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Abstract— Vascular shunt insertion is a fundamental surgical
procedure used to temporarily restore blood flow to tissues. It is
often performed in the field after major trauma. We formulate
a problem of automated vascular shunt insertion and propose
a pipeline to perform Automated Vascular Shunt Insertion
(AVSI) using a da Vinci Research Kit. The pipeline uses a
learned visual model to estimate the locus of the vessel rim,
plans a grasp on the rim, and moves to grasp at that point.
The first robot gripper then pulls the rim to stretch open the
vessel with a dilation motion. The second robot gripper then
proceeds to insert a shunt into the vessel phantom (a model
of the blood vessel) with a chamfer tilt followed by a screw
motion. Results suggest that AVSI achieves a high success rate
even with tight tolerances and varying vessel orientations up to
30°. Supplementary material, dataset, videos, and visualizations
can be found at https://sites.google.com/berkeley.
edu/autolab-avsi.

I. INTRODUCTION

A shunt is a hollow, flexible catheter that is placed
within the human body in order to divert fluid from one
location to another [1]. Vascular shunts, which are placed
to bridge gaps left by blood vessel trauma (Fig. 2), are
widely utilized in civilian and battlefield settings to quickly
restore blood flow to areas which might otherwise be at risk
due to vascular damage [2, 3]. Due to their lifesaving and
time-sensitive nature, vascular shunt procedures often take
place in chaotic or high-stakes clinical scenarios in which
precision is critical but surgeon fatigue and disruptions are
commonplace. To improve the consistency and effectiveness
of this procedure, we develop a reliable and efficient policy
for performing autonomous vascular shunt insertion utilizing
computer vision and Robotic Surgical Assistants (RSAs).

Techniques based on computer vision approaches have
been used in ventriculoperitoneal shunt settings for 3D
ventricle segmentation and computation of ventricular shunt-
placement locations [4, 5]. In these cases, such techniques
served as an aid for human surgeons during preoperative
stage, rather than as part of a purely autonomous pipeline.
Furthermore, to the best of our knowledge, computer vision
methods have not previously been applied to shunt insertion
in the vascular setting. RSAs have been used in phantom
vascular shunt operations [6]; however, these systems were
under complete control of the operating surgeon at all times.
Our problem formulation is distinct, as it requires the robot
to perform the dilation and insertion procedure without
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Fig. 1: Overview of pipeline: A) Given a stereo RGB input from
the camera, the pipeline produces a segmentation mask and a fitted
circle of the rim of the vessel phantom using a pre-trained neural
network. B) The robot then computes an equidistant grasp point
from the two fixed points on the rim, plans a motion path, moves
the gripper to the rim, and pulls the rim outward to dilate it. C)
After the dilation, the second robot gripper inserts a shunt into the
vessel phantom using chamfer tilting and screw motion.

direct human involvement. In the fully-robotic setting, this
procedure presents challenges due to self-occlusion of the
end effector and vessel rim, as well as the deformable object
manipulation required to grasp and dilate the vessel with an
appropriate amount of force. Furthermore, the millimeter-
level precision that this task demands is difficult for cable-
driven RSAs to achieve, given their propensity for slippage
and hysteresis.

In this paper we formalize a specific vascular shunt
insertion procedure and propose an algorithm using computer
vision, active sensing, and deep learning. Given a vessel
phantom mounted at two points along its rim, our procedure
identifies the rim of the vessel, computes a grasp point along
the rim that is equally far away from both fixed points,
applies deep calibration to execute an accurate grasp, pulls
outward to apply tension at this grasp point, and inserts a
shunt into the vessel phantom.

We test our system’s ability to dilate and insert shunts
into vessel phantoms of varying initial orientations and shunt
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Fig. 2: Vascular shunt Insertion. The lumen of a blood vessel is
widened for the insertion of a vascular shunt. Two ligature knots
are applied to maintain the position of the shunt afterwards. [11]

sizes in different runs consisting of 20 trials each.
This paper contributes:
1) A formulation for the AVSI problem.
2) An algorithm for AVSI with a da Vinci Research Kit

Robotic Surgical Assistant.
3) Physical experimental results that suggest a success

rate of between 80% and 95% and an average comple-
tion time of between 13.7s and 14.4s.

