
Follow The Rules: Online Signal Temporal Logic Tree Search for
Guided Imitation Learning in Stochastic Domains

Jasmine Jerry Aloor∗1, Jay Patrikar∗2, Parv Kapoor2, Jean Oh2 and Sebastian Scherer2

Abstract— Seamlessly integrating rules in Learning-from-
Demonstrations (LfD) policies is a critical requirement to
enable the real-world deployment of AI agents. Recently, Signal
Temporal Logic (STL) has been shown to be an effective
language for encoding rules as spatio-temporal constraints. This
work uses Monte Carlo Tree Search (MCTS) as a means of in-
tegrating STL specification into a vanilla LfD policy to improve
constraint satisfaction. We propose augmenting the MCTS
heuristic with STL robustness values to bias the tree search
towards branches with higher constraint satisfaction. While the
domain-independent method can be applied to integrate STL
rules online into any pre-trained LfD algorithm, we choose goal-
conditioned Generative Adversarial Imitation Learning as the
offline LfD policy. We apply the proposed method to the domain
of planning trajectories for General Aviation aircraft around a
non-towered airfield. Results using the simulator trained on
real-world data showcase 60% improved performance over
baseline LfD methods that do not use STL heuristics. [Code]1

[Video]2

I. INTRODUCTION
In many real-world domains, the ability to learn from mul-

tiple interactions with the environment is either prohibitively
expensive or comes with safety concerns. Providing embod-
ied AI agents with the ability to learn effectively from offline
datasets of human demonstrations is thus critical in our
pursuit to deploy them reliably in real-world domains. Prior
works have demonstrated limited success when Learning
from Demonstrations (LfD) is treated as a purely supervised
learning task [1]. Expert demonstrations are often noisy,
incomplete, or both. Thus, pure LfD policies, like Behavior
Cloning (BC), perform suboptimally when deployed in the
real world. They also often fail to distill the underlying rules
and constraints that guide the behaviors of the expert agent.
These issues are especially more pronounced when using
LfD to train policies for safety critical systems when a goal
is to be achieved while adhering to rules. We thus ask the
question:

Can we encode rules as high-level task specifications to
improve the online performance of the LfD policies?

For continuous dynamical systems, there often exist spatio-
temporal constraints that define the rules of operation of the

*equal contribution
This work was supported by Army Futures Command.
1Jasmine J. Aloor is with the Department of Aerospace Engineering,

Indian Institute of Technology, Kharagpur, WB, India (work done while at
Carnegie Mellon University) jasminejerry@iitkgp.ac.in

2Authors are with the Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA, USA. {jpatrika, parvk, hyaejino,
basti}@andrew.cmu.edu

1Codebase: https://github.com/castacks/mcts-stl-planning
2Video: https://youtu.be/fiFCwc57MQs

Fig. 1: Figure shows the proposed approach in a prototypical
scenario to plan for an aircraft landing in a non-towered
airfield. The expert/pilot demonstrations (grey) are used
offline to train an LfD policy; online, we use the Signal
Temporal Logic specifications in the MCTS expansion to
ensure rule compliance.

system. However, traditional LfD methods do not provide a
formal way to bias the system behavior for the satisfaction of
rules. Moreover, the rules are often expressed in ambiguous
natural language with partial specifications. Temporal logics
such as Signal Temporal Logic (STL) provide a mathemat-
ically robust representation to encode such spatio-temporal
constraints. They can be used to logically specify desired
behavior translated from requirements expressed in natural
language. STL is used to specify properties over real-valued
dense time signals often generated by continuous dynamical
systems [2]. Quantitative semantics associated with STL
provides a real value called robustness which quantifies the
degree of satisfaction or violation. This property enables the
designer to encode domain-specific constraints and quanti-

ar
X

iv
:2

20
9.

13
73

7v
2

 [
cs

.R
O

]
 6

 M
ar

 2
02

3

https://github.com/castacks/mcts-stl-planning
https://youtu.be/fiFCwc57MQs
https://github.com/castacks/mcts-stl-planning
https://youtu.be/fiFCwc57MQs

tatively measure their satisfaction with motion planning and
control.

