2209.07586v1 [cs.RO] 15 Sep 2022

arxXiv

Portable Multi-Hypothesis Monte Carlo Localization for Mobile Robots

Francisco Martin
Intelligent Robotics Lab

Alberto Garcia
Intelligent Robotics Lab

Rey Juan Carlos University ~ Rey Juan Carlos University

aa.garciag @alumnos.urjc.es francisco.rico@urjc.es

José Miguel Guerrero
Intelligent Robotics Lab
Rey Juan Carlos University
josemiguel.guerrero @urjc.es

Francisco J. Rodriguez
Robotics group
Universidad de Leon
jfjrodl@unileon.es

Vicente Matellan
Robotics group
Universidad de Leon
vicente.matellan @unileon.es

Abstract— Self-localization is a fundamental capability that
mobile robot navigation systems integrate to move from one
point to another using a map. Thus, any enhancement in local-
ization accuracy is crucial to perform delicate dexterity tasks.
This paper describes a new location that maintains several
populations of particles using the Monte Carlo Localization
(MCL) algorithm, always choosing the best one as the system’s
output. As novelties, our work includes a multi-scale match
matching algorithm to create new MCL populations and a
metric to determine the most reliable. It also contributes the
state of the art implementations, enhancing recovery times from
erroneous estimates or unknown initial positions. The proposed
method is evaluated in ROS2 in a module fully integrated with
Nav2 and compared with the current state-of-the-art Adaptive
ACML solution, obtaining good accuracy/recovery times.

I. INTRODUCTION

The fundamental capability of a mobile robot is navi-
gation. Navigation allows a robot to use a map to locate
itself, plan routes from origin to destination, and carry them
out. Even though navigation has been working for decades,
the problem is still far from being solved. One of the
main issues is reproducibility: on the one hand, it is hard
finding robust algorithms that can be applied in a general
way to different robots and scenarios. On the other hand,
finding localization algorithms in public repositories that are
correctly implemented and easily replicated is not easy. Thus,
it is not surprising that many works have not survived the
robot for which they were designed, the laboratory in which
they were implemented, or the paper in which they were
presented.

To solve the first limitation, this research proposes a
localization method that allows Adaptive Monte Carlo Local-
ization (AMCL)[1], the current state-of-the-art localization
algorithm, to become a global approximation capable of
recovering from a situation of total ignorance, common at
startup, and maintaining other hypotheses, useful in case of
loss or hijacking.

The novel contributions of this approach are:

1) A metric to determine if a robot estimation, coded as
an AMCL, is wrong. Usually, the uncertainty derived
from the covariance matrix is used to determine when
the estimation has deteriorated. Using uncertainty is

ineffective since this deterioration could be due to other
causes than a wrong estimate. Also, estimates with low
uncertainty could be completely wrong. Our metric
directly measures the consistency between the sensory
measurements obtained with those expected for each
particle of each estimation. We will demonstrate how
this metric allows comparing two estimations effec-
tively.

2) An observation model based on geometric transfor-
mations and projections. This work is limited to a 2D
map but perfectly supports 3D maps and sensors.

3) A dynamics of the collection of AMCLs. We will
show how our approach can maintain different es-
timations, created in positions consistent with the
observations and continuously evaluated to eliminate
erroneous ones or merge them if they converge to
similar positions.

The Open Source development model faces the second
limitation. It has brought many benefits to industry in general
and to science in particular. Analyzing and executing publicly
available implementations favors one of the principles of the
scientific method: the reproducibility of scientific studies. In
Robotics, ROS [2], and the current version, ROS2 [3], have
greatly facilitated the reuse of other scientists’ implementa-
tions by becoming the de facto standard in robot software
development, supporting hundreds of robots of different con-
figurations and manufacturers. Nav2 [4] is their navigation
framework, which aspires to be the world’s most widely
used navigation system. The implementation of the work
presented in this paper has been integrated into Nav2 so that
it can be reused by other robotics researchers, guaranteeing
that our method is general and applicable to any robot using
Nav2.

