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Abstract

Deep learning-based grasp prediction models have become an industry standard for robotic bin-picking
systems. To maximize pick success, production environments are often equipped with several end-effector
tools that can be swapped on-the-fly, based on the target object. Tool-change, however, takes time.
Choosing the order of grasps to perform, and corresponding tool-change actions, can improve system
throughput; this is the topic of our work. The main challenge in planning tool change is uncertainty
– we typically cannot see objects in the bin that are currently occluded. Inspired by queuing and
admission control problems, we model the problem as a Markov Decision Process (MDP), where the goal
is to maximize expected throughput, and we pursue an approximate solution based on model predictive
control, where at each time step we plan based only on the currently visible objects. Special to our
method is the idea of void zones, which are geometrical boundaries in which an unknown object will be
present, and therefore cannot be accounted for during planning. Our planning problem can be solved
using integer linear programming (ILP). However, we find that an approximate solution based on sparse
tree search yields near optimal performance at a fraction of the time. Another question that we explore
is how to measure the performance of tool-change planning: we find that throughput alone can fail to
capture delicate and smooth behavior, and propose a principled alternative. Finally, we demonstrate our
algorithms on both synthetic and real world bin picking tasks.

1 Introduction

Automated bin picking has gained considerable attention from manufacturing, e-commerce order fulfillment,
and warehouse automation. The problem generally involves grasping of a diverse set of novel objects,
which are often packed randomly inside a bin (Figure 1(b)). A common model-free bin picking approach is
based on learning grasp prediction models – deep neural networks that map an image of the bin to success
probabilities for different grasps [ZSY+18, LLS15] (see Figures 1(c) and 1(d) for examples of learned grasp
prediction models for two different vacuum suctions with diameters 30mm and 50mm respectively).

In order to handle a diverse range of objects, robotic cells are often equipped with a tool changer mecha-
nism (Figure 1(a)), allowing the robot to select a new end-effector from a set of available end-effectors (e.g.,
vacuum end-effectors varying in size, antipodal end-effectors) and swap it with the current one automatically
in real time (for example 50mm vacuum end-effector grasp prediction model depicted in Figure 1(d) places
more probability mass over the larger objects, while 30mm vacuum end-effector grasp prediction model model
depicted in Figure 1(d) places more probability mass over the smaller objects for the example bin image given
in Figure 1(b)). Choosing the right tool for each object can increase the pick success, potentially leading to
improved throughput. Tool changing, however, comes at a cost of cycle time: navigating the end-effector to
the tool changing station, and performing the swap. 1

In common picking tasks, the agent is free to choose the order of objects to pick, and respectively, the
order of tool changes. Thus, by carefully planning the picking order, we can potentially improve picking
efficiency, by, e.g., using the same tool repeatedly for several objects. This is our main objective in this work.

∗1Osaro Inc., 500 3rd street, San Francisco, CA 94103, USA {khash,will}@osaro.com
†2Accenture Inc., 415 Mission street, San Francisco, CA 94105, USA jacob.c.metzger@accenture.com
‡3Technion Institute of Technology, 458 Fischbach building, Technion Haifa 32000 Israel avivt@technion.ac.il
1Mounting several tools on the same end effector, while possible [ZSY+18], can be difficult, as, for example, different vacuum

suction cups would require multiple hosing. A tool change station is a more scalable approach.



(a) (b) (c) (d)

Figure 1: (a) Tool-changer station hosting different vacuum end-effectors of various sizes. The current
selection is already mounted on the robot; (b) Example of a bin containing an assortment of various objects;
(c) and (d) depict grasp score heat maps for a 30mm and a 50mm vacuum suction cups respectively (green
spectrum denotes higher grasp scores). Note that the grasp prediction model for vacuum suction cup 50mm
generally places more probability mass over the larger objects compared to the 30mm vacuum suction cup.

Optimizing tool selection, however, is challenging due to several reasons. Typically, some objects in the bin
are occluded, and even objects that are currently visible may move unexpectedly due to grasp attempts of
nearby objects, affecting their optimal tool selection in the future. Furthermore, even if the objects positions
were known in advance, the complexity of computing the optimal picking order scales exponentially with the
planning horizon, and is effectively intractable for real-time operation. Our goal in this work is to develop a
scalable, well-performing, and fast method for approximately optimal tool selection.

