
On the programming effort required to generate Behavior Trees and
Finite State Machines for robotic applications

Matteo Iovinoa,b, Julian Försterc, Pietro Falcoa, Jen Jen Chungc,d, Roland Siegwartc and Christian Smithb

Abstract— In this paper we provide a practical demonstration
of how the modularity in a Behavior Tree (BT) decreases the
effort in programming a robot task when compared to a Finite
State Machine (FSM). In recent years the way to represent a
task plan to control an autonomous agent has been shifting
from the standard FSM towards BTs. Many works in the
literature have highlighted and proven the benefits of such
design compared to standard approaches, especially in terms of
modularity, reactivity and human readability. However, these
works have often failed in providing a tangible comparison
in the implementation of those policies and the programming
effort required to modify them. This is a relevant aspect in
many robotic applications, where the design choice is dictated
both by the robustness of the policy and by the time required to
program it. In this work, we compare backward chained BTs
with a fault-tolerant design of FSMs by evaluating the cost to
modify them. We validate the analysis with a set of experiments
in a simulation environment where a mobile manipulator solves
an item fetching task.

Index Terms— Behavior Trees, Finite State Machines, Mod-
ularity, Mobile Manipulation

I. INTRODUCTION

Nowadays, robots are deployed in unstructured environ-
ments, usually shared with humans, where the need for reac-
tivity to handle unpredictable situations and fault-tolerance to
increase the robustness of the robot behavior are vital for the
successful outcome of the task. Robotics engineers have to
take into account these and other features, e.g. programming
time, maintainability, readability, when deciding with which
policy to control the robot.

Finite State Machines (FSMs) have been the standard
policy representation in robotics due to their intuitive and
simple design and the predictability of their execution flow.
They have flourished in industrial applications, where the
robot repeatedly executes the same task in a static envi-
ronment with a low failure probability. As an alternative,
Behavior Trees (BTs) are a reactive, readable and modular
task switching policy representation, becoming state of the
art for robot control, especially in research environments [1].
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Cube2 in Hand? Sequence
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Robot-At delivery? Move-To delivery!

Fig. 1: Backchained BT solving a mobile manipulation task.

We believe that examples of how these two representations
compare on a concrete implementation are still lacking.
Therefore, the goal of this paper is to focus the comparison
between BTs and FSMs on the modularity of the two
representations, also carrying out experiments in a simulation
environment. In this work, we emphasize modularity since
it is a key feature that allows users to drastically reduce
the programming effort required for a robotics application,
especially when it is possible to reuse existing code or li-
braries. First, we measure modularity in terms of Cyclomatic
Complexity (CC), Edit Distance (ED), and Computational
Complexity of the operations required to edit the policy.
Then, we show the practical implications of choosing one
representation rather than the other with a series of simulated
robotic tasks.

To make the comparison as fair as possible, we make a
few assumptions on the design:

1) The two representations have access to the same robot
skill set, so that the difference remains at as high a
level as possible;

2) We design BTs with the backward-chained
(backchained) principle because it allows deriving
stability guarantees and convergence proofs [2], even
though it is not the most optimal choice in terms
of the size of the tree (as is found by e.g. Genetic
Programming algorithms [3], [4]);

3) We propose to build FSMs in a fault-tolerant way,
so that status checks on the environment redirect the
robot to the point in the execution flow that had
previously failed. This mimics the reactiveness of BTs.
We validate this choice in a direct comparison with a
standard sequential FSM.
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Move-To cube2

Pick cube2

Move-To delivery

Place cube2

SUCCESS

INIT

Cube2 reached

Cube2 in Hand

Delivery pose reached

Cube2 placed

FAILURE

Fig. 2: Sequential FSM solving the same task of Fig. 1.

For implementation, we use state-of-the-art open-access
programming tools—BTs: py trees [5]; FSMs: SMACH [6]
[7]—which are widely used in robotic applications [8].

II. BACKGROUND AND RELATED WORK

This section briefly defines BTs and FSMs and presents the
theoretical foundations and early results on the comparison
between the two representations.

A. Behavior Trees

BTs are a task switching policy representation, originating
in the gaming industry and later transferred to robotics [9].

A BT is a directed tree, where a tick signal originates
from the root and propagates down the tree from left to
right. Nodes execute only when ticked and return one of
the status signals Success, Failure and Running. Internal
nodes are called control nodes, (polygons in Fig. 1), with
the most common types being Sequence: runs children in
a sequence, returning once all succeed or one fails, and
Fallback (or Selector): runs children in a sequence, returning
when one succeeds or all fail. Leaves are called execution
nodes or behaviors (ovals in Fig. 1), of type Action(!) or
Condition(?). The former encode robot skills, while the latter
encode status checks and sensory readings, thus immediately
returning Success or Failure.

BTs have explicit support for task hierarchy, action se-
quencing and reactivity [1] and are modular by design: every
node receives the tick as input and outputs the return statuses,
so subtrees can be moved without compromising the logical
functioning. Moreover, modularity allows every building
block to be independently tested and reused. Reactivity is
realized by the Running return state, which allows high
priority actions to preempt executing ones.