This paper is organized as follows: After presenting the
most related works to ours in section in section [IIIl
we will show the mathematical foundations of the AMCL
used, emphasizing contribution 2. Section [[V]brings together
contributions 1 and 3, and presents how different estimations
are maintained. The experimental validation is presented in
section [V]

II. RELATED WORK

Over the past two decades, multiple hypothesis localiza-
tion algorithms have been developed. Jensfelt and Kristensen
[5] proposed a hybrid localization method using Kalman
filtering. Unlike the presented algorithm, the quantity of
information extracted depends on the feature type, and a
topological graph was used.

Yun and Miura [6] proposed a multi-hypothesis Kalman
filter to generate and track the Gaussian pose hypothesis
in outdoor environments. They used this technique to com-
pensate for the lack of GPS precision in urban areas. The
starting robot pose should be indicated. The number of pose
hypotheses for each visual feature varies from 13 to 20.
Another study was held in this kind of environment [7] also
using a particle filter to develop a map matching method
in autonomous vehicles incorporating additional information
from external sensors, leaving the GNSS (Global Naviga-
tion Satellite Systems) influence at its minimum expression
only used in the filter initialization and in the process of
eliminating particles far away from the GNSS. The number
of particles used was significantly higher: 1000. They also
measured the GNSS error.

Davey [8] presented a constraint-based tracking filter that
employs the same technique as the constraint-based search in
an interpretation tree for hypothesis tracking that can be ap-
plied to simultaneous localization and map building (SLAM).
They stated that vision and laser sensor feature extraction
could be reliable rather than a spatial feature. They identified
data association as the main cause of a lost situation. Recent
works such as the one proposed in [9] formulated a SLAM
technique using a radio-based ranging sensor, proposing a
multi-hypothesis method that combines the advantages of
the filter and graph optimization implemented via a multi
hypothesis message passing process.

F. Martin et al. [10] proposed a Markovian method based
on a Fuzzy Markov grid (FMK) for legged robot in the
RoboCup soccer benchmark combined with a population of
Extended Kalman Filters (EKFs), considering each EKF an
independent hypothesis. The authors compared their contri-
bution with a pure FMK and an FMK with a single EKF.
The method mentioned above performed better than the other
algorithms in terms of distance, orientation errors, and CPU
time. However, regarding robot kidnapping, the recovery
time increased significantly, contrasting to our algorithm.

There are also novel adaptations to AMCL, as in Chung
and Lin’s work [11]. The authors propose an approach where
the robot executes twenty times the ACML algorithm to
avoid determining the estimation result in one loop. Thus,
they get multiple algorithm estimations and determine one
AMCL estimation based on the covariance matrix. This
work maintains the hypotheses along the time and avoids
high punctual computation rates associated with the multiple
executions, which could finally have adversary effects on
robot autonomy (e.g., battery).

ITII. ADAPTIVE MONTE CARLO ALGORITHM

This section will describe our Adaptive Monte Carlo
Algorithm, highlighting the differences between the original
algorithm and our proposal’s contributions 1 and 2. We will
focus on a single population of particles (a single AMCL).
In the next section, we will address the management of
various populations of particulate filters, corresponding to
contribution 3.

AMCL applied to localization estimates the probability
distribution bel(x;) that represents the robot’s position at
time ¢ as a set S; of hypotheses about the robot’s pose X

(Equation [T).

— 1,2
X = {wy, g,

.z} (1)

Each hypothesis m% (with 1 < ¢ < I) is a concrete
instantiation of the robot’s state at time ¢.

X; has a W; associated. Each hypothesis x! has an
associated weight w! € R that denotes its probability given
all the previous perceptions z1.; and actuation commands
uq:¢ (Equation [2)).

wi ~ P(x|21.4, u1.t) 2)

P; is the set of particles, being each particle pi € Py
a tuple < xi,wi hi >. In the next section, we will explain
what h¢ - let us ignore by now. For simplicity, when referring
to a particle pi, we can write < z,w, h >.