In order to infuse the STL specifications to improve the
base LfD, we propose using a variant of Monte Carlo Tree
Search (MCTS) that uses an offline pre-trained network to
generate simulated roll-outs. MCTS is a powerful heuristic
search algorithm often deployed for long-horizon decision-
making tasks [3]. MCTS, when used with a UCT heuristic,
[4] has properties like anytime convergence to the best action.
This makes it well suited to be used as a long-horizon goal-
directed planner within large state spaces with a time budget.

In this work, we present a novel decision-making method
that uses MCTS to build a tree structure that guides the of-
fline pre-trained LfD policies online with STL specifications.
We achieve this by biasing the MCTS heuristic sampling
towards branches with higher STL satisfactions. The primary
insight is that while the LfD policy decides on the low-
level executions in line with the expert demonstrations, STL
encourages the satisfaction of high-level objectives. This hi-
erarchical approach provides a method to encode rules while
allowing the agent to choose how to satisfy the constraints in
a learning-enabled framework. The STL specifications thus
provide a guide rail against the low-bandwidth noise in the
expert demonstrations.

In order to showcase the efficacy of the proposed al-
gorithm, we use the prototypical case study of planning
for a General Aviation (GA) aircraft operating at a non-
towered airfield. GA aircraft operating under Visual Flight
Rules (VFR) in non-towered airspaces are allowed to operate
without a central authority while following some general
rules established by the FAA. While not enforced, pilots are
expected to adhere to these rules, but deviations arise due
to a multitude of factors. Transponder data is available to
observe and learn from this behavior, but it is often noisy
as each pilot follows a variation of the rules. The proposed
algorithm uses this data to train a behavior cloning policy
and ensures rule compliance by augmenting the MCTS using
STL specifications derived from the rules. Our contributions
are as follows:

1) We propose a novel method to incorporate high-level
rules expressed in STL specifications in online MCTS
simulation that augments any base pre-trained LfD
policy.

2) We showcase results on a challenging real-world prob-
lem that uses human demonstration data with experi-
mental evaluations performed on a simulator and show
improvements over the base policy.

The organization of the remainder of the paper is as
follows: In Section II, we provide an overview of the
previous approaches to solve sequential decision-making
using imitation learning, MCTS, and STL. In Section III,
we introduce the approach and our algorithm. In Section
IV, we provide implementation details for the GA problem
statement. Section V provides comparative results with es-
tablished baselines. Section VI provides concluding remarks
and outlines future work.

II. RELATED WORK

Guiding LfD robot behavior using specifications expressed
in formal logic has been previously explored in literature.
Previous methods have leveraged LTL [5], [6] or, more
recently, STL [7]–[10] to encode the desired robot behavior
to enable planning for autonomous systems. Most prior work
focuses on offline backpropagating STL robustness along
with imitation learning loss to improve the trained policy’s
constraint satisfaction. These proposed offline methods that
learn from either a margin based on the lower bound of
STL satisfaction [11], reward functions [12], [13], vector
representation [14], or risk metrics [15].

While offline learning has led to improved STL sat-
isfaction, there are no guarantees that the resulting con-
troller will produce satisfying trajectories [16] nor can it
accommodate post hoc specification changes. To this end,
methods that use constraints online in the form of Control
Barrier Functions [17] and one-step state feedback [9] have
been proposed, but neither uses expert demonstrations. [18]
takes an alternate approach to improving the efficiency and
applicability of LfD-generated policies using beam search
with goal generation as a hierarchical approach. The closest
to our work is the recently proposed method [16] that uses
STL and expert demonstrations to synthesize a trajectory-
feedback controller. The offline component uses an LSTM-
based controller whose parameters are modified on-the-fly.
Our proposed method has no such requirements for using a
particular architecture, nor does it require updating the base
policy’s parameters.

While a majority of the algorithms showcase results on
either grid-based worlds [19], simple reach-avoid problems
[17], or deterministic settings [8], our work showcases results
using real-world, noisy expert demonstrations.