We present a general formulation of this stochastic decision making problem, which we term Grasp Tool
Selection Problem (GTSP), as a Markov Decision Process (MDP) (Section 2). In practice, solving this MDP
is difficult due to its large state space and difficult-to-estimate transition dynamics. To address this, we
introduce an approximation of the problem where we: (1) replace the discounted horizon problem with a
receding horizon Model Predictive Control (MPC); (2) In the inner planning loop of the MPC component,
we replace the stochastic optimization with an approximate deterministic problem that does not require the
complete knowledge of the true transition dynamics. We show that this deterministic problem is an instance
of integer linear programming (ILP), which can be solved using off-the-shelf software packages. However,
we further show that an approximate solution method based on a sparse tree search improves the planning
speed by orders of magnitude, with a negligible effect on the solution quality, and is fast enough to run in
real time.

Our approach decouples grasp prediction learning from tool selection planning – we only require access
to a set of pre-trained grasp prediction models for each individual end-effector. Thus, our method can
be applied ad hoc in production environments whenever such models are available. In our experiments,
on both synthetic and real-world environments, we demonstrate that our planning method significantly
improves system throughput when compared to heuristic selection methods. Another novel contribution of
this work is the derivation of a set of metrics for benchmarking tool selection algorithms, based on practical
considerations relevant to the bin picking problem.

Related Work

There is extensive literature on learning grasp prediction models [LPKQ16, RA15, MMS+19]. To the best
of our knowledge, few previous studies considered tool change optimization. The closest related work
is [MMS+19] in the context of controlling an ambidextrous robot for bin picking problem. That work
focused on scaling the learning of the grasp prediction models, and not on the tool selection problem. In
their approach, the best tool is selected greedily based on the grasp prediction scores generated by the
end-effector grasp prediction models. Tackling problems with uncertain transitions by replanning using de-
terministic models is a common approach in planning [RN95] and robotics, where it is commonly referred
to as model predictive control [CA13, TTZ+16]. To our knowledge, this work is the first application of this
idea to tool change optimization with learned grasp models. Several studies focused on planning with deep
visual predictors [FL16, EFLL17, EFD+18, XELF19], where a deep visual predictive model is learned and
combined with MPC. Our work differs from these approaches in that we perform planning directly in grasp



proposal space, based on our void zone approximation.

2 Grasp Tool Selection Problem (GTSP) Formulation

We assume a planar workspace I, discretized into a grid of W ×H points. For example, I could be the bin
image, as in Figure 1(b), where every pixel maps to a potential grasp point in the robot frame. A grasp
proposal evaluates the probability of succeeding in grasping at a particular point. Formally, a grasp proposal
is a tuple ω := {E , u, ρ}, where E is an end-effector, u ∈ I is a position to perform a grasp (e.g., a pixel in
the image), and 0 ≤ ρ ≤ 1 is the probability of a successful grasp when the end-effector E is used to perform
a grasp on position u. We also use the notations ωE , ωu, and ωρ when referring to individual elements of a
grasp proposal ω.

A grasp prediction model ΓE : I → {ωi}W×Hi=1 gives a set of grasp proposals for an input image I and
end-effector E . In practice, only a small subset of grasp proposals yield good grasps. Thus, without loss
of generality, we denote ΓkE(I) = {ωi}ki=1, limiting the model only to the k best grasps (in terms of grasp
success probability). Given a set of n end-effector grasp proposal models {Γi}ni=1

2, we define the grasp plan
space Ω := ∪ni=1Γki (I), which denotes the space of all plannable grasps. We will further denote by Ωt the
grasp plan space that is available at time t of the task.

Grasp Tool Selection Problem (GTSP): We model the problem as a Markov Decision Process (MDP
[Ber12]) M≡ 〈S,A,R, T 〉 defined as follows: S is a set of states, where each s = 〈Ω, E〉 ∈ S consists of the
current grasp plan space and the current end-effector on the robot. We denote by sΩ and sE the individual
elements of state s. The action space A = Ω is the set of all plannable grasp proposals. The reward balances
pick success and tool change cost, and we chose it as:

R(s, ω) = ωρ + c1(sE 6= ωE), (1)

where ωρ is the grasp success score, c < 0 reflects a negative reward for tool changing, and 1(·) is the indicator
function3. The state transition function T (st, ωt, st+1) → [0, 1] gives the probability of observing the next
state st+1 after executing grasp proposal ωt in state st. As a result of performing a grasp, and depending
on the grasp outcome, an object is removed from the bin and some other object randomly appears at the
position of the executed grasp and new graspable positions will be exposed. The optimal policy π∗ : S → Ω
is defined as: π∗ = argmaxπ Eπ [

∑∞
t=0 γ

tR(st, ωt)|ωt ∼ π(st)].