The robot position correspond to a normal distribution
N (u,) with the mean g and covariance matrix 3 of X;.

The AMCL algorithm is divided into three phases in which
the particles are updated to incorporate z; and w;:

o Prediction: Updates the positions of the particles X
with the detected displacement wu;.

e Correction: Updates the weights of the particles W;
with the sensor readings z;.

« Reseed: Removes hypotheses z! with weights w! <
threshold, creating new ones near to hypotheses with
high weights.

The original algorithm specifies that these three phases
are executed all the time sequentially. In our algorithm, we
execute each phase independently at different frequencies to
keep the computing load on the robot low. As reference:
Prediction at 100Hz, correction at 10Hz, and reseed at 0.3Hz.
The position is updated to high frequency so that when
navigation decisions are made, the position is as accurate as
possible. The particle weights can be updated less frequently
because this is the most computationally expensive phase.
It is unnecessary to carry out the reseed phase at high
frequency without losing efficacy. The Adaptive Monte-Carlo
Localization (AMCL) adapts the number of particles to the
uncertainty of A}, that is, how concentrated or dispersed the
particles are. When the uncertainty is low, the number of
particles is reduced, increasing if the uncertainty goes up.

Our work extensively uses a geometric transform system
called TF that maintains the relationship (translation and
rotation) between frames (reference axes). A coordinate in

one frame can be transformed into another if these frames
are connected in the same TF tree. A tree of TFs connects
frames such that a frame has only one parent frame and can
have multiple child frames.

As Figure|l| shows, the frame that represents the robot will
be base_footprint (bf to short it). There is a connection from
bf to the frame where all the laser readings are, base_scan.
The frame odom represents the point where the robot starts.
The odom—bf transform encodes the displacement the robot
has made since its start. The frame map is the parent of
odom. A localization algorithm calculates the map — bf
relationship, but since a frame can only have one parent,
what is established after subtracting odom — bf, is map —
odom.

The TF system receives a relation (rotation and translation)
from which we obtain a 6 x 6 transformation matrix RTY_, 5,
between two different frames from different sources, some
of them at very high speed. To shorten, we will use the
alternative notation A2B;. This system can be asked for
the relationship X2V}, at time t’, even if X is not directly
connected with Y, and even if there is no information in the
exact time ¢’. The TF system interpolates when necessary.

A. Prediction

The goal of this phase is to update the position of each
particle zi € X; with the detected displacement u;. If the
last prediction was done in t0, the displacement u, is the
difference of the relations odom2bf from time t0 and current
time ¢ (Equation [3).

uy = odom2bfy*t * odom2bf, 3)

Each particle is updated (Equation [d) using u; plus a ran-
dom noise e(u;) that follows a normal distribution A/ (0, E,,),
being F, a parameter known a priori that represent the
odometry accuracy.

zp = ay_y * (ug + e(uy)) 4)
B. Correction

In this phase, the observation model (contribution 2 of
our work), is applied to update W;. As we discussed earlier,
we heavily use the TF system, which geometrically models
the relative positions between the sensor frame, the robot,
the map, and the displacement from starting. The robot is in
a flat environment in this work, so the obstacle information
is encoded in a 2D cost map. However, our approach would
support other environments and encodings (Figure [I). For
this observation model, the calculations are performed in 3D,
projecting to 2D to obtain the cost of a cell. If we were to
use an obstacle encoding using 3D voxels, or a non-planar
environment, our approximation would also be valid.

In this work, we have used as observation Z; laser
readings. Each of the reads z] € Z; has a distance field
and an angle field, thus being in polar coordinates. In the
correction step, each of the particles pi € P; updates its
probability pi.w, comparing the sensory reading Z; with the
one that should have been obtained if the robot was really

Projection
2D

base_scan

ase_footprint

Fig. 1: Observation model of a robot in a 2D cost map (up),
and in a non-planar elevation/cost map (bottom).

error
—

—20_

=30 oo 20330

Fig. 2: Calculation of the error from the theoretical distance
(green) and the obstacle in map.

in P;.X. This comparison is made for each reading 2] and

for each particle pi, using the Bayes theorem as shown by
equation [5] and [6]

P(z]|pi.x) * P(pi.x)

piw = P(pj.x|z]) = ‘ (5)
P(z])
{J P(j| i)* i 1 _1lerror?2 . i
W = A T W= e 2 7 w
by t 1Pt Pt PR P} .