III. METHODOLOGY

This section details the problem statement and the pro-
posed framework.

A. Preliminaries

Given a continuous-space dynamic system of the form ṡ =
f(s, a), we define a discrete-time Markov Decision Process
without rewards, (MDP \R). Let M = (S,A, T, ρ0, G)
where S is the set of states s ∈ S, a ∈ A is the discrete
set of actions or motion primitives that follow f(·), T :
S × A ⇒ S is the transition function, ρ0 ∈ S is an initial
state distribution, and G is the goal distribution.

The task is to produce a policy π(θ) from a start location
s0 ∈ ρ0 to goal location g ∈ G that leads to a trajectory
τ = (s0, a0, s1, a1, . . . , g). We also assume access to expert
trajectories D = {(sj0, a

j
0, s

j
1, a

j
1, . . . , g

j)}Dj=0 and high-level
STL specification Φ that encodes any rules we expect the
system to follow. An STL formula Φ can be built recursively
from predicates using the following grammar

Φ := > | µc | ¬Φ | Φ ∧Ψ | ♦[a,b]Φ | �[a,b]Φ | Φ1U[a,b]Φ2

(1)

Fig. 2: Overview of the approach: Offline, we train an LfD policy using datasets, which are used Online in a Monte-Carlo
Tree Search (MCTS). The online expansion uses a modified heuristic that uses robustness values from Signal Temporal
Logic (STL) specification to guide the search toward higher rule conformance.

where Φ1,Φ2 are STL formulas, > is the Boolean True, µc
is a predicate of the form µ(s) > c, ¬ and ∧ the Boolean
negation and AND operators, respectively, and 0 ≤ a ≤ b
<∞ denote time intervals. The temporal operators ♦,� and
U are called “eventually”, “always”, and “until” respectively.
The quantitative semantics of a formula with respect to a
signal ~xt can be used to compute robustness values [20] for
the specifications used in our application.

B. Framework

The overall framework is shown in Fig. 2 and Algorithm
1. We first train an LfD policy by formulating the problem
as finding a distribution of future actions ât conditioned on
the past trajectories st−tobs:t and the goal g where tobs is the
observation time horizon.

π̂θ ∼ Πθ(ât | st−tobs:t, g) (2)

The MCTS (see Algorithm 2) uses the policy π̂θ to
generate simulations. Each simulation starts from the root
state and iteratively selects moves that maximize the STL-
modified UCT heuristic.

For each state transition, we maintain a directed edge
in the tree with an action value Q(s, a), prior probability
P (s, a), STL heuristic H(s, a), and a visit count N(s, a).
The total heuristic value is calculated as

U(s, a) = Q(s, a′) +
c1P (s, a′)

√
N(s)

1 +N(s, a′)
+ c2H(s, a′) (3)

where c1 and c2 are the hyperparameters controlling the
degree of exploration and STL heuristic’s weight. Starting
with the initial state s(0), at each time step, we calculate
the action to take, which maximizes U(s, a) (Line 12). If
the next state already exists in the tree, we continue our
simulation, else a new node is created in our tree, and we
initialize its P (s, ·) = ~pθ(s) from our policy π̂θ (Line 8).
The expected reward v = vθ(s) can be provided by the
user as a learned value function or as a cost-map (Line 9).
The heuristic hSTL is calculated using the STL specification

(Line 14). We initialize Q(s, a), H(s, a) and N(s, a) to 0
for all a. We then propagate the cost v and the STL heuristic
hSTL back up the MCTS tree, updating all the Q(s, a) and
H(s, a) values seen during the simulation, and start again
from the root.

After running forward simulations of the MCTS, the
N(s, a) values provide a good approximation for the optimal
stochastic process from each state. Hence, the action we
take is randomly sampled from a distribution of actions
with probability proportional to N(s, a). We expand the
search space until we exhaust the planning budget time
planHorizon. After each action is selected, the MCTS tree
is reinitialized from the actual trajectory followed by the
agent. The planner is terminated when the goal is reached, or
the maximum number of steps is reached, whichever comes
first.