4) A dataset of 1500 RGB images and corresponding
segmentation masks of a vessel phantom at different
poses.

II. RELATED WORK

A. Vascular Shunt Insertion

After a trauma, to salvage a limb, blood flow generally
needs to be restored within 6-8 hours after injury [2, 7, 8]
and animal model data indicates that restoration of flow in
less than three hours has improved outcomes [9]. The devel-
opment of plastic shunts emerged as a solution to quickly
restore blood flow in the trauma setting, particularly when
the surgeon did not have the skill set or the time to perform
a definitive vascular repair. Vascular shunts have entered
significant utilization in more recent conflicts where “damage
control” surgical care is occurring near the front lines to
perfuse a limb prior to transport or allow for additional
resuscitation in the intensive care unit [10]. Ultimately these
shunts will be removed within 12-48 hours when a more
definitive vascular repair will be performed.

B. Automation in Robot-Assisted Surgery

Automation of surgical subtasks in laboratory settings is an
active area of research. Several subtasks have already been
studied in previous literature such as debridment [12, 13],
peg transfer [14, 15, 16, 17], surgical cutting [18, 19, 20],
cutting gauze [20, 21] and suturing [22, 23, 24, 25].

There has been a recent breakthrough in autonomous
robotic surgery in the laparoscopic setting for intestinal
anastomosis [26], which has successfully performed expert
surgeons’ technique. However, this has yet to be generalized
to location-agnostic shunt procedures. To the best of our
knowledge, fully automated procedures for general vessel
dilation or shunt insertion have not been explored yet.

C. Vessel Rim Locus Detection

The use of convolutional neural networks (CNNs) is a
popular technique in feature detection within surgical video
imaging [27, 28], and has mainly been applied to surgical
tool detection [29, 30, 31, 32]. Other applications include
the identification of laryngeal nerves during thyroidectomy
[33], tumour-targeting [34], and other organ anomalies [35].
Most of these involve some variation of regional convolu-
tional neural networks (R-CNNs), the YOLO network, or a
transformer-CNN cross model to form the object detection
in specific lighting conditions. More specifically, there exist
methods for detecting circular holes (similar to those of
vessel openings) in industrial settings [36, 37, 38] as well
as pupil edge extraction for cataract surgeries [39].

To the best of our knowledge, this specific vessel rim
localization problem has not previously been attempted.

III. PROBLEM STATEMENT

A. Overview

We consider the case of a bimanual surgical robot which
dilates the opening of an unknown vessel phantom and
inserts a known shunt. Specifically, we assume that the rim
of the vessel is held by two fixed grippers which resemble
the role played by the surgical assistant in a traditional
vascular shunt operation. We further assume that the robot
is grasping the shunt in a known pose, and an RGBD
camera is mounted above the workspace. We also assume
the rigid transformations between the camera, robot, and
workspace coordinate frames are known. We assume the
RGBD camera provides an RGB image and depth image
during each iteration, the radius of the shunt is less than or
equal to the radius of the undilated vessel, and the vessel
rim maintains a circular shape to best resemble the opening
of a real blood vessel.

B. Objective and Evaluation Metrics

A trial consists of the robot gripping the identified grasp
point on the vessel rim, stretching the vessel, and inserting
a shunt into the vessel. We consider a trial successful if the
rim of the shunt is fully enclosed by the vessel after both
grippers release their grips and retract back to their original
position. Note that this is only possible if both the grasp and
dilation steps are successful, so we do not consider separate
success metrics for these steps. The result of a successful
trial is shown in Fig. 5.

IV. METHOD

As illustrated in Fig. 1, our pipeline consists of three main
stages: vessel phantom rim state estimation, vessel phantom
rim dilation, and shunt insertion.

A. Vessel Phantom Rim State Estimation

In the first step of the procedure, the algorithm determines
the state of the rim of the vessel phantom from an RGBD
image. The shape and orientation of the vessel phantom rim
are characterized as a circle in Cartesian space, consisting
of a center point cp, normal vector cn, and radius r (Fig. 6).



(a) (b) (c)
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Fig. 3: Data collection and experiment objects. Top: We collect
data for training our neural network, consisting of a) an image of
the vessel phantom when exposed to visible light, b) an image of
the phantom vessel when exposed to UV light, and c) the extracted
segmentation mask. Bottom: We use d) a 15mm inner diameter
vessel phantom (left, yellow) and e) two shunts (right, translucent)
with 8mm and 14mm outer diameters.

