs ǓT0 = (ǔ0, . . . , ǔT ) and nominal states X̌T

0 =
(x̌0, . . . , x̌T ), the feedback controller is: uk = ǔk−1 −
K(x̂k − x̌k), where K is the controller gain. Under this
controller, the closed-loop system dynamics become:

xk = Axk−1 +B(ǔk−1 −K(x̂k − x̌k)) + wk.

The goal of this work is to compute the nominal trajectory
(ǓT0 , X̌

T
0 ) along with the sequence of ET estimation thresh-

olds ∆T
0 = (δ0, ..., δT ) that satisfy the mission objectives

and constraints described below. We define a motion and
ET-communication (METC) plan to be (ǓT0 , X̌

T
0 ,∆

T
0 ).

D. Mission Objectives

The mission consists of three objectives: respect con-
straints on the probability of reaching the goal and avoiding
obstacles, and minimize resource consumption. Here, we
formalize these objectives.

The environment contains a set of obstacles, Xobs ⊂ Rn,
and a goal region, Xgoal ⊂ Rn. The probability of collision
at time step k is defined as:

P (xk ∈ Xobs) =

∫
Xobs

b(xk)(s)ds, (3)

where b(xk)(s) is the distribution b(xk) evaluated at state
s ∈ X . The probability of terminating in the goal region is:

P (xT ∈ Xgoal) =

∫
Xgoal

b(xT )(s)ds, (4)

where xT is the terminal point on a trajectory.
The third objective is to conserve resources for the remote

sensors. The cost of transmitting a single measurement at
time step k is cmγk, where cm > 0 is a constant. Since
trigger γk depends on the triggering threshold δk, the total
communication cost for a trajectory with T time steps and
∆T

0 = (δ0, . . . , δT ) is JT (∆T
0 ) =

∑T
k=1 cmγk. Note that γk

is a random variable; hence, the total cost is considered in
expectation:

JT (∆T
0 ) = E[JT (∆T

0 )] =

T∑
k=1

cmE[γk] =

T∑
k=1

cmΓ(δk) (5)

where Γ(δk) is the expected triggering rate for δk. Because
we focus on sensor resources, (5) contains only communi-
cation cost, but we emphasize that it can be easily extended
to include terms for path length and control effort.

E. Problem Statement

Given a robot with dynamics in (1), sensor network with
measurement model in (2), set of obstacles Xobs, goal region
Xgoal, and safety probability bound psafe ∈ [0, 1], compute



an optimal METC plan (ǓT0 , X̌
T
0 ,∆

T
0 )∗ that minimizes the

expected total communication cost, i.e.,

(ǓT0 , X̌
T
0 ,∆

T
0 )∗ = arg min

ǔk,x̌k,δk,T
JT (∆T

0 ) (6)

subject to the following constraints on the point-wise prob-
ability of collision and reaching the goal:

P (xk ∈ Xobs) < 1− psafe, ∀k ∈ [0, T ] (7)
P (xT ∈ Xgoal) > psafe. (8)

The key challenge is accounting for the uncertainty in-
troduced by ET estimation, which requires forecasting state
distributions over both unknown measurements and unknown
triggers. Measurement uncertainty in a KF is accounted for
in [15]; however, there are no existing methods to forecast
uncertainty over a triggering condition. Straightforward at-
tempts to extending [15] to ET quickly run into problems
of inter-dependency between variables and exponentially
exploding belief trees. We address these challenges by devel-
oping a method to propagate bounds on the state distributions
under a given choice of δk and using these to check the
safety constraint. We then develop a planning algorithm by
integrating these methods with the sampling-based algorithm
in [14] to generate METC plans that asymptotically minimize
communication costs while respecting safety constraints.

III. PRELIMINARIES

A. Belief Prediction under Kalman Filter

For a linearizable and controllable system operating under
a standard Kalman Filter, [15] presents a method to forecast
the belief over the state while accounting for the fact that the
measurements are unknown random variables a priori. This
expected belief, b(xk), is defined with respect to all possible
measurements as:

b(xk) = EY [b(xk | x0, y0:k)] =

∫
y0:k

b(xk | x0, y0:k)pr(y0:k)dy

This forecast enables the evaluation of the chance constraints.
For a given nominal trajectory, X̌T

0 = (x̌0, . . . , x̌T ),
the expected belief b(xk) = N (x̌k,Σk + Λk), can be
recursively calculated from an initial belief b(x0) using the
belief propagation method from [15]:

Σ−k = AΣk−1A
T +Q, Σk = Σ−k − LkCΣ−k , (9)

Λk = (A−BK)Λk−1(A−BK)T + LkCΣ−k , (10)

where Σk is the online uncertainty given by the KF, and Λk is
covariance of the forecasted state estimates x̂k (note that x̂k
is a random variable offline). Intuitively, this distribution can
be thought of as the sum of the online estimation error and
the forecasted uncertainty from not-yet-known measurements
that the system receives during execution. In this work, we
develop a method of forecasting belief under an ET Filter.