3 Approximate GTSP Solution

Solving GTSP is difficult for following reasons: (1) Prediction: we do not know the true state transitions,
as they capture the future grasps that will be made possible after a grasp attempt, which effectively requires
a prediction of objects in the bin that are not directly visible (see, e.g., Figure 1(b)). Although several studies
investigated learning visual predictive models (see [FL16, EFLL17, EFD+18, XELF19]), learning such models
in production environments with a high variability of objects is not yet practical. (2) Optimization: even if
the state transitions were known, the resulting MDP would have an intractable number of states, precluding
the use of standard MDP optimization methods.

We address (1) by replacing the stochastic optimization with an approximate deterministic problem that
does not require the complete knowledge of the true transitions, based on the idea of void zones. We address
(2) by replacing the infinite horizon discounted horizon problem with an online solver, which at each time
step chooses the grasp that is optimal for the next several time steps; we term this part the model predictive
control (MPC) component. We propose two computational methods for solving the short horizon problem
in the inner MPC loop, either accurately, based on integer linear programming (ILP) outlined in Section 3.2,
or approximately, using a sparse tree search method (STS) outlined in Section 3.3.

2For simplifying notations we interchangeably use Γi to refer to an end-effectors grasp proposal model ΓEi
.

3Please note that this is only one way of designing a reward function for this problem. In general more interesting types of
reward function could be crafted by reflecting additional problem specific requirements. Examples of which are including the
costs of robot motion in terms of the distance travelled between consecutive grasp proposals, or the proximity of the end-effector
with respect to the tool changer station.



Figure 2: (Left) examples of cases where performing a grasp proposal would invalidate some other grasp
proposals (p1 invalidates p2, and p3 invalidates p4); (Right) updated grasp plan space for the next horizon
step by voiding the impacted grasp proposal (in this case voiding p2 as a result of committing to the grasp
proposal p1).

Algorithm 1 outlines the generic Model Predictive Control (MPC) for solving the GTSP. At every step,
the current observations (e.g., bin image I) is fed to the set of pre-trained end-effector models to obtain the
plan space Ωt. Next, a GTSP-void-Solver is called over the current state st ← 〈Ωt, Et〉 which will return an
optimized plan ω, and finally the first step (i.e., grasp proposal) of the plan is executed. We have already
described the ILP solver in the paper and will outline the Sparse Tree Search (STS) solver in the next section.

Algorithm 1 Model Predictive Control (MPC)

1: Inputs: Set of end-effector models {Γi}ni=1, maximum number of best grasp proposals per end-effector
model to include m, receding horizon H, tool changing costs c < 0, void radius l

2: for t = 1, 2, . . . do
3: Observe the current bin image It, and current end-effector Et
4: Construct the current plan space: Ωt ← ∪ni=1Γmi (It)
5: st ← 〈Ωt, Et〉
6: (ω, vω)← GTSP-void-Solver(st, H, c, l) . ILP, or Sparse-Tree-Search (STS)
7: Execute the grasp proposal ω
8: end for

3.1 Approximate Prediction using Void Zones

We seek to replace the stochastic (and unknown) transitions in GTSP by deterministic dynamics, such that
the solution of the deterministic problem will yield a reasonable approximation of the true optimal controller.
Our approach is based on the idea of a void zone – not allow a grasp that is in very close proximity to any
previous grasp, as movement of objects in the bin resulting from the previous grasp attempt could render a
future grasp in its close vicinity impossible.

We motivate void zones with the following working hypothesis: As long as the objects are sufficiently
small, when a grasp is attempted, the set of grasp proposals that are sufficiently distant from the attempted
grasp position will remain valid in the next state.

This observation is illustrated in Figure 2(Left), for a bin picking problem with two end-effectors. The
grasp proposals are color coded for each end-effector. In some cases, grasp proposals lie over different objects
where one object might be partially occluding the other one (e.g., p1 and p2). In other cases, two or more
grasp proposals might lie on the same object. In either case, performing one of the grasp proposals will
invalidate some other grasp proposal and hence those proposals should not be available to the planner in the
next steps.

We define the void zone based on the Euclidean distance, as follows:



Definition 1 (l-separation). Let di,j =
∥∥ωui − ωuj ∥∥ denote the Euclidean distance on the plane between grasp

proposals ωi and ωj. A pair of grasp proposals 〈ωi, ωj〉 is called l-separated if di,j > l. We refer to l as void
radius and use the notation Ψl(ω) to refer to a set of grasp proposals which are l-separated from ω. Note
that by definition ω 6∈ Ψl(ω).

Based on the above definition, we can formally define deterministic dynamics in GTSP, which we will
henceforth refer to as GTSP-void. At state st = 〈Ωt, Et〉, taking action ωt results in a next state,

st+1 =〈Ωt+1, ω
E
t 〉,

Ωt+1 ={ω | ω ∈ Ωt ∧ ω ∈ Ψl(ωt)} (2)

That is, the end-effector in the next state is as chosen by ωt, and the grasp plan space is updated to exclude
all grasp proposals within the void zone.