Estimating this circle from an RGBD image consists of two
stages: Vessel Phantom Rim Segmentation and Circle Fitting.

1) Vessel Phantom Rim Segmentation: Vessel phantom
rim segmentation converts an RGB image of the workspace
to a segmentation mask marking the location of the rim of the
vessel. We train an asymmetric U-Net [40, 41] to generate the
segmentation masks (Fig. 3(c)) from RGB images (Fig. 3(a))
using LUV [42], an unsupervised label collection technique.
By painting the top of the vessel phantom with ultraviolet
fluorescent paint and utilizing a remotely-controllable UV
and visible lighting system, we are able to quickly collect
paired visible light and UV light (Fig. 3(b)) images, in which
the fluorescent glow allows for the extraction of segmentation
masks for training via color thresholding. This data collection
method is not specific to a particular vessel phantom, but can
be extended to other vessel phantoms or vessels. As in [42],
we utilize a network architecture with a 3-tier contracting
path and a 3-tier expansive path. However, by replacing
the final ”up-convolution” level of the expansive path with
an upsampling layer, we reduce the network runtime and
parameter count. The segmentation mask is then projected
onto the point cloud generated by the RGBD camera to select
the points on the vessel rim in 3D space.

We collected 3200 UV/visible light image pairs for train-
ing across a variety of different vessel phantom materials
and sizes, as well as under different gripper orientations
and workspace layouts. A further 805 image pairs with
corresponding 3D depth data were held out as a validation
set to test the performance of our full localization pipeline.
In addition, to ensure that our perception system did not
become overly reliant on the color profile of our vessel

Fig. 4: Circle fitting. Left: Side view of a segmented noisy point
cloud deprojected from the RGBD image. Right: We use RANSAC
to fit a circle (in red) with its normal vector (in blue) and both
elements on a side view of the same scene of the point cloud.

phantoms (which could differ significantly from the con-
ditions in an in-vivo operation), we additionally trained an
otherwise-identical version of our perception pipeline using
only grayscale input information for comparison.

2) Circle Fitting: Due to the abundance of outliers in the
noisy point cloud and neural network segmentation mask
output, we apply random sample consensus (RANSAC) [43]
to estimate the state of the rim represented as a tuple
(cp, cn, r). At each iteration of the RANSAC algorithm, we
sample 3 points from the point cloud, to which we fit a circle.
The best fit circle seen so far is kept and returned at the end
of the algorithm (Fig. 4). Our pipeline uses a RANSAC inlier
radius of 1mm and runs for 1000 iterations, parameters based
upon empirical performance.

B. Vessel Phantom Rim Dilation

In the second part of the pipeline, after the rim of the
vessel phantom is estimated, the algorithm plans a grasp and
moves to that grasping point in a manner that avoids collision
with the vessel phantom.

1) Vessel Phantom Grasp Planning: The algorithm com-
putes a grasp point, g, on the estimated circle and that is
equidistant from the two fixed points. For the orientation
of the end effector (Fig. 6), the z-axis is set as the normal
vector cn of the circle, the x-axis is set as a unit vector in the
direction of g− cp, and the y-axis is set as the cross product
of z and x.

Moving directly to the grasp point can cause collisions
with the vessel phantom. To address this issue, the arm first
moves to a point 5mm away from g in the direction of the
fit circle’s normal vector. The 5mm distance allows an open
gripper to remain collision free when moving from its start
pose towards the grasp point, g. Then, the arm moves toward
the rim in the direction of −cn and then grasps the rim.