B. MMSE Filter for Event-triggered Estimation

For state estimation, we use the triggering scheme de-
scribed in [5], which is based on the KF innovation. Recall
that the trigger, γk, depends on the triggering threshold δk,
and that γk = 1 indicates that measurement yk is sent, and
γk = 0 otherwise. According to the MMSE estimator in [5],
the estimate of the state is Gaussian with a priori update:

x̂−k = Ax̂k−1 +Buk, Σ−k = AΣk−1A
T +Q, (11)

and a posteriori update given by:

x̂k = x̂−k + γkLkzk, zk = y − Cx̂−k (12)

Σk = Σ−k −
[
γk + (1− γk)β(δk)

]
LkCΣ−k . (13)

where Lk = Σ−k C
T [CΣ−k C

T + R]−1 is the KF gain. The
term β(δk) is a scalar multiplier that effectively attenuates
the KF gain in the covariance update as a function of δk,
and is given by

β(δ) =
2√
2π
δe−

δ2

2 [1− 2Q(δ)]
−1
, (14)

where

Q(δ) ,
∫ +∞

δ

1√
2π
e−

x2

2 dx. (15)

The triggering condition takes the form:

γk =

{
0 if ‖εk‖∞ ≤ δk
1 otherwise,

(16)

where εk is the Mahalanobis (whitening) transformation of
the KF innovation, zk. Note that, because of the whitening
transformation, εk is always distributed as a standard normal.
Hence, the expected value of γk is solely dependent on δk
and is given by Γ(δk) = 1− [1− 2Q(δk)]

m, where m is the
dimension of the measurement vector.

IV. BELIEF PREDICTION UNDER ET FILTER

In this section, we present a novel method to predict the
state distribution offline under an ET filter. The resulting
distribution can be used to check the validity of the safety
constraints. Based on this method, we devise the planning
algorithm in Sec. V.

A key requirement for the method of belief prediction
in Sec. III-A is that the distribution over state estimates,
x̂k, is Gaussian, and defined by x̂k ∼ N (x̌k,Λk). When
this distribution is known, it can be used to represent the
joint distribution over xk and x̂k, which can in turn be
marginalized to obtain the expected distribution over states,
xk ∼ b(xk) = N (x̌k,Σk + Λk). This marginal is then used
to evaluate the chance constraints in (7) and (8) offline.

Unfortunately, under ET estimation the covariance is up-
dated under two randomly switching modes (according to
γk = 0 or γk = 1), which means that the methods described
in Sec. III.A cannot be directly applied to ET estimation. If
the trigger γk is treated as an unknown random variable, then
the expected belief must be taken with respect to all possible
γk, and is not Gaussian. However, if γk is assumed to be



given, then the distribution over x̂k is Gaussian. This can be
seen by examining the ET estimation update in (12): when γk
is given, the conditional dependency of x̂k on γk vanishes
and the Gaussian property is preserved during the update.
The mean and covariance can be obtained by evaluating
E[x̂k] = x̌k and E[(x̂k − x̌k)(x̂k − x̌k)T ] = Λk respectively.
The resulting distribution xk ∼ N (x̌k,Σk+Λk) can then be
calculated, with Σk given by the ET update in (12) and Λk
given by:

Λk = (A−BK)Λk−1(A−BK)T + γkLkCΣ−k . (17)

The assumption that γk is given is significant. Instead of
taking the expected belief with respect to all possible γk,
we assume a realization of some specific sequence of γk.
However, if we are only concerned with bounding the
probability of being within some region, this assumption can
be easily accommodated. We simply need to determine the
triggering condition that results in the expected belief with
the highest, or lowest, probability of being in that region.

While the expectation of triggering at any given time step
is easy to calculate, the corresponding expected belief is not.
However, because we are considering a chance constraint,
it is sufficient to only consider an upper bounding belief,
which subsumes all covariances produced by any triggering
condition. This bound can be used for collision checking as
described in Section V-B.2 to guarantee satisfaction of the
chance constraints. We use a bounding method similar to the
one described in [17].