Algorithm 1: Plan (θ,Φ)

1 s← Sample(ρ0)
2 g ← Sample(G)
3 while s 6= g and not maxSteps do
4 while timeElapsed ≤ planHorizon do
5 N(·)←MCTS(s0:t, g, θ,Φ, 0)
6 end
7 a← choicea′(N(s, a′))
8 s← T (s, a)
9 end

IV. EXPERIMENTS

In our experiments, we tackle the case of planning for a
general aviation aircraft at a non-towered airport. This sec-
tion provides the necessary background, problem definition,
and implementation details.

A. Background

In an environment without a centralized controlling author-
ity, such as near a non-towered airspace, the FAA establishes
rectangular airport traffic patterns. These patterns facilitate
the smooth flow of aircraft entering and leaving the airspace,

Algorithm 2: MCTS (s0:t,g,θ,Φ,hSTL)

1 if s ∈ G then
2 return s == g, hSTL
3 end
4 if s /∈ Tree then
5 Tree← Tree ∪ s
6 Q(s, a)← 0
7 N(s, a)← 0
8 P (s, a)← π̂θ(s)
9 v(s)← CostMap(s)

10 return v(s), hSTL
11 else

12 a← argmaxa′
[
Q(s, a′) +

c1P (s,a′)
√
N(s)

1+N(s,a′) +

c2H(s, a′)
]

13 s′ ← T (s, a)
14 hSTL ← STL(s′ + s0:t,Φ)
15 v, hSTL ←MCTS(s′ + s0:t, g, θ,Φ, hSTL)
16 N(s, a)← N(s, a) + 1

17 Q(s, a)← N(s,a)Q(s,a)+v
1+N(s,a)

18 H(s, a)← N(s,a)∗H(s,a)+hSTL

1+N(s,a)

19 return v, hSTL
20 end

similar to roadways for automobiles. However, different
pilots follow distinct paths [21], leading to variations in the
expert demonstration trajectories. This variation arises due
to the unique combinations of aircraft type, weather, pilots’
experience, visual observations, and the non-strict regulations
for following the pattern. A single fixed set of waypoints to
follow would not suffice to cover all possibilities for the
aircraft. With such a broad set of rules, a range of possible
trajectories can be followed to land an aircraft safely.

To illustrate with an example, the high-level goal of
landing on a runway through traffic patterns can usually
be divided into three stages [22]. The three stages can be
represented by three individual regions to be occupied by
the aircraft in a particular order (See Fig. 3). The first stage
is termed the downwind leg, which involves flying in the
opposite direction to the intended landing runway at 1000 ft
above ground level. Once the pilot is at a 45◦ angle from
the approach end of the runway, the second stage begins, in
which a perpendicular turn is made to the base leg until it
reaches the runway approach’s extended center line. Once
the turn is complete, the third and final stage begins, which
is a descending path to the point of touchdown. We provide a
mechanism to encode such traffic patterns and utilize LfD to
implement the sequence of actions that can land an aircraft
from a given start to the runway, just like a human pilot.

B. Problem Definition

Consider a fixed-wing aircraft at time t, let st =
(xt, yt, zt, χt) ∈ R3 × SO(2) denote the position and
heading of the agent. We also define the system ṡ = f(s, a)

Downwind R8

Downwind R26

B
as

e
R

8

B
ase R

26

N

S

R08

NW NE

E

SESW

Final R26Final R8W

R26

Fig. 3: Goal representation is in the form of a one-hot vector
where each region is the respective goal element in the goal
vector G. The maroon rectangle shows airport traffic patterns.

(4) as:

ẋ = v2D cosχ (4a)
ẏ = v2D sinχ (4b)
ż = vh (4c)

χ̇ =
ge tanφ

v2D
(4d)

v =
√
v22D + v2h (4e)

where v is the aircraft’s inertial speed, v2D is the speed in
the 2-D plane, φ is the roll-angle, and vh is vertical speed.
Finally, ge is the acceleration due to gravity. We ignore the
effects of wind.