The o parameter is a value that represents the sensor
accuracy, and it is known a priori. The error value is the
difference between the measured distance and the theoretical
distance (Equation [7).

error = |zl dist — 2 dist| (7

Obtaining the theoretical distance is very expensive com-
putationally since the value of the costmap from the laser
to the actual measured distance, and even beyond, should
be consulted. Our sensor model follows a distribution
N (dist,o). Any obstacle at a distance greater than 3o
from the theoretical one is practically zero (Figure [2). Our
approach only queries the relevant cells to get this error.

Each particle in P; has associated, in addition to a position
pi.x and a weight p.w, a hits field pi.h that indicates the
likelihood of each particle with the last perception. The qual-
ity of P; uses this field (Equation|[8). In the validation section,
we will show how this value is much more descriptive and
reliable than using the covariance matrix.

S, o
7=0 |Z,]

P

Quality(Py) = (8)

C. Reseed

In the reseed process, particles with less weight are
replaced by particles close to those with more weight. There
are two parameters: the percentage of winners and the
percentage of losers. The process follows these steps:

1) The population of particles P; is ordered by their
weight pi.w, establishing which particles are winners
(particles with high weight) and which are losers
depending on the configured percentages. We can call
the rest no-losers.

2) Loser particles are removed.

3) The same particles that have been eliminated are cre-
ated, randomly selecting for each one a particle from
the group of winners, following a normal distribution
N (0, winners/2).

We also take advantage of this step to fit the number of
particles in the range [particles_min, particles_max]. If the
distribution’s covariance is high, we increase the number of
particles. If it is low, we decrease it. With this, we reduce
the computational load when the distribution has converged
to a specific position.

IV. MULTI-HYPOTHESIS AMCL

We maintain a set *B; containing P, P}, ..., P}, being N
a parametrized limit. The contribution 3 of our work is the
management of different PF € 3;. The output of the location
system is a position and a covariance, which corresponds
to the PF that is considered to fit the robot’s position best.
Skipping some details, the P} whose Quality(PF) is greater
than the rest. We will describe this mechanism based on the
following operations or phases:

« Start: At the start of the robot operation, P is started
at the robot’s initial position, if known.

o Creation: Periodically, a cascade map matching algo-
rithm is used to determine which map positions the
latest sensory readings could be obtained. If a position
with a high match is found, a new Pt’C is started at this
position.

o Destruction: If the Quality(PF) is less than some
threshold and [§3;| > 0, the P} is considered to be
wrong, it is removed. .

o Merge: Even if two Pti and P/, i # j, start at different
positions, they could end up converging to the same
position. In this case, they are mixed in a P} containing
the particles with more weight.

A. Cascade Force Map Matching

A map matching process is performed every few seconds
to determine another position the robot might be in based
on its sensory readings. We consider it brute map matching
because we calculate the likelihood between laser reading
and the map for each cell map and each possible orientation.

Many calculations would consume all the robot’s resources
on large and/or high-resolution maps. To overcome this
limitation, we perform this map math process by cascading
different levels of resolution. At resolution level O is the

Fig. 3: Map resolution levels used by the map matcher.
Level O (top left) is the original resolution. The other figures
correspond to incremental levels.

original map. Each level duplicates the map resolution, as
shown in Figure [3] Four levels are usually enough for most
environments. Angular resolution is always ¢.