As shown in Figure 2, by setting the void zone large enough, we can safely ignore the local changes as a
result of executing a grasp. Obviously, using void zones comes at some cost of sub-optimality – as we ignore
possible future grasps inside the void zones. To mitigate this cost, we propose a model predictive control
(MPC) approach. At every step, the current observation (i.e., bin image I) is fed to the set of pre-trained
end-effector models to obtain the plan space Ωt. Next, we solve the corresponding GTSP-void problem with
some fixed horizon H, and the first step of the plan ω is executed.

Replanning at every step allows our method to adapt to the real transitions observed in the bin. Next,
we propose two methods for solving the inner GTSP-void optimiztion problem within our MPC.

3.2 Approximate Optimization using Integer Linear Programming

In this section we show that the GTSP-void problem can be formulated as an integer linear program (ILP).
To motivate this approach, note that GTSP-void with horizon H seeks to find a trajectory of H l-separated
grasp proposals in Ωt with the highest accumulated return. This motivates us to think of the problem as a
walk over a directed graph generating an elementary path4 of length H of l-separated grasp proposals with
the highest return, where the nodes of the graph are the grasp proposals in the current state, sΩ

t , and the
directed edges represent the order at which the grasp proposals are executed. Our formulation is mainly
inspired by the ILP formulation of the well known Travelling Salesman Problem (TSP) [DFJ54] with the
following changes: (1) the main objective is modified to finding an elementary path of length h with maximal
return, anywhere on the graph (as opposed to the conventional tour definition in TSP); (2) addition of the
l-separation constraints to enforce voiding; (3) a modification of Miller-Tucker-Zemlin sub-tour elimination
technique [MTZ60] for ensuring the path does not contain any sub-tour.

Algorithm 2 Integer Linear Program (ILP)

1: Objective: v∗ = max
ωij

∑
wij

rijωij s.t.

2: ωij ∈ {0, 1}, ∀i, j ∈ V . binary variables representing edges in the solution
3:
∑
j∈V\{s,e} ωsj = 1 . constraint enforcing one outgoing edge from the initial node s

4:
∑
i∈V\{s,e} ωie = 1 . constraint enforcing one incoming edge to the terminal node e

5:
∑
i,j∈V\{s,e} ωij = H . constraint enforcing the trajectory length to be exactly H

6:
∑
j∈V\{s,i,e} ωij=

∑
j∈V\{s,i,e} ωji, ∀i ∈ V\{s, e}

7:
∑
j∈V\{s,i,e} ωij ≤ 1 . Steps 6 and 7 specify constraints enforcing the flow conservation

8: ω + ω′ ≤ 1, ∀ω ∈ φi,∀ω′ ∈ φj , if
∥∥ωui − ωuj ∥∥ ≤ l,∀i, j ∈ V\{s, e} . l-separation constraints (see text)

9: ui ∈ {0, 1, 2, . . . , |V|}, ∀i ∈ {1, . . . ,V}
10: u1 = 1 and u|V| = |V|, 2 ≤ ui ≤ |V| − 1, ∀i ∈ {2, . . . , |V| − 1}
11: ui − uj + 1 ≤ (H + 1)(1− ωij), ∀i, j ∈ {2, . . . , |V| − 1} . steps 9-11 specify Miller-Tucker-Zemlin

(MTZ) sub-tour elimination constraints
12: return (ωi, v

∗) s.t. ωsi = 1

4In an elementary path on a graph all nodes are distinct.



Given the current state st = 〈Ωt, Et〉, we represent the grasp plan space as a graph G = 〈V, E〉 where
the nodes of the graph are grasp proposals ωi ∈ sΩ

t plus two auxiliary initial and terminal nodes {s, e}:
V = {1, . . . , |Ωt|} ∪ {s, e}. We index the initial and terminal nodes by 1 and |V|, respectively. For any pair
of l-separated grasp proposals ωi and ωj (i, j ∈ V\{s, e}) we add directed edges {eij , eji} ∈ E with a reward
rij := ρωi

+ c1(ωEi 6= ωEj ) (cf. Equation 1). For such pairs of grasp proposals we also add binary variables
{ωij , ωji} to ILP. We connect the initial node s to the set of all grasp proposal nodes with reward defined
as rsi := c1(ωEs 6= ωEi ) and add binary variables ωsi (∀i ∈ V\{s, e}) to ILP. We also connect the set of all
grasp proposal nodes to the terminal node e with reward rie := ωρi , and add corresponding binary variables
ωie (∀i ∈ V\{s, e}) to ILP. The optimization objective is defined as maximization v∗ = max