Let the scalar constants a, ā, k, k̄, c, c̄, q, q̄, r, r̄ ∈ R>0

define bounds such that

a2In ≤ AAT ≤ ā2In, c2Im ≤ CCT ≤ c̄2Im,
k2In ≤ (A−BK)(A−BK)T ≤ k̄2,

qIn ≤ Q ≤ q̄In, rIm ≤ R ≤ r̄Im,
(18)

where Im is the m×m identity matrix, and inequality relation
X ≥ Y for square matrices X and Y implies X − Y is posi-
tive semi-definite. Note that the existence of these positive
bounds requires that the eigenvalues of A, (A − BK), and
CCT be real. Based on these parameters, we derive an upper
bound for the covariance of the belief in the theorem below.

Theorem 1. Consider the predicted belief for ET estimation
given by b(xk) = N (x̌k,Σk + Λk), where the covariance
Σk +Λk is recursively updated according to (17). Then, this
covariance can be recursively bounded by

Λk + Σk ≤ (λ̄k + p̄k)In (19)

where λ̄k, p̄k ∈ R≥0 are given by

λ̄k = k̄2λ̄k−1 +
c̄2
(
p̄k−1ā

2 + q̄
)2

c2
(
p
k−1

a2 + q
)

+ r

p̄k =

(
1

p̄k−1ā2 + q̄
+

βc2

r̄ + (1− β) c̄2 (ā2p̄k−1 + q̄)

)−1

with p
k

=
(
1/q + c̄2/r

)−1
. The bounds are initialized as:

λ̄0 = max (Eigenval (Λ0)) ,

p̄0 = max (Eigenval (Σ0)) , p
0

= min (Eigenval (Σ0)) .

Proof. We begin by deriving the individual bound for Λk
such that Λk ≤ λ̄kI . Consider the case for γk = 0, the
update equation can be written as:

Λk = (A−BK)Λk−1(A−BK)T . (20)

This can be simply bounded as (A−BK)Λk−1(A−BK)T ≤
k̄2λ̄k−1. Now consider the case γk = 1. The update equation
can be written as:

Λk = (A−BK)Λk−1(A−BK)T

+ Σ−k C
T (CΣ−k C

T +R)−1CΣ−k . (21)

The term (A − BK)Λk−1(A − BK)T is the same as (20),
and can be bounded in the same way. In order to bound
the second term, we must first derive bounds on Σ−k , the
covariance from the a priori filter update. This can be
bounded in terms of the previously defined bounds on the a
posteriori update, p

k
and p̄k. From (17) we can generate the

bounds: (
a2p

k−1
+ q
)
I ≤ Σ−k ≤

(
ā2p̄k−1 + q̄

)
I (22)

Next, examine the term (CΣ−k C
T + R)−1. We require the

following lemma to calculate the bound:

Lemma 2. Let X ∈ Rn×n be bounded such that X ≥ xI .
Then, X−1 ≤ 1/xI

Applying Lemma 2 we obtain:

(CΣ−k C
T +R)−1 ≤ (c2(p

k−1
a2 + q) + r)−1I (23)

Using (23) and (22), we can write the full bound in (??). It
is simple to see that this bound is larger than the bound for
the case γk = 0, and therefore is the true upper bound for
all triggering conditions.

We use similar reasoning to gererate bounds on bounds
on Σk. For the case γk = 1, (12) becomes the standard KF
equations. Therefore, the upper and lower bounds for the
case γk = 1 are the same KF bounds derived in [18]:(

1

q
+
c̄2

r

)−1

I ≤ Σk,γk=1 ≤
(
p̄k−1ā

2 + q̄
)
I (24)

We derive the bounds for the case γk = 0 based on the
inverse form of the covariance update equation (12) for γk =
0:

Σk,γk=0 =((
Σ−k
)−1

+ βCTk
(
Rk + (1− β)CkΣ−k C

T
k

)−1
Ck

)−1



Under straightforward manipulation and application of
Lemma 2, this yields the bounds:(

1

q
+

βc̄2

r + (1− β)c2q

)−1

I ≤ Σk,γk=0 (25)

≤
(

1

p̄k−1ā2 + q̄
+

βc2

r̄ + (1− β) c̄2 (ā2p̄k−1 + q̄)

)−1

I

(26)

Note that the lowest lower bound on Σk corresponds to the
case γk = 1. Similarly, the largest upper corresponds to
γk = 0. These widest bounds are presented in (19), and
are guaranteed to bound the ET filter covariance for any
triggering condition.