A backchained BT is built from the goal condition, by
expanding it with the actions that achieve it and then by
recursively expanding those actions’ unmet pre-conditions.
As an example, in the BT of Fig. 1, placing the cube in the
delivery station allows the robot to complete the task, but in
order to reach that stage, the robot first has to pick the cube
and then move to the delivery station. Recursively, to pick
the cube, the robot has to first move to where the cube is
located. The backchained design can also be automatically
generated by a planner [4], [10] or learnt [11], [12], making it
appealing to operators with limited programming knowledge.

IDLE

Cube2 in Hand

Cube2 in Hand

Cube2 reached

Fallback

Cube2 placed

Move-To cube2

Pick cube2

Move-To delivery

Place cube2

SUCCESS

INIT

Cube2 reached

Cube2 in Hand

Delivery pose reached

Cube2 placed Delivery pose reached

Fig. 3: Fault-tolerant design for FSMs solving the same task of Fig. 1.
States’ outcomes Success, Running and Failure have green, yellow and red
transitions, respectively.

B. Finite State Machines

Finite State Machines derive from state automata and
feature a set of states and transitions between them (ovals
and arrows in Fig. 2, respectively). Every state encodes a
controller for robot behavior which produces effects in the
environment upon execution. The effects trigger an event that
transfers the execution from one state to the next. Since
FSMs also include Sequential Function Charts (SFCs), a
graphical programming language for Programmable Logic
Controllers (PLCs), they are widely used in industry [13]
and their success is mainly due to their intuitive design and
implementation simplicity.

FSMs have the unfortunate shortcoming that designers
have to make a trade-off between reactivity and modularity.
As highlighted in [9], FSM execution can be compared to
the GoTo statement of early programming languages, where
the execution flow jumps from one part of the program to
another and continues from there. In programming, and by
extension also in robotics, GoTo statements are considered to
be harmful and are advised against [14]. On the other hand,
the execution of a BT can be compared to a function call,
where the execution flow also jumps to another part of the
code but after its completion, it returns to where the function
was initially called.

In order to be reactive, an FSM needs to have many
transitions that need to be taken care of upon addition
or removal of states, making them less modular and less
scalable. The modularity problem is partially mitigated by
logically grouping states to form hierarchies. There is a
particular design for Hierarchical State Machines (HFSMs)
aimed to mimic the functionality of a BT and to grant
FSMs some modularity [15]. Since this design sacrifices
the readability, we leave the analysis of the modularity of
HFSMs to future work.

Another shortcoming of sequential FSMs (e.g. Fig. 2) is
that the robot and the environment have to be reset upon
failure, and the task to be re-executed again from the start.
To make the FSM fault-tolerant, we propose to add an IDLE
state that is fully connected to the others (as in Fig. 3). In
case of failure of any of the action states, the execution flow
passes to the IDLE state, where the status of the environment
and the task progress is checked, allowing the robot to



resume the execution in the correct state. We endow every
state with an explicit Running transition that cycles back to
the state itself, so that the action execution is asynchronous
and the environment is monitored periodically. An action’s
post-conditions (also referred to as effects) are the transitions
to the next state (or from IDLE to another state), while its
pre-conditions are reflected in the sequential order of the
states in the FSM. Note that an alternative fault-tolerant and
reactive design would feature a task switcher node to which
all other states are connected and which is responsible for
checking the state of the environment and deciding the next
sequence of actions. In this design, however, we lose the
sequentiality of the execution flow and, consequently, we
also lose the readability as it is harder for a human operator
to anticipate what the robot will do next.

C. Related Work

BTs have been compared to FSMs in previous work,
but the comparison was either purely theoretical [9], [15],
[16], or speculative [17]. In [9], authors list advantages
and disadvantages of both designs and in [15] they prove
theoretically how in fact BTs modularize FSMs, providing
an HFSM design that behaves like a BT. In [16], authors
formally compare BTs with other related architectures (Deci-
sion Trees, Teleo-reactive Programs and in particular FSMs)
in terms of reactivity, readability and expressiveness.

In [18], the same authors formalize modularity for reactive
control architectures, pointing out that BTs feature structural
interfaces, with which every component interacts with the
others: a subtree is a BT, an action behavior is a degenerate
case of a BT. Naturally, FSMs lack structural interfaces
and thus cannot be considered modular in their analysis
unless a structure is enforced (e.g. in HFSMs). They measure
modularity with the Cyclomatic Complexity (CC) that we
will describe later in the analysis. In addition we propose to
measure modularity in terms of the effort required to modify
a structure by adding or removing elements in it. We propose
to quantify it using the Computational Complexity of such
operations and the Edit Distance (ED) between a baseline
structure and its modified versions.