ωij

∑
wij

rijωij

subject to a set of constraint that enforce an elementary path of length H.
The complete ILP formulation is outlined in Algorithm 2. The constraints in lines 2-7 are similar to

a standard TSP formulation [DFJ54]. Constraints on line 2 enforce binary constraints on ωi,j variables
where ωi,j = 1 selects the pair of grasp proposals ωi and ωj to be included in the solution, in that order.
Constraint on line 3 ensures only one outgoing connection exists from the auxiliary start node s to grasp
proposal nodes (marking the start of the path). Constraint on line 4 ensures only one incoming connection
exists from grasp proposal nodes to the auxiliary sink node e (marking the end of the path). Constraint on
line 5 enforces the length of the elementary path to be exactly H. Constraints on line 6 are flow conservation
constraints, while the constraint on line 7 ensures that the outgoing degree of each node is at most one
(standard flow conservation constraints in TSP (see [DFJ54])). Line 8 defines the l-separation constraints.
We denote by φi := {ωj,k|j = i ∨ k = i} the set of all incoming and outgoing edges of the node i. For two
nodes i, j that are not l-separated, the constraint only allows for at most one element of φi, φj to be included
in the solution. The constraints on lines 9-11 specify our adaptation of the Miller-Tucker-Zemlin sub-tour
elimination technique [MTZ60]. For each node in the graph (including the source and sink nodes) we add an
integer variable ui. (with u1 associated with the source node s and u|V| associated with the source node e).
We enforce u1 = 1 and u|V| = |V| to ensure the source node s marks the start of the trajectory and the sink
node e marks the end of the trajectory (line 10). The rest of variables ui could take on values in between
(line 10). These constraints, together with line 11 induces an ordering of the grasp proposals which prevents
sub-tours.

3.3 Approximate Optimization using Sparse Tree Search

We now present a simple alternative to ILP for approximately solving GTSP-void based on a sparse tree
search (STS). Our approach, outlined in Algorithm 3, performs a tree search of depth H where tree node
expansion takes place over a sparse subset of grasp proposals respecting the l-separation constraint (see
Definition 1 in Section 3.1). At every search step a node is expanded using a sparse subset of available grasp
proposals (line 6). In our approach we use the union of top k grasp proposals per end-effector according
to the grasp proposal scores ωρ. The parameter k – hereafter the sparsity factor – determines the sparsity
of the subset of grasp proposals for the tree search node expansion. While expanding over the set of all
available grasp proposals at every node is possible and optimally solves the problem in theory, in practice it
makes the planning significantly slow and hence is not suitable for real world production environments. The
algorithm then recursively calculates a sub-plan rooted at that node for a receding horizon of H (line 9),
accumulates the results of each recursion and computes the value of the sub plan (line 10), and it returns
the best sub-plan and its value among all the sub-plans calculated at that horizon.

4 Experiments

We divide our presentation to an investigation on synthetic problems, aimed at quantifying our algorithmic
choices, and a real robot study evaluating the performance of our method in practice.

4.1 Synthetic Experiments

In the first set of experiments we conducted a comparative analysis of the two GTSP-void solvers outlined
in Sections 3.2 and 3.3. Our goal is to answer the following question: How do the ILP and STS solvers



Algorithm 3 Sparse Tree Search (STS)

1: function STS(st, H, c, l, k). current state st = 〈Ωt,Γt〉; horizon H, tool changing costs c < 0, void radius l, k is
the sparsity factor where it specifies the top k grasp proposals per end-effector to be included for the search tree
node expansion

2: if H = 0 then
3: return ( , 0)
4: end if
5: Ξ← ∅
6: Let Λkt ⊂ Ωt be the union of the top k grasp proposals per end-effector (in terms of grasp score ωρ) available

in Ωt
7: for ω ∈ Λkt do . ω = 〈E , u, ρ〉
8: st+1 = Tl(st, ω) . forward dynamics in Equation 2
9: (ω+, vω+)← STS(st+1, H − 1, c, l, k)

10: vω = R̄(st, ω) + vω+ . reward function defined in Equation1
11: Ξ← Ξ ∪ (ω, vω)
12: end for
13: return argmaxvω (Ξ)
14:

15: end function

Figure 3: Synthetic end-effector grasp proposal model generation for three end-effectors generated over a
fixed grid resolution 70× 110.

compare in terms of the optimization quality and speed?
We crafted a synthetic tool selection problem generator as follows. A problem instance T is generated

by first selecting the number of end-effectors and then, for each end-effector, we generate a random set of
grasp proposals over a fixed grid resolution H×W (we used H=70, W=110 in our experiments) 5 To generate
realistic grasp proposals, we first choose n = 25 random object positions, uniformly sampled on the grid.