The action space A = {(vj , vjh, φj)}Aj=0 is a fixed library
of 30 motion primitives that discretize each of the control
inputs. We use the inertial velocities (v) 70 and 90 knots,
the vertical velocities (vh) +500 ft/min and -500 ft/min, and
the bank angle (φ) discretization such that χ changes by 45◦

and 90◦ heading over the chosen time-horizon of 20 sec. The
goal distribution G is a one-hot vector representation of the
final goal of a particular agent as the eight cardinal directions
along with two runway ends, as shown in Fig. 3. The set G is
represented as G = {N,NE,E, SE, S, SW,W,R08, R26}
with each element representing the final region the airplane
is desired to reach as shown in Fig. 3. For simplicity, we
also set the start states to one of these regions, i.e. ρ0 = G.

C. Implementation Details

The implementation details are split between online and
offline components.

1) Dataset: We use the TrajAir3 dataset, which provides
recorded trajectories of aircraft operating at the Pittsburgh-
Butler Regional Airport (ICAO:KBTP) [21]. The dataset con-
tains 111 days of transponder data, processed to obtain the
local x, y, and z coordinates of aircraft at every second. This

3http://theairlab.org/trajair/

http://theairlab.org/trajair/

is used to extract expert demonstrations from pilots as they
navigate the un-towered airspace. The dataset trajectories
are smoothed using a B-spline (basis-spline) approximate
representation of order 2. The trajectories are not biased
toward satisfying the STL rules as there are variations in
landing patterns exhibited by the dataset.

2) Offline LfD Policy Details: The LfD policy takes
as input the past trajectories of the agent to predict its
possible action distribution. While the method can use any
LfD policy, we use a goal-conditioned generative adversarial
imitation learning (GoalGAIL) method [23]. The GoalGAIL
is modified to use Temporal Convolutional Layers (TCNs) to
process the sequential trajectory data. TCN layers encode a
trajectory’s spatio-temporal information into a latent vector
without losing the underlying data’s temporal (causal) rela-
tions [24]. We use TCNs as an alternative to using LSTMs
[25] for encoding the trajectories.

We break the trajectories in a scene into sequences of
length tobs + tpred where tobs = 11sec and tpred = 20sec.
In a given scene, the raw trajectory in absolute coordinates
of the agent is encoded using the TCN layers as hobs.
The agent’s goal g ∼ G is encoded through an MLP layer,
ϕ1, and is concatenated with the encoded trajectory vector.
Equations 5 show the encoding sequence.

hobs = TCNobs(s1:tobs) (5a)
hg = ϕ1(g) (5b)

henc = hobs ⊕ hg (5c)
ŝtobs:tobs+tpred = ϕ2(henc) (5d)

The Lact measures how close the predicted trajectory is to
the expert trajectory using a mean squared error (MSE) loss.

Lact = MSE(stobs:tobs+tpred , ŝtobs:tobs+tpred) (6)

A discriminator Dψ is trained to distinguish expert tran-
sitions (s, a, g) ∼ τexpert , E(s1:tobs), from policy transi-
tions (s, a, g) ∼ τpolicy , ŝtobs:tobs+tpred . The discriminator is
trained to minimize,

LgoalGAIL (Dψ,) =E(s,a,g)∼policy [logDψ(a, s, g)] +

E(s,a,g)∼expert [log (1−Dψ(a, s, g))]
(7)

The combination of these two loss functions is used to
train the model.

Ltotal = Lact + LgoalGAIL (8)

In order to convert ŝ to â, we match the generated trajectories
from the control inputs in the library A using a weighted
L2 Euclidean error distance over (x, y, z) points on the
trajectory. For training, we use the AdamW optimizer with
a learning rate of 3e− 3.