We use the same metric shown in Equation [§]to quantify if
a position and orientation in the map is a promising candidate
to start a new PF on it. Starting from the higher level N, the
ones with less resolution, we explore each map cell for the
candidates. Each cell is evaluated with different orientations,
with the angular resolution §. Once the candidates for level
N are obtained, we repeat the same process in level N — 1,
but only in the cells corresponding to the candidates obtained
in level N. We repeat the process until level O, until getting

a list with the resulting candidates sorted by quality.

V. EXPERIMENTAL VALIDATION

We have performed three experiments on a real robot to
validate our contribution, taking the original AMCL algo-
rithm [12] in Nav2 as our baseline. This implementation
has been ported from the ROSI navigation framework to
Nav2. It is a reliable, robust, and precise implementation,
which thousands of robots have used for more than a decade
in commercial and research applications, so we consider it
impossible to find a more representative location algorithm
to compare ourselves with.

The experiments carried out are:

o Experiment 1. In this experiment, the robot starts from
a known position and performs different itineraries in
a scenario prepared in our laboratory (Figure). This
experiment aims to measure our contribution’s precision
and study the dynamics of the different hypotheses
when tracking the robot.

o Experiment 2. In the same scenario of the previous
experiment, the robot starts from an unknown position,
and we want to measure the ability to find its correct
position on the map.

Fig. 4: Real scenario (left) and its map (center) for the first
two experiments, and the motion capture object for tracking
the robot (right).

o Experiment 3. This experiment is carried out outside
the laboratory in an uncontrolled environment where the
robot performs long-distance and long-duration naviga-
tion. This experiment aims to show its robustness and
effective integration with Nav2. This setup is the same
as the one used in [4], using the same softwareP_-] to
control and measure the experiment. The scenario is a
long indoor corridor (100 meters long) with a round hub
(top left).

For the first two experiments, we recorded all the sensory
and geometric information of the robot in some files called
rosbags (the rosbags of the experiments are available in our
open repositoryﬂ to be reproduced by the scientific commu-
nity). This approach allows reproducing the experiment with
different algorithms and parameters in the same conditions.
These rosbags also include information on the ground truth
of the robot, obtained using a motion capture system and a
detection object (place in the robot’s head in Figure), using
our software MOCAP4ROSZE], also available for further
research.

A. Experiment 1: Tracking Robot

In this experiment, the robot always starts from the origin
of map coordinates. We have performed 5 iterations of the
experiment with different itineraries. Each iteration lasts 2
minutes. The metrics we have used are:

o Accuracy: Comparison between the real position of the
robot and the one estimated by each algorithm. It is
the most important metric when measuring a location
algorithm.

o Computing time: Comparison of the CPU consumption
of the algorithms to be measured.

e Number of Hypotheses: How many hypotheses are
held at a time in our algorithm.

o Quality and uncertainty: We will compare quality and
uncertainty in our contribution to determine if quality
may be a better metric when evaluating particulate
filters.

Error in distance

—— MH AMCL
AMCL

error (meters)
w

N

0 20 40 60 80 100 120
time (secs)

Fig. 5: Error in distance between MH-AMCL and AMCL

Uhttps://github.com/IntelligentRoboticsLabs/marathon_ros2
Zhttps://github.com/fmrico/mh_amcl/tree/experiments/mh_amcl/datasets
3https://mocap4ros2-project.github.io/

MH-AMCL AMCL

Accuracy (m) | 0.109 £ 0.039 | 0.206 £ 0.098
Median (m) 0.105 0.195
Computing time (s) 0.006 0.004

TABLE I: Experiment 1. Comparison of the proposed Multi-
Hypothesis AMCL, and original AMCL.

Figure [5] shows the accuracy of the algorithms, measuring
the difference between the robot pose estimation and the
real robot pose using the mocap system installed in our
laboratory. We compare the accuracy between our contribu-
tion (MH-AMCL) and the original AMCL algorithm. Table
summarizes the results for all the experiment iterations,
demonstrating that our proposal improves the estimation
accuracy by reducing the error almost in half with respect to
the baseline.