Finally, we can bound the sum of the covariances Σk+Λk
by the sum of their respective upper bounds: Σk + Λk ≤
(p̄k + λ̄k)I . Because these represent the largest upper bound
and lowest lower bound for any triggering condition at any
time step, the recursively calculated sequence of bounds is
guaranteed to bound the expected belief for any possible
sequence of triggers.

V. ET-GBT PLANNING ALGORITHM

This section introduces the Event-Triggered Gaussian Be-
lief Trees (ET-GBT) algorithm, an adaptation of the Gaussian
Belief Trees (GBT) algorithm in [14] for ET estimation in
order to minimize communication cost.

A. Gaussian Belief Trees

We first present a brief overview of the GBT motion
planner from [14]. There, a framework is developed for
extending any kinodynamic tree-based motion planner to the
belief space, where the edges are still nominal controllers
and trajectories, but the nodes are Gaussian beliefs. The
algorithm proceeds as follows. First a belief is randomly
sampled. Next, its closest node is computed using the 2-
Wasserstein distance and extended by a random control input.
The uncertainty covariance is propagated using the technique
discussed in Sec. III-A. A new node is only added to the tree
if it satisfies the chance constraints of probability of collision
with obstacles, which is over-approximated using [10], [13],
[19]. The process repeats until a solution is found.

B. ET-GBT Algorithm

ET-GBT adapts GBT in two fundamental ways: tree
expansion and chance constraint validity checking. ET-GBT
can be used to identify a valid tree that optimizes for
communication cost in (5), and satisfies the safety constraints
(7) and (8). We optimize for this cost function using SST
[11], an asymptotically near-optimal planner. Alg. 1 presents
the pseudocode for our proposed algorithm.

1) Tree Expansion: Instead of maintaining and propa-
gating Gaussian beliefs, we propagate the bounds (19) on
the beliefs under ET per the equations derived in Sec. IV.
The rest of the tree expansion algorithm follows intuitively
from this main representation change. The SampleBelief()
function is unchanged from GBT and operates analogously
to the state sampler in an RRT search. The SelectNode()

Algorithm 1: ET-GBT
Input : X , U , Xobs, Xgoal, N
Output: Tree G = (V,E)

1 G← (V← {binit},E← ∅)
2 for N iterations do
3 brand ← SampleBelief()
4 δrand ← SampleDelta()
5 urand ← SampleControl()
6 nselect ← SelectNode()
7 nnew ← Extend(nselect, δrand)
8 if ValidPathCheck(nselect, nnew, δrand) then
9 V← V ∪ {nnew}

E← E ∪ {edge(nselect, nnew, δ)}
10 Prune(V,E)
11 return G = (V,E)

function is modified to select the ‘closest’ belief node for
extension using the 2-Wasserstein distance metric to the
upper bounding belief. SampleDelta() has been added so that
each edge of the tree corresponds to a triggering threshold
as well as a nominal control input.

2) Chance Constraint Validity Checking: We use an over-
approximation to check that the probability of collision is
below the safety constraint (7). This allows for very fast con-
straint checking and preserves the efficiency of the sampling-
based algorithm. First, we define the psafe probability contour
as the level set Lc = {s | b(xk)(s) = c} with c ∈ R≥0. This
contour is calculated such that the interior of Lc defines a
region (volume), A ⊂ X , that contains psafe probability mass∫

A
b(xk)(s)ds = psafe. (27)

For a Gaussian distribution, level set Lc and region A are
ellipsoidal and defined by the eigenvalues and eigenvectors
of the covaiance matrix. If A and Xobs are non-intersecting,
then P (xk ∈ Xobs) must be less than 1− psafe, i.e.,

A ∩ Xobs = ∅ ⇒ P (xk ∈ Xobs) ≤ 1− psafe.

The key insight is that the covariance bounds presented
in Theorem 1 can be used to calculate the bounding contour
that contains all possible contours for b(xk). Specifically, the
covariance bound matrix is (λ̄k + p̄k)In, i.e., diagonal with
equal entries; hence, the contour is an n-dimensional sphere
(n-sphere) with radius rk = tα(λ̄k + p̄k), where tα is com-
puted from the quantile function φ−1 of the n-dimensional
Gaussian distribution such that tα = −φ−1(0.5 psafe).