3) Signal Temporal Logic Specifications: We evaluate the
performance of our agent based on reaching the goal while
adhering to the airport traffic pattern. The goal objective, as
well as traffic pattern compliance, are both encoded using
STL specifications. We use the three stages for the landing
pattern as defined in (IV-A). Φ1, Φ2, and Φ3 represent the

STL formulas encoding occupancy of regions corresponding
to the downwind, base, and final stages, respectively. The
landing STL specification becomes:

ΦL = ♦(Φ1 ∧ (♦(Φ2 ∧ (♦�Φ3)))) (9)

♦(Φ) can be interpreted as “Eventually” being in a region
represented by Φ. The nested ♦ operators encode a sequential
visit of regions represented by Φ1, Φ2, and Φ3. Similarly,
the takeoff STL specification is defined based on the goal
regions reached by the aircraft. By defining reaching a goal
region g ∼ G by an STL formula Φ4, we get the takeoff
specification:

ΦT = ♦(Φ4) (10)

The robustness values of the STL specifications are eval-
uated on the state trajectory traces generated by the search
tree. The first element of the traces is the tree root node,
and the last element of the trace is the node whose value is
currently computed.

4) Online Monte Carlo Tree Search: The MCTS is im-
plemented as a recursive function where each iteration ends
with a new leaf that corresponds to an action in the trajectory
library. The implementation uses a normalized costmap v(s)
that is built by counting the frequencies of the aircraft in the
TrajAir dataset at particular states s.

V. EVALUATIONS

Evaluation of the proposed approach is done using a
custom simulator that follows the dynamics defined in Eq.
4. The network implementations are done on PyTorch.
For calculating STL robustness values, we formulate our
specifications using the rtamt [26] package, an online
monitoring library. To showcase real-time online evaluations,
simulations are performed on an Intel NUC computer with
Intel® Core™ i7-8559U CPU @ 2.70GHz × 8. The complete
implementation details and parameter details are in the open-
sourced code-base4 and the associated Readme.

A. Qualitative results

Figure 4 shows an example scenario where the aircraft
starts from the South-West and is tasked with landing at R26
while following the standard FAA traffic pattern. The rules
of the traffic pattern are encoded as STL specifications. The
white-marked line shows the aircraft’s position at each step.
At every step, the MCTS replans, and the resulting tree is
shown in magenta. The STL sub-specifications are shown as
rectangles. As can be seen, the aircraft manages to reach the
runway while satisfying the specifications. The size of the
search tree is a function of available planHorizon.

B. Comparative results

In order to perform quantitative studies, we compare the
performance of the proposed algorithm with vanilla LfD
policies. We uniformly sample 100 start-goal pairs randomly
from ρ0, G. G is truncated to N,S,E,W,R where R rep-
resents both R08 and R26 to condense the results. We then

4Codebase: https://github.com/castacks/mcts-stl-planning

https://github.com/castacks/mcts-stl-planning

Takeoff Specification ΦT Landing Specification ΦLAlgorithm N S E W N S E W Total

BC + MCTS 0.2 / 0.2 0.0 / 0.1 0.3 / 0.1 0.3 / 0.1 0.0 / 0.0 0.1 / 0.4 0.1 / 0.4 0.3 / 0.4 0.1 / 0.2
GoalGAIL + MCTS 0.0 / 0.3 0.1 / 0.4 0.0 / 0.3 0.0 / 0.4 0.3 / 0.6 0.1 / 0.2 0.3 / 0.7 0.1 / 0.5 0.1 / 0.4
BC + MCTS + STL 1.0 / 0.9 1.0 / 0.9 0.6 / 0.3 0.7 / 0.4 0.2/ 0.5 0.2 / 0.5 0.2 / 0.5 0.2 / 0.5 0.5 / 0.6

GoalGAIL + MCTS+STL 1.0 / 0.9 1.0 / 0.9 0.8 / 0.7 1.0 / 0.9 0.7 / 0.9 0.8 / 0.9 0.3 / 0.8 0.5 / 0.9 0.7 / 0.8

TABLE I: Table shows the quantitative results with randomly sampled start and goal states for two LfD policies with
ablation studies with the STL heuristic. Results show the Success Rate ↑ / STL Score ↑ for two vanilla LfD policies and
their ablations with the STL heuristic. Results show both Landing X ⇒ R and Takeoff R ⇒ X scenarios for each of the
cardinal directions X .