2) Vessel Phantom Dilation: To dilate the vessel phantom,
the algorithm computes a point for the final position of the
end effector by starting at the currently grasped point and
moving outward from the center of the circle by a distance
that is 2

3 of the diameter of the fit circle. The dilation
movement of 2

3 of the diameter is chosen based upon physical
observations of the vessel phantom to balance the gain of
additional area in the opening and the stress placed upon
it. To reduce the probability of the end effector losing grip



Fig. 5: Chamfer tilt shunt insertion with screw motion. 1) One gripper dilates the vessel. 2) The other gripper, with the shunt
already held, moves to a position outside of the rim of the phantom vessel. 3) The second gripper then moves above the vessel
phantom while tilting the shunt. 4) The gripper moves downward, resulting in a part of the shunt being contained within the
phantom vessel. 5) The gripper straightens the tilt and executes a screw motion, rotating counterclockwise and moving downward.
While this is happening, the gripper dilating the phantom vessel moves up and towards the center of the vessel phantom, providing
a slight release of tension. 6) Finally, both grippers release and return to starting positions, leaving the shunt inside of the phantom
vessel. Red arrows indicate the direction of motion starting from that state to go to the next state.

on the vessel phantom and to reduce the risk of tearing the
vessel, the speed of the outward motion is limited to 25%
of the robot’s maximum velocity. We do not incorporate
end effector forces directly into the motion, as accurately
measuring them at the end effector is challenging.

C. Shunt Insertion

After vessel phantom dilation, the shape of the rim be-
comes triangular (Fig. 1). The gripper used to tension the
vessel now becomes an obstacle that the gripper holding
the shunt must avoid when inserting. Furthermore, when the
outer diameter of the shunt is close to the inner diameter
of the vessel phantom, the shunt creates a very tight fit. To
overcome the challenges associated with the tight fit, the
method utilizes an initial chamfer tilt insertion followed by
a screw motion to insert tightly fitting shunts.

1) Chamfer Tilt Insertion: To first make it easier to
insert the shunt and set up the screw motion, the robot
moves toward a point slightly outside of the vessel phantom
rim. It then proceeds to move above the vessel phantom,
and it rotates the end effector such that the shunt is tilted
with respect to the rim. The end effector moves downward,
inserting part of the tilted shunt into the vessel phantom.
Then, the end effector rotates such that the shunt is no longer
tilted. To further improve the fit of the vessel around the
shunt, the arm dilating the vessel moves upward and towards
the center. The detailed motion is summarized in Fig. 5 by
actions 1 to 5.

2) Screw Motion: In certain cases, where there is a small
part of the shunt still outside of the rim of the vessel, after
both grippers release the vessel, the shunt may not stay
in place. To increase the probability that the entire end of
the shunt is within the vessel phantom, the arm executes a
screw motion, a combination of counterclockwise rotation
and downwards translation. The screw motion makes any
part of the shunt already inside of the vessel phantom stay
inside of the vessel phantom, while providing an opportunity
for parts outside of the vessel phantom to move inside.

V. EXPERIMENTS

A. Experimental Setup

We perform experiments using the da Vinci Research Kit
(dVRK) surgical robot with two cable-driven patient-side

Fig. 6: Grasp Planning. After the segmentation and circle fitting,
we output a circle (in purple) represented by its center, normal
vector and radius (cp, cn, r). Grasping point g is computed to be
the equidistant point on the circle to the fixed points. The coordinate
frame on the end effector with x-y-z axis corresponding to R-G-B
color respectively is rotated in such a way that z-axis aligns with cn,
x-axis aligns with g − cp and y-axis aligns with the cross product
of the two.

manipulator (PSM) arms [44]. The perception setup uses a
Zivid OnePlus S camera mounted 0.5m above the workspace
with roughly a 50◦ vertical incline, which captures RGBD
images at 1920x1200 resolution. At the beginning of each
trial, two mounted arms are used to fix two points 120◦ apart
on the rim of the vessel.

Our vessel phantom is constructed using the tube-top of
a latex balloon with an inner diameter of 15mm (Fig. 3)
and a rim thickness of 1.5mm. The latex material is flexible,
allowing the dVRK to stretch the rim for shunt insertion. The
two shunt analogs are clear PVC vinyl tubes with 8mm and
14mm outer diameters, respectively. The shunts are flexible
enough such that the dVRK can grasp them, but rigid enough
to minimize deformation when they come in contact with the
phantom. The plastic shunts we used are similar in stretch-
ability and flexibility to—but roughly 1.5–2 times larger in
diameter than—the MVP™ microvascular shunt (Covidien)
(5.3mm-6.5mm) [45] used in clinical vascular shunt surgery.
The recommended vessel sizes for the MVP™ microvascular
shunt [45] are between 3.0mm-5.0mm, resulting in the outer
diameter of the shunt being larger than the diameter of