Therefore, evaluation of Constraint (7) can be efficiently
computed by checking A∩ Xobs = ∅, which corresponds to
checking for intersections of the obstacles with the n-sphere.
Evaluation of (8) can be done similarly by determining
whether the psafe contour is completely enclosed by the goal
region, i.e., A ⊆ Xgoal.

We note that this method of checking for Constraints (7)
and (8) introduces two main sources of conservatism. The
first is inherent to using the probability contour; while non-
intersection of A and Xobs implies P (xk ∈ Xobs) ≤ 1−psafe,



intersection does not imply that P (xk ∈ Xobs) > 1 −
psafe. The second arises from bounding the true elliptical
covariances with a spherical bound. There may be cases that
the spherical bound intersects with obstacles, but the true
elliptical covariance does not. This is compounded by the
assumptions that γk = 0 or γk = 1 for all k when computing
the bounds. This does not occur in reality, so a bound
calculated on these extremes is consequentially conservative.

C. Correctness, Completeness, and Optimality

In this section, we show that ET-GBT (i) is sound and
probabilistically complete with respect to the conservative
constraint-validity-checking method presented above, and (ii)
satisfies the conditions for asymptotic (near-)optimality of
kinodynamcis planners such as SST or SST* [11].

Lemma 3 (Correctness). Let G = (V,E) be the tree
obtained from ET-GBT for some iterations N ∈ N. Consider
any tree node v ∈ V. This node is guaranteed to satisfy the
chance constraints in (7). Further, if the algorithm returns a
solution, the final tree node is guaranteed to satisfy (8).

The proof of this lemma follows directly from our method
of chance constraint checking using the (conservative) co-
variance bound from Theorem 1.

Theorem 4 (Probabilistic Completeness). ET-GBT is prob-
abilistically complete with respect to the conservative upper
bound, i.e., if there exists a solution using the upper bound,
ET-GBT will find it almost surely as iterations N →∞.

The proof of this theorem follows directly from Lemma 3
and the probabilistic properties of GBT.

For asymptotic optimality, we first show that the cost
function in (5) satisfies the conditions for an admissible cost
function for asymptotic near-optimal algorithms according
to [21]. Specifically, it is straightforward to see that (5)
satisfies additivity, monotinicity, and non-degeneracy. In the
following, we prove that it is also Lipschitz continuous in δ.

Lemma 5 (Lipschitz Continuity). The cost function in (5) is
Lipschitz Continuous.

Proof. It is enough to show the Lipschitz continuity of one
time step, since the cost function is a sum of stage costs at
each time step (5). For δ ∈ R>0, we see that Γ(δt) = 1 −
[1− 2Q(δk)]

m
, is everywhere differentiable, and also that

Jt has a bounded first derivative, since δ ∈ R>0. Therefore,
it is Lipschitz continuous in δ.

Finally, we show that the belief bound dynamics is Lipschitz
continuous w.r.t. the triggering threshold (δ), controls, and
the belief state. Continuity w.r.t. belief and controls follows
directly from the Lipschitz continuity of the linear dynamics.
For δ, we show that the derivative of the belief bound w.r.t. δ
is bounded (see [20] for full proof). Under these conditions,
the ET-GBT planner inherits the asymptotic optimality prop-
erties of the underlying sampling based planner (similar to
GBTs in [14]).

VI. EVALUATIONS

We implemented ET-GBT with the asymptotically near-
optimal planner SST [11] in the Open Motion Planning
Library (OMPL) [21]. We evaluated our algorithm on two
systems and two environments, generating METC plans
for each scenario. We ran Monte Carlo (MC) simulations
to collect statistics on: resource cost, collision probability
and probability of reaching the goal. Benchmarking shows
improved optimality, i.e., lower cost with longer runtimes.
We also provide a comparison with the method in [6].
To emphasize the cost savings for the remote sensors, we
considered cm = 1 in cost function (5). All benchmarks
were computed single-threaded on a 3.6 GHz CPU with 16
GB RAM.

Simple 2D System: We study the robotic system from [15],
with dynamics xk+1 = xk + uk + wk and measurements
yk = xk + vk. The noise is distributed as wk ∼ N (0, 0.12I)
and vk ∼ N (0, 0.12I).