Hypotheses vs Computing time

—— MH AMCL

number of hypothesis

o

e
w

—— MH AMCL
AMCL

Lo o

time (secs)

Fig. 6: Computing time of MH-AMCL and AMCL and
number of hypotheses

°
N

computing time (secs)
o
b

Figure [6] shows a comparison of the computation cost of
MH-AMCL and AMCL. The lower graph shows that our
proposal increases the AMCL computation cost slightly. The
peaks occur when the map matching process, triggered every
few seconds, calculates new candidates. We can observe how
the computation cost only increases lightly when the number
of parallel estimations (|3;|) increases. As we can see in
Table [, the increase of 2 milliseconds is worthless, and
this algorithm is valid for real-time, increasing the accuracy
almost double.

B. Experiment 2: Recovery

In this experiment, the robot starts from unknown positions
in the environment. The principal metric is the recovery
time, which is the time from the start of the experiment
until the location error indicates that the robot has already
been located.

We carried out this experiment 30 iterations from different
positions. In 15 of them, the robot starts from a standstill
and then moves. In the other 15, the robot is already moving
when the experiment starts.

Figure [/| shows the relationship between the accuracy,
quality, and uncertainty in one of the recovery tests. The

Quality vs Uncertainty

— MH AMCL

—— MH AMCL

—— MH AMCL

0 5 10 15 20 25
time (secs)

Fig. 7: Relationship between the accuracy, quality, and
uncertainty

first graph shows the error obtained between our contribution
(MH-AMCL) and the mocap system. As observed, the error
remains small and continuous until the end when the robot
recovers from a wrong estimation. The second and third
graphs show the quality and the uncertainty, respectively.
Observe how the quality graph is low when the estimation
is wrong and high when the estimation is correct. At the
same time, the uncertainty is always low, making it useless
to determine the recovery. From this, we can assume that
uncertainty is not a good measure to detect if the robot is
well-positioned.

Recovery time in static and dynamic

—— static round3

static round13
4 —— dynamic round7
—— dynamic round2

0 5 10 15 20 25
time (secs)

Fig. 8: Error during different recovery tests

Finally, Figure [§] shows the error in distance obtained
in 4 representative iterations, two starting from a standstill
(static) and two starts when the robot is moving (dynamic).
As we can observe, when the error decreases abruptly and
continues small until the end, the robot is well-located. The
recovery times and success percentage of each MH-AMCL
and the original AMCL are summarized in Table |[I} While
the original algorithm takes an average of 13.714 seconds to
locate with a success rate of 26.67%, our contribution can
locate the robot in all the iterations.

MH-AMCL | AMCL
Recovery time (s) 6.501 13.714
Success 100% 26,67%

TABLE II: Experiment 2. Recovery time and success per-
centage.

C. Experiment 3: Long-term navigation

The objective of this experiment is only to show its
integration with Nav2 and its robustness in its long-term
operation in an environment with people around. We mea-
sured the distance traveled, the time of the experiment,
the recovery behavior triggered during the experiment,
collisions, and the emergency stops we had to make.

The results are shown in Table The robot navigated
for more than one hour, traveling 2.7 kilometers. There
were 7 recoveries, all due to the presence of people in the
surroundings. No collision, people damage, or emergency
stops occurred during the experiment.

Distance (meters) 2734 meters
Time (hrs) 1.1
Recovery behaviors 7
Num. of Collisions 0
Num. of Emergency stops 0

TABLE III: Experiment 3. Results for the long-term experi-
ment.

VI. CONCLUSIONS

This paper has presented our location algorithm for mobile
robots, whose main characteristic is that it can generate and
manage new hypotheses about the robot’s position in the
environment. Each of these hypotheses is an independent
Particle Filter, which competes with the others to be selected
as the system output, based on a quality value that can
determine which one is correct. Our work allows a robot
to be unaware of its initial position or even to be able to
locate itself again after a manual movement.

Our contribution has been integrated into the Nav2 navi-
gation framework, guaranteeing its use out-of-the-box in any
robot that supports ROS2 by other researchers or companies
that require its features. It has been validated in a real robot in
a controlled laboratory environment, using a motion capture
system, and in an uncontrolled environment with people in
a long-term test.