Experiment Vessel angle Shunt outer diameter Successes Attempts Success Rate Avg trial time Failure Modes

(deg) (mm) (%) (s) (D) (S)

No Dilation 0 8 20 20 100 9.0 0 0
14 0 20 0 10.1 0 20

Dilation Only 0 8 19 20 95 13.7 1 0
(No Screw Motion) 14 1 20 5 13.9 0 19

0 8 19 20 95 14.5 0 1
14 16 20 80 14.4 0 4

Dilation + 15 8 18 20 90 15.0 1 1
Screw Motion 14 18 20 90 14.7 0 2

30 8 17 20 85 13.8 1 2
14 10 20 50 14.8 0 10

TABLE I: Experiment Results: Success rate and mean trial time for shunt insertion with varying shunt with and without using dilation
and screw motion, and including a vessel angle ablation. We track two failure modes: (D) dilation failure and (S) shunt insertion failure.

the recommended vessel by 1.5mm-2.3mm. The smallest
difference between the diameters of our shunts and vessel
phantom is 1mm.

B. Metrics and Failure Modes

Recall that we consider a trial a success if the rim of the
shunt is fully enclosed by the vessel after both PSMs release
their grips and retract back to their original position. For
each trial, we record the success or failure of the attempt,
along with the elapsed time. We classify each failure as one
of the following failure modes:

1) Dilation Failure (D): When attempting to dilate the
vessel, the robot fails to grasp the vessel phantom rim
or fails to pull outward. This happens when the circle
fitting experiences noisy depth data, the robot’s calibration
is incorrect, or the rim is irregularly shaped, causing the
planned grasp point to be located off of the actual rim.

2) Shunt Insertion Failure (S): After executing the shunt
insertion procedure, the complete rim of the shunt is not
enclosed by the vessel phantom. This occurs when the shunt
completely misses the vessel phantom or when any part of
the shunt’s rim is sticking out above the top of the vessel
phantom.

C. Full Pipeline

We perform 20 trials with the 8mm shunt using the full
pipeline, as described in Section IV, and obtain a success rate
of 95% with an average trial time of 13.7s. We encountered
1 dilation failure (D), and 0 shunt insertion failures (S).
We performed 20 trials with the 14mm shunt using the full
pipeline and obtained a success rate of 80% with an average
trial time of 14.4s. We encountered 0 dilation failures (D),
and 4 shunt insertion failures (S). We report full results in
Table I.

D. Baselines

We compare our method against two baselines to test the
impact of different parts of our pipeline. We report full results
in Table I.

Fig. 7: Angles of ablation. We evaluate our pipeline using phan-
toms grasped at increasingly adversarial angles, performing trials
at 0º, 15º, and 30º from the horizontal.

1) No Dilation: To evaluate the effect of the dilation step
on the shunt insertion, we execute the pipeline with all steps
except for the vessel phantom grasping and dilation.

We perform 20 trials without dilation with both the 8mm
and 14mm shunts, and report the success rates as 100% and
0% with average trial times of 9.0s and 10.1s respectively.

In the smaller 8mm outer diameter shunt case, the shunt
was smaller compared to the vessel that—in general—the
shunt did not contact the sides of the vessel phantom near
the rim as it moved downward, resulting in a success rate
that was not negatively impacted. Conversely, there were
no successful no-dilation insertions of the larger 14mm
shunt, as when attempting to insert it, the sections of the
vessel phantom’s rim between the grasping points buckled
downward, causing the end of the shunt to rest partially
outside of the vessel phantom.

2) No Screw Motion: To evaluate the effect of the screw
motion at the end of the shunt insertion step, we perform
trials where no screw motion is used. Instead, after perform-
ing the chamfer tilt insertion and then straightening out the
shunt, the robot proceeds to release the grippers.

We perform 20 trials of this baseline with both the 8mm
and 14mm shunts, with average trial times of 13.7s and 13.9s,
and success rates of 95% and 5%, respectively. We report full
results in Table I. The lower recorded trial durations result
from the omission of the final screw motion; however, this
faster execution comes at the expense of the success rate
for the large shunt, where the low tolerance between the
shunt and vessel causes the edge of the shunt to get stuck
on the outside the rim when the screw motion is omitted,
demonstrated by the increase in shunt insertion failures.