Fig. 4: Figure shows a qualitative example from one of the cases where the aircraft starts from the South-West and needs
to land at one of the runways (R26). The specifications Φ1, Φ2 and Φ3 are shown as rectangles. White marked lines show
the aircraft trajectory, and the magenta shows the MCTS tree. The runway threshold for R08 (+x-axis) is at the center.

provide these to Algorithm 1, which plans for the agent.
Based on the selected start and goal pair, a relevant STL
specification is chosen. Each episode ends when the agent
reaches the goal or if the maximum steps are exceeded.
In addition to the goalGAIL policy, we also train a pure
Behavior Cloning (BC) policy. The BC policy uses a TCN
to encode the history and outputs an action without a goal
vector or a discriminator. Comparisons were carried out with
both these policies integrated into the MCTS framework with
ablation on the STL heuristic to show the impact of the STL
specification.

We define our evaluation metrics as follows:

• Success Rate: Fraction of episodes that were successful
in reaching their goal locations.

• STL Score: Average of the normalized fraction of the
STL robustness value satisfied over all the episodes. A
higher value indicates better satisfaction.

Table I shows the quantitative results. Our proposed algo-
rithm performs significantly better than the baselines for all
start-goal pairs. We get an almost perfect success rate in the
aircraft takeoff scenarios. The aircraft landing cases are more
challenging due to following the specific landing patterns
when incoming from different sides of the runway, which is
reflected in the success rates shown. Additionally, we observe
the baseline BC performs similarly to GAIL on the success
metric but not on the STL robustness. This indicates that
while BC policies are comparable in reaching the goals, the

transient performance of GoalGAIL is better. Incorporating
STL improves the robustness values for both LfD policies.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we present a novel method that improves
the online robustness of offline pre-trained LfD policies using
MCTS to fuse STL specifications. To the best of the authors’
knowledge, this is the first method that combines high-
level STL specifications with low-level LfD policies through
MCTS. Our experimental evaluation targets the real-world
problem of autonomous aircraft planning and exhibits the
feasibility of our techniques for similar challenging decision-
making problems. We show our method outperforms vanilla
LfD methods on a number of successful missions for multiple
complex objectives using real-world data.

While the results are promising, future work involves
producing theoretical guarantees on the satisfaction of the
STL specifications. The current work biases the search tree
towards satisfying STL constraints but provides no guaran-
tees. Another line of work is to validate the algorithm on a
high-fidelity simulator and real-world flight tests.

VII. ACKNOWLEDGMENT

The authors would like to thank Joao Dantas for his help
with the costmaps.

REFERENCES

[1] J. A. Bagnell, “An invitation to imitation,” Carnegie-Mellon Univ
Pittsburgh Pa Robotics Inst, Tech. Rep., 2015.

[2] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489,
2016.

[4] L. Kocsis and C. Szepesvári, “Bandit Based Monte-Carlo Planning,”
in Machine Learning: ECML 2006, J. Fürnkranz, T. Scheffer, and
M. Spiliopoulou, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 282–293.

[5] C. Innes and S. Ramamoorthy, “Elaborating on learned demonstrations
with temporal logic specifications,” arXiv preprint arXiv:2002.00784,
2020.

[6] H. Wang, H. He, W. Shang, and Z. Kan, “Temporal logic guided mo-
tion primitives for complex manipulation tasks with user preferences,”
arXiv preprint arXiv:2202.04375, 2022.

[7] K. Leung, N. Aréchiga, and M. Pavone, “Back-propagation through
signal temporal logic specifications: Infusing logical structure into
gradient-based methods,” in International Workshop on the Algorith-
mic Foundations of Robotics. Springer, 2020, pp. 432–449.

[8] P. Kapoor, A. Balakrishnan, and J. V. Deshmukh, “Model-based
reinforcement learning from signal temporal logic specifications,”
arXiv preprint arXiv:2011.04950, 2020.

[9] S. Yaghoubi and G. Fainekos, “Worst-case satisfaction of stl spec-
ifications using feedforward neural network controllers: a lagrange
multipliers approach,” in 2020 Information Theory and Applications
Workshop (ITA). IEEE, 2020, pp. 1–20.