Next, for each-end effector we generate random Gaussian kernels with randomized scale and standard
deviation, centered on each object position. The resulting grasp proposal grid for each pixel gives a higher
probability of success to pixels that are closer to an object center.

Algorithm 4 outlines the pseudocode for generating synthetic experiments. Function GenerateGraspModel
generates a ransom grasp proposal model for a given resolution 〈H,W 〉 with higher grasp scores centered on
a set of pixel positions pi = 〈pix, piy〉 (mimicking object centers).This is simply done by defining randomly

scaled normal distributions with means centered on positions pi and random standard deviations σi. Func-
tion RunExperiment describes the main loop for generating synthetic experiments. Given an ablation over
experiment parameters (i.e., number of end-effectors nee, horizon h, sparsity factor k, void radius l, tool
changing costs c < 0) and a number of episodes N (for calculating the statistics), we first sample m positions
(mimicking object centers) and then generate nee random grasp models using GenerateGraspModel. Next, we
run both ILP and STS solvers and collect performance results in terms of plan value and plan time for each

5We generate grasp proposal sets directly, without requiring an image (cf. Section 2).



solver. Figure 3 shows examples of synthetic grasp map generated by this function for three end-effectors.

Algorithm 4 Synthetic Experiments

1: function GenerateGraspModel(〈H,W 〉, {pi}mi=1)
2: Inputs: 〈H,W 〉 are the height and the width of the grasp map, m positions pi = 〈pix, piy〉 where

0 ≤ pix ≤W − 1 and 0 ≤ piy ≤ H − 1 (mimicking object positions)
3: set G ← 1H×W
4: for i = 1, . . . ,m do
5: Sample a random standard deviation σi ∈ [0, 1] and a scale βi ∈ [0, 1]
6: Update: G ← G × βiN (pi, σi)
7: end for
8: return G
9: end function

10:

11: function RunExperiment(N, 〈H,W 〉,m, nee, h, k, l, c)
12: Inputs: number of episodes N , number of end-effectors 〈H,W 〉 are the height and the width of the

synthetic grasp map, m number of object centers, number of end-effectors nee, horizon h, sparsity factor
k, void radius l, tool changing costs c < 0

13: for i = 1, 2, . . . , N do
14: Select a random end-effector E ∈ {1, . . . , nee}
15: Sample m random object centers {pi}mi=1

16: for j = 1, 2, . . . , nee do
17: Γ̄j ← GenerateGraspModel(〈H,W 〉, {pi}mi=1)
18: end for
19: Construct the current plan space: Ω← ∪nee

j=1Γ̄j
20: Set state s← 〈Ω, E〉
21: Run ILP(s, h, c, l) and STS(s, h, c, l, k), calculate and store plan value and plan time for both

solvers
22: end for
23: end function

In our experiments, we report the advantage metric, defined as:

Adv(T ) = ILP(T )− STS(T ) (3)

where ILP(T ) and STS(T ) denote the return of the best plan in each algorithm calculated for horizon
H using the reward function defined in Equation 1, respectively. These values represent the long-horizon
performance of each algorithm. We report Adv(T ) which measures the advantage in optimization quality
of ILP over STS, and the planning time for each algorithm, both evaluated on our Python implementation
of STS, and the commercial Gurobi [Gur22] ILP solver, using MacBook Pro 2.8 GHz Quad-Core Intel Core
i7 hardware. We used a fixed void radius l = 20 and swap cost c = −0.2, and report results over n = 100
random problem instances as defined above.

Figure 3 shows our results for number of end-effectors 2 (Top two rows), and 3 (Bottom two rows).
In each group, the top row shows the advantage results over STS sparsity factor k ∈ {1, 2, 3} and various
horizons. The bottom row shows the planning time for each case. In terms of quality, STS is observed to
perform as well as ILP or just marginally worse. In terms of planning speed, STS is orders of magnitude
faster in both cases. Yet, we observe that even in this setting, reducing k significantly improves speed with
a negligible effect on quality. These results motivate us to use STS in our real world application.

4.2 Real World Experiments

We conducted experiments to evaluate the performance of various grasp tool selection algorithms, and to
validate the adequacy of the proposed tool changing score in capturing efficiency. First, we compare the
MPC-STS with a set of heuristic baselines. Next, we compare the performance of MPC-STS and heuristics



Figure 4: Performance results for synthetic experiments: (Top 2 rows) 2 end-effectors; (Bottom 2 rows) 3
end-effectors. While ILP marginally is better than STS in terms of advantage, STS yields superior speedup
over ILP.



baselines against experiments where only a single end-effector was used (no tool changing allowed). We also
conduct a series of ablations on MPC-STS in terms of its void radius and max horizon (i.e., H). Before we
present our results, we first discuss how real-world performance should be best evaluated.