We are extending this work in several directions. Our
approach is prepared to use 3D and elevation maps instead of
2D occupancy maps since the implementation heavily uses
the ROS2 TF transform system and the particle position,
which is modeled in 3D. Our future efforts also aim to
improve the map matching algorithm further to support
3D maps and streamline computation. Finally, we want to
explore encoding each hypothesis as an NDT-MCL instead
of an AMCL.

[1]

[2]

[3]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

REFERENCES

P. Pfaff, W. Burgard, and D. Fox, “Robust monte-carlo localization
using adaptive likelihood models,” in European robotics symposium
2006. Springer, 2006, pp. 181-194.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng, et al., “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot operating system 2: Design, architecture, and uses in
the wild,” Science Robotics, vol. 7, no. 66, p. eabm6074,
2022. [Online]. Available: https://www.science.org/doi/abs/10.1126/
scirobotics.abm6074

S. Macenski, F. Martin, R. White, and J. Ginés Clavero, “The
marathon 2: A navigation system,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2020. [Online].
Available: https://github.com/ros-planning/navigation2

P. Jensfelt and S. Kristensen, “Active global localization for a mobile
robot using multiple hypothesis tracking,” IEEE Transactions on
Robotics and Automation, vol. 17, no. 5, pp. 748-760, 2001.

J. Yun and J. Miura, “Multi-hypothesis outdoor localization using
multiple visual features with a rough map,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation. 1EEE, 2007,
pp. 3526-3532.

F. Li, P. Bonnifait, and J. Ibanez-Guzman, “Estimating localization
uncertainty using multi-hypothesis map-matching on high-definition
road maps,” in 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC). 1EEE, 2017, pp. 1-6.

S. J. Davey, “Simultaneous localization and map building using the
probabilistic multi-hypothesis tracker,” IEEE transactions on Robotics,
vol. 23, no. 2, pp. 271-280, 2007.

J. Xiong, Z. Xiong, Y. Ding, J. W. Cheong, and A. G. Dempster,
“Multi-hypothesis gaussian belief propagation for radio ranging-based
localization and mapping,” IEEE Transactions on Instrumentation and
Measurement, 2022.

F. Martin, V. Matellan, P. Barrera, and J. M. Caiias, “Localization of
legged robots combining a fuzzy-markov method and a population of
extended kalman filters,” Robotics and Autonomous Systems, vol. 55,
no. 12, pp. 870-880, 2007.

M.-A. Chung and C.-W. Lin, “An improved localization of mobile
robotic system based on amcl algorithm,” IEEE Sensors Journal,
vol. 22, no. 1, pp. 900-908, 2021.

D. Fox, “Kld-sampling: Adaptive particle filters,” in Advances
in Neural Information Processing Systems, T. Dietterich,
S. Becker, and Z. Ghahramani, Eds., vol. 14. MIT Press,
2001. [Online]. Available: https://proceedings.neurips.cc/paper/2001/
file/cSb2cebf15b205503560c4e8e6d1ea78- Paper.pdf

https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://github.com/ros-planning/navigation2
https://proceedings.neurips.cc/paper/2001/file/c5b2cebf15b205503560c4e8e6d1ea78-Paper.pdf
https://proceedings.neurips.cc/paper/2001/file/c5b2cebf15b205503560c4e8e6d1ea78-Paper.pdf

	I INTRODUCTION
	II RELATED WORK
	III ADAPTIVE MONTE CARLO ALGORITHM
	III-A Prediction
	III-B Correction
	III-C Reseed

	IV MULTI-HYPOTHESIS AMCL
	IV-A Cascade Force Map Matching

	V EXPERIMENTAL VALIDATION
	V-A Experiment 1: Tracking Robot
	V-B Experiment 2: Recovery
	V-C Experiment 3: Long-term navigation

	VI CONCLUSIONS
	References