[10] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in 53rd IEEE Conference on Decision
and Control. IEEE, 2014, pp. 81–87.

[11] K. Cho and S. Oh, “Learning-based model predictive control under
signal temporal logic specifications,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2018, pp.
7322–7329.

[12] A. G. Puranic, J. V. Deshmukh, and S. Nikolaidis, “Learning
from demonstrations using signal temporal logic,” arXiv preprint
arXiv:2102.07730, 2021.

[13] ——, “Learning from demonstrations using signal temporal logic in
stochastic and continuous domains,” IEEE Robotics and Automation
Letters, vol. 6, no. 4, pp. 6250–6257, 2021.

[14] W. Hashimoto, K. Hashimoto, and S. Takai, “Stl2vec: Signal tem-
poral logic embeddings for control synthesis with recurrent neural
networks,” arXiv preprint arXiv:2109.04636, 2021.

[15] X. Li, J. DeCastro, C. I. Vasile, S. Karaman, and D. Rus, “Learning a
risk-aware trajectory planner from demonstrations using logic moni-
tor,” in Conference on Robot Learning. PMLR, 2022, pp. 1326–1335.

[16] K. Leung and M. Pavone, “Semi-supervised trajectory-feedback
controller synthesis for signal temporal logic specifications,” arXiv
preprint arXiv:2202.01997, 2022.

[17] W. Liu, N. Mehdipour, and C. Belta, “Recurrent neural network
controllers for signal temporal logic specifications subject to safety
constraints,” IEEE Control Systems Letters, vol. 6, pp. 91–96, 2021.

[18] M. Igl, D. Kim, A. Kuefler, P. Mougin, P. Shah, K. Shiarlis,
D. Anguelov, M. Palatucci, B. White, and S. Whiteson, “Symphony:
Learning realistic and diverse agents for autonomous driving simula-
tion,” in 2022 International Conference on Robotics and Automation
(ICRA), 2022, pp. 2445–2451.

[19] K. C. Kalagarla, R. Jain, and P. Nuzzo, “Model-free reinforcement
learning for optimal control of markovdecision processes under signal
temporal logic specifications,” arXiv preprint arXiv:2109.13377, 2021.

[20] A. Donzé, T. Ferrere, and O. Maler, “Efficient robust monitoring
for stl,” in International Conference on Computer Aided Verification.
Springer, 2013, pp. 264–279.

[21] J. Patrikar, B. Moon, S. Ghosh, J. Oh, and S. Scherer, “Trajair: A
general aviation trajectory dataset,” Jun 2021. [Online]. Available:
https://doi.org/10.1184/R1/14866251.v1

[22] F. A. A. (FAA), Airplane Flying Handbook: FAA-H-8083-3C. Avia-
tion Supplies & Academics, Incorporated, 2021.

[23] Y. Ding, C. Florensa, M. Phielipp, and P. Abbeel, “Goal-conditioned
imitation learning,” arXiv preprint arXiv:1906.05838, 2019.

[24] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” arXiv
preprint arXiv:1803.01271, 2018.

[25] Z. Zhao, W. Zeng, Z. Quan, M. Chen, and Z. Yang, “Aircraft trajectory
prediction using deep long short-term memory networks,” in CICTP
2019, 2019, pp. 124–135.

[26] D. Ničković and T. Yamaguchi, “Rtamt: Online robustness monitors
from stl,” in International Symposium on Automated Technology for
Verification and Analysis. Springer, 2020, pp. 564–571.

https://doi.org/10.1184/R1/14866251.v1

	I INTRODUCTION
	II Related Work
	III Methodology
	III-A Preliminaries
	III-B Framework

	IV Experiments
	IV-A Background
	IV-B Problem Definition
	IV-C Implementation Details
	IV-C.1 Dataset
	IV-C.2 Offline LfD Policy Details
	IV-C.3 Signal Temporal Logic Specifications
	IV-C.4 Online Monte Carlo Tree Search

	V Evaluations
	V-A Qualitative results
	V-B Comparative results

	VI CONCLUSIONS AND FUTURE WORK
	VII Acknowledgment
	References