Metric Definitions Our primary goal is to minimize the cost associated with changing tools, yet still
maximize pick success. One way to measure performance is by grasp throughput – the average number of
successful picks in a unit time. However, grasp throughput does not correctly penalize strategies that execute
many failed grasps quickly, which can be inappropriate for scenarios where items may become damaged as
a result of repeated, aggressive picking.

To address this, we propose a combined score based on pick success rate (PSR), and tool consistency

rate (TCR), defined as: PSR = PS
PA , TCR = 1 − TC

PA , where PS is the pick success count, PA is the pick
attempt count, and TC is the tool change count (here, we do assume that there is no more than one tool
change per pick attempt). Ideally, we would like both scores to be high. Also, the PSR and TCR should be
balanced according to the time cost of tool change compared to the time cost of a failed grasp. We posit
that the following β-TC-score score captures these desiderata,

β-TC-score =
(1 + β2) ∗ PSR ∗ TCR

β2PSR + TCR
, (4)

where β is analogous to an F -beta score [BYRN+99]. We recommend that β be set to the opportunity cost
of a single tool change – the approximate number successful picks that could have been completed in the
time it takes to execute a tool change. For our setup, we estimated β to be 0.33.

To further motivate the idea behind this metric, we present a simple numerical example that further
clarifies the β-TC-score (see Equation 3, in Real World Experiments in the main paper): consider two tool
selection algorithms A, B, being evaluated over a similar scenario (independently) with two items in the bin
(i.e., each needs two successful picks to clear the bin):

A : T F F F S T S

B : T F F F S F F F S

In these sequences, T is a tool change event, F is pick fail, and S is pick success. Assume each pick
attempt takes 1 second, and each tool change takes 3 seconds. In the above trajectories, both A and B have
the same throughput (2 successes per 11 seconds). But we have a preference for A due to less failed pick
attempts (A has 3 vs. 6 in B). In each case we have:

A : PSR = 2/5, TCR = 1− 2/5 = 3/5

B : PSR = 2/8, TCR = 1− 1/8 = 7/8

For small values of β (e.g., β < 1.0), TC score places more importance on PSR. For extreme value β = 0,
we have TCR = PSR, ignoring the cost of tool change.

For β = 0.0, we are favoring pick success rate:

A : β-TC = PSR = 0.4

B : β-TC = PSR = 0.25

For larger values of β (e.g., β > 1.0), TCR gains more importance and in the limit of β = inf, we have TC
= TCR. In the above example, for β = 2, the TC scores B higher than A.

For β = 2, we are penalizing tool changing more (by letting TCR impact the score more dominantly than
PSR):

A : β-TC = 5 ∗ (2/5) ∗ (3/5)/(4 ∗ (2/5) + (3/5)) = 0.545

B : β-TC = 5 ∗ (2/8) ∗ (7/8)/(4 ∗ (2/8) + (7/8)) = 0.583

As we suggested in the paper, a good balance is obtained when selecting β to be the opportunity cost. Here,
the overall pick success rate is (2+2)/(5+8) 0.3, and therefore the opportunity cost is slightly less than 1.

For β = 1 we obtain:

A : β-TC = 2 ∗ (2/5) ∗ (3/5)/(1 ∗ (2/5) + (3/5)) = 0.48

B : β-TC = 2 ∗ (2/8) ∗ (7/8)/(1 ∗ (2/8) + (7/8)) = 0.39

Favoring A, but taking into account the cost of tool swap.



Experimental Setup We used a Fanuc LRMate 200iD/7L arm, with a tool selection hardware using
two vacuum end-effectors: Piab BL30-3P.4L.04AJ (30mm) and Piab BL50-2.10.05AD (50mm). We used an
assortment of mixed items (various sizes, weights, shapes, colors, etc., see Figure 1(b) for an example). Each
end-effector is associated with a grasp proposal model trained using previously collected production data
appropriate for that end-effector. Since it is not in the scope of this paper, we only provide a brief overview of
our grasp proposal model architecture. Our grasp proposal models are inspired by the architecture proposed
in [GKR20] which consists of encoder-decoder convolutional neural nets consisting of a feature pyramid
network [LDG+17] on a ResNet-101 backbone and a pixelwise sigmoidal output of volume W × H, where
W×H are the dimensions of the grasp success probabilities ΓE . The network is then trained end-to-end using
previously collected grasp success/failure data consisting of 5k grasp data per end-effector using stochastic
gradient descent with momentum (LR = 0.0003; p = 0.8). Following the synthetic experiments conclusion,
we only used the STS solver.