We first consider an environment with a narrow corridor,
shown in Figure 1a, and constraint psafe = 0.99. We ran
ET-GBT for 1 minute, generating the METC plan shown in
Figure 1a. Note the motion plan consists of a nominal state
trajectory for the robot and a triggering threshold δ plan for
the sensors. In Figure 1a, the sensors are shown as concentric
circles, and the robot’s state trajectory is colored by the
corresponding triggering threshold for the sensors. We see
the δ threshold relax in regions far from obstacles, indicating
a lower trigger rate, causing the belief bounds to expand,
and accruing less cost. As the robot traverses the narrow
corridor, the threshold tightens, causing the belief bounds
to contract in order to satisfy the safety constraint. The
threshold decreases at the end to ensure the robot terminates
within the goal region.

The generated nominal plan was validated by running
3000 MC simulations, none of which collided with obstacles.
A sampling of 50 of these trajectories is shown in Figure 1b.
This affirms that the chance constraint has been met, but also
indicates the bounds are very conservative.

We verified the derived upper bound, Λk + Σk ≤ (λ̄k +
p̄k)I by checking that the matrix difference, (λ̄k + p̄k)I −
(Λk+Σk), is positive semi-definite. This condition is checked
by ensuring the eigenvalues of the matrix difference, denoted
by ε = Eigenval((λ̄k + p̄k)I − (Λk + Σk)), are all positive,
as shown in Figure 1c. Note that while the bound is valid,
it is very loose, contributing to conservativeness in collision
checking. A future direction is to investigate a tighter bound
and reduce the conservatism of our algorithm.

Benchmarks: Next, we performed benchmark analysis to
demonstrate that the optimality improves with increased
computation time. In addition to the 2D system, we evaluated
our algorithm on a second order unicycle system with
dynamics ẋ = v cos (ϕ), ẏ = v sin (ϕ), ϕ̇ = ω, v̇ = a, and
feedback linearized according to [22].

We consider two environments: the narrow corridor en-
vironment and randomize environments. Each instance of
the randomized environment contains 15 circular obstacles,
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Fig. 1: (a) Nominal trajectory for 2D system, with X̌T
0 plotted as lines colored by ∆T

0 , and 99% contours plotted as red
circles. The blue concentric circles represent the remote sensors. (b) 50 sampled MC runs. (c) 50 sampled MC runs of ε.
(d) Nominal trajectory for 2D system with random obstacles

with obstacle centers, co distributed as co ∼ U(0, 100), and
obstacle radius, ro, distributed as ro ∼ N (10, 2). A sample
environment and the generated plan for the 2D system are
shown in Figure 1d. For both environments, we conducted
100 trials with computation times from 10 seconds to 200
seconds. The results of this analysis are presented in Table I.
In each case, the average cost of the plans decreases with
computation time, showing asymptotic optimal behavior.

TABLE I: Benchmarking results.

2D System Cost Unicycle System Cost
Time (s) Narrow Random Narrow Random
10 38.47± 1.0 10.7± 1.2 60.2± 2.2 105.3± 12.4
25 19.76± 0.8 7.53± 0.9 34.8± 0.9 54.4± 8.7
50 11.40± 0.3 6.61± 0.91 25.4± 0.6 31.9± 2.9
100 8.47± 0.2 5.94± 0.89 20.5± 0.4 25.0± 2.0
200 8.13± 0.1 5.54± 0.87 18.3± 0.3 21.5± 1.6

Comparison to Pareto-optimal Method in [6]: To show-
case the efficiency of our approach, we compare our method
agaist the one proposed in [6] by considering the experiment
for open trajectory scenario in [6]. That method computes
a Pareto point with probability of goal and collision 0.95
and 0.0 respectively, and cost 30.95. The computation time
is in the order of hours. We ran ET-GBT on the same
trajectory and discrete δ values 100 times. ET-GBT returns
a plan with very similar average expected cost of 30.56
within 0.5 seconds. The computation time for ET-GBT is
significantly smaller than the method in [6], which relies
on MC sampling to build an MDP abstraction. We note that,
since the trajectory is far from any obstacles for this scenario,
the conservativeness of ET-BGT does not have a profound
effect on the result. Nevertheless, this comparison validates
the speed and effectiveness of our optimization approach.

VII. CONCLUSION

This paper considers the problem of generating METC
plans that satisfy safety constraints while minimizing com-
munication costs. We develop a novel method of propagating
the expected belief under ET estimation, as well the cor-
responding covariance bounds. We use these techniques to
develop a fast and efficient sampling-based METC planning
algorithm. Case studies and benchmarking demonstrate the
efficacy, speed, and asymptotic optimality of the algorithm.

These methods are limited by the conservativeness of the
approximations, which could be addressed in future work by
tightening the covariance bounds, or by developing a less
conservative collision checking method.
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