When the inner diameter of the rim of the vessel phantom
is too close to the shunt’s outer diameter, a portion of the
circumference of the shunt’s opening may be placed outside
of the vessel phantom, a situation that otherwise would be
corrected by the screw motion’s rotation.

3) Vessel Phantom Angle Ablation: We also perform an
ablation study of the method by varying the angle between
the rim of the vessel phantom and the ground. We evaluate
the full pipeline by rotating the vessel phantom at 2 different
angles: 15◦ and 30◦ with respect to the workspace frame
(Fig. 7).

We perform 20 trials per ablation stage, and report results
in Table I. For the 8mm shunt, the success rates for the 15◦

and 30◦ vessel phantom rim angles are 90% and 85% with
average trial times of 15.0s and 13.8s respectively.

For the 14mm outer diameter shunt, the success rates for
the 15◦ and 30◦ vessel phantom rim angles are 90% and 50%
respectively. The negative impact on the success rate between
the low-angle (0◦, 15◦) and high-angle cases (30◦), results
from a decrease in the effectiveness of the initial chamfer
tilt insertion; at high angles, the initial chamfer tilt insertion
results in an orientation that is not fully seated within the
vessel rim, and even with the screw motion, one part of
the shunt ends up outside of the vessel phantom. On the
other hand, in both the 0◦ and 15◦ cases, the larger shunt
was initially inserted at a well-grounded position for the
following screw motion.

4) Segmentation Model Color Sensitivity: To evaluate the
independence of our detection model from our specific col-
ored vessel phantoms, we train a version of our segmentation
U-Net on grayscale versions of our input images. We use a
separate set of 3200 images for training the grayscale model,
and grayscale versions of the same 805 validation images for
evaluating the models. We compare the outputs of the RGB
segmentation model and the grayscale segmentation model
to the ground truth labels using their Intersection over Union
(IoU). The RGB input segmentation model had an average
IoU of 0.62 on the validation set, and the grayscale input
segmentation model produced an average IoU of 0.58. As the
measured performance of the two models on our validation
set was nearly equivalent, we found no reason to suspect
that our detection system would fail to converge under more
difficult color conditions, such as those faced during an in-
vivo operation. However, we hope that future work will be
able to put this assumption to the test physically.

VI. LIMITATIONS

The approach and physical environment we consider have
notable limitations: The vessel phantom and shunts used are
scaled up by 50—100% from their clinical use cases, and
their appearance may not align with that of tissue during a
real operation. The vessel phantom is held by two stationary
grippers, but these two points may not remain stationary in
a real clinical setting, since a human holds them. To account
for this, future work could include visual servoing algorithms
to iteratively move the gripper to a correct grasp position.
Furthermore, the shunt placement in one of the grippers may

not be known ahead of time in a real scenario. The stress
applied to the vessel when inserting the shunt is not explicitly
considered and accounted for by the algorithm. The initial
shunt insertion point is manually tuned relative to the vessel
phantom’s center for the given environment.

VII. DISCUSSION

In this paper, we formulate the Automated Vascular Shunt
Insertion problem and present an algorithmic pipeline de-
signed to perform it on a da Vinci Research Kit. Our results
show that the method proposed in this paper achieves a high
success rate even with tight tolerances and varying vessel
orientations. To the best of our knowledge, this work is
the first to study and implement a method for automating
vascular shunting surgery.

In future work, we will consider using more clinically
realistic materials and sizes for the vessel and the shunt.
Furthermore, implementing and evaluating automated vas-
cular shunt insertion pipelines on robots such as the SRI
Taurus [46] can more closely resemble hardware deployed
in battlefield scenarios. To accommodate for smaller shunt
and vessel phantom cases and improving the success rate
of the current pipeline, future work may explore applying
irregularly-shaped rim fitting to loosen the assumption of a
circular rim and utilize visual servoing for both grasping the
vessel phantom and inserting the shunt.

Future work may also consist of automating other subtasks
of vascular shunt insertion, such as adding a ligature knot
to stabilize the shunt position, and using two other robotic
arms to perform the initial grasping on the vessel. Parts
of the automated vascular shunt insertion algorithm can be
extended and applied to similar procedures, such as carotid
endarterectomy [47].
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