Algorithm

(w/30mm + 50mm) TC PA PS
TC-Score
(β=0.33) PS/hr

Randomized 800 2191 744 0.3558 186

Naive Greedy 733 2093 1268 0.6099 317

Greedy 261 2702 1288 0.4999 295.41

MPC-STS 229 2563 1719 0.6885 429.75

Table 1: Performance comparison over different tool selection algorithms. PS/hr is the throughput.

Comparison with Baselines Table 1 compares our method (MPC-STS) with 3 baselines. The first is
a randomized selector, which randomly changes tools with probability p = 0.75 at each step, and forcing a
change if not swapped after 10 steps. The second baseline is naive greedy selector, which chooses the next
grasp proposal based on one-step reward function (see Equation 1). The third baseline is greedy selector,
which accumulates the top n = 5 likelihood scores for each tool, and selects the tool with the highest sum.
Our MPC-STS selector was configured with a void radius of l = 100mm (roughly 60 pixels), a maximum of
10 initial grasp proposal samples per end-effector, sparsity factor k = 2, and a max horizon of H = 2 (since
it yielded the best results for MPC-STS in this domain based on the ablation results in Table 4). Observe
that MPC-STS significantly outperforms the other baselines in terms of both TC-score and pick success rate
per hour (improving over the best baseline by 50%).

Single end-effector Comparison This set of comparisons is based on a separate set of shorter exper-
imental runs with similar items; results are reported in Table 2. Here, note the divergence between the
TC-score and the throughput (PS/hr) in the ordering of the performance of the single 50mm end-effector
and the naive greedy baseline. While the throughput for the single 50mm strategy is higher, the TC-score

Configuration TC PA PS
TC-Score
(β = 0.33) PS/hr

Single (30mm) 0 745 359 0.508 287.2

Single (50mm) 0 864 572 0.685 490.3

Naive Greedy 217 636 465 0.751 348.8
(30mm + 50mm)

MPC-STS 71 691 524 0.770 507.1
(30mm + 50mm)

Table 2: Comparison of single end-effector performance vs multiple end-effectors and tool selection.

correctly reflects that this strategy is less pick efficient. Indeed, the successful pick percentage for the 50mm



strategy is 66% while the successful pick percentage for the naive greedy strategy is 73%. The throughput in
this case is inflated by executing failing picks quickly. As expected, MPC-STS outperforms all the baselines.

Parameter Study In these experiments, reported in Tables 3 and 4, we investigate the dependence on the
void radius and max horizon. On our item set, increasing the size of the void radius leads to a decrease in

MPC-STS
(H=3, k=2) TC PA PS

TC-Score
(β = 0.33) PS/hr

l = 50mm 72 720 586 0.822 540.9

l = 100mm 58 649 431 0.682 417.1

l = 150mm 98 619 409 0.675 348.8

Table 3: Investigation of void radius l (in mm).

tool-changing efficiency and overall throughput at an MPC-STS with H = 3. As the tree search progresses,
the bin becomes increasingly voided. For large void radii, a large fraction of the bin will be voided, leading
to unreliable reward estimates.

Thus, as long as the void radius is large enough to cover areas disturbed by previous picks, the smaller
radius the better. We also see that increasing the max horizon H from 1 to 2 leads to an increase in
performance, but thereafter there is a decrease in performance metrics even though the overall tool change
count remains similar. We conjecture that this is due the crude approximation of the deterministic dynamics,

MPC-STS
(k = 2, l=100mm) TC PA PS

TC-Score
(β = 0.33) PS/hr

H = 1 64 712 522 0.747 481.8

H = 2 60 653 511 0.793 502.6

H = 3 58 649 431 0.682 417.1

H = 5 65 646 365 0.586 353.2

Table 4: Investigation of planning horizon.

which are not reliable for a long planning horizon.

5 Conclusions and Future Directions

In this work we introduced the Grasp Tool Selection Problem (GTSP), and presented several approximate
solutions that can be deployed in real time on realistic robotic setups. Our experiments demonstrated that
significant gains can be reaped by carefully planning the tool selection. For industrial bin picking, where
every performance gain is directly translated to revenue, we believe that our method could be valuable.

Deep learning based prediction models are becoming increasingly popular in robotics. Our work explored
an optimization-based approach for maximizing the utilization of the learned models. In general, we believe
that optimally choosing between several learned models could be relevant for other robotic tasks, for example,
choosing between different gaits in robotic locomotion. The ideas in this work may inspire algorithms for
more general problems.
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