Klöckner [17] proposes using a BT as a control policy for
UAV missions, speculating the advantages of such design
with respect to FSMs. Previous work [19] also compares the
two policy representations from a practical perspective in
the domain of autonomous driving. The comparison is made
in terms of CC and Maintainability Index (MI). The MI of
a piece of software takes into account the CC, the number
of lines of code, the percentage of comments in the code
and the Halstead Volume (a function of distinct and total
numbers of operands and operators). Here, the CC was ill-
defined as compared to [18] and we argue that the MI is
more dependent on the library used to implement the two
policies, so we disregard it.

Another work that provides insight on the behavior of an
agent controlled by both policies is [20] in the domain of
computer games, i.e. in a deterministic scenario. Here, the
authors evaluate the policies on solving a level in the Mario

AI benchmark, comparing them in terms of number of nodes
and reward function ρ(x). This comparison provides insight
on the scalability of the two policies, since both of them are
generated by a learning algorithm to solve the benchmark.
The goal of this work was to propose a new method to
generate BTs, so the comparison against FSM is not fair
in the sense that the generation method is not the same for
the two policies. In both [19] and [20] the complexity scales
linearly for BTs and quadratically or worse for FSMs. From
an application point of view, [21] provides guidelines to
program BTs for robotic tasks, in terms of parameter passing,
asynchronous calls to robot actions, and reactivity, which are
also applied here in the experimental section.

We believe that what is lacking in the state of the art is
a practical grasp on the difference between BTs and FSMs.
Therefore, we propose to support the analytical comparison
with a simulated robotic application, where we provide
insights on the programming effort required to design both
structures and comment on which one may be preferable over
the other.

III. ANALYTIC COMPARISON ON MODULARITY

We use the Computational Complexity, Edit Distance
(ED), and Cyclomatic Complexity (CC) to compare the
modularity of the two representations.

The possibility of adding and removing nodes/states allows
users to reuse pieces of software and to modify bad design
choices. It can happen, for example, that during the testing
of the policy we realize that some behaviors were missing or
that some were malfunctioning, and thus need to be removed.

1) Computational Complexity:
a) Add or remove a node in a BT: Adding a node in a

BT with n nodes, requires inserting it in the list of children
of the parent control node at the desired position. In a BT,
each child node is in no way connected to other children1.
Performing the insertion operation requires accessing the
desired parent node and then inserting it, with complexity
O(1). Removing a node has the same complexity. Because
of modularity, handling a subtree has the same complexity. In
this case, the root of the subtree to add/remove is considered
as the input node.

b) Add or remove a node in a FSM: For the proposed
design of the FSM, we identify two possible ways a state
can be added:

i) sequential state: add a new state between two existing
states (namely the preceding and following states). If
we want to add the new state as a new step in the
execution sequence, we need to remove the transition
from preceding to following, create a transition from
preceding to the new state and from this to following.
Finally we need to handle the interaction with the
IDLE state. If the new state is a terminal one, then
we would make a transition to the outcome instead. A
FSM modified this way is reported in Fig. 4d.

1While not true in the case of using Blackboard variables, this design
choice breaks modularity and it is discouraged [9].



Sequence

Fallback MoMa task!

Battery > 20%? Recharge!

(a) Adding a subtree that recharges the battery if low.

Sequence

MoMa task! Fallback

Robot-At inspection? Dock Robot!

(b) Adding a state that docks the robot once the task is done.

IDLE

Cube2 in Hand

Cube2 in Hand

Cube2 reached

Fallback

Cube2 placed

Move-To cube2

Pick cube2

Move-To delivery

Place cube2

SUCCESS

INIT

Cube2 reached

Cube2 in Hand

Delivery pose reached

Cube2 placed Delivery pose reached

Recharge

Battery < 20%

Recharged

RUNNING

(c) Adding a state that recharges the battery if low.

IDLE

Cube2 in Hand

Cube2 in Hand

Cube2 reached

Fallback

Cube2 placed

Move-To cube2

Pick cube2

Move-To delivery

Place cube2

SUCCESS

INIT

Cube2 reached

Cube2 in Hand

Delivery pose reached

Cube2 placed Delivery pose reached

Dock

Docked

RUNNING

FAILURE

(d) Adding a state that docks the robot.

Fig. 4: How the addition of a new behavior is handled in the two policy representations. To save space, we collapsed the BT in Fig. 1 in the white box
labelled ‘MoMa task!’. In the FSM, additions are colored in magenta.

Algorithm 1: FSM: Addition of a connected state
input: sm, new state, condition, idle condition

1 for state in sm:
2 state.register outcome (new state)
3 if node == IDLE:
4 node.add transition (idle condition)
5 else:
6 node.add transition (condition)
7 new transitions← ”RUNNING” : new state
8 new transitions← ”FAILURE” : IDLE
9 sm.add state (new state, new transitions)

ii) connected state: add a new state for the task that is
connected to all the others (Algorithm 1). Here, we add
a transition from every other state to the new one and
finally to handle the interaction with the IDLE state.
A FSM modified this way is reported in Fig. 4c.

In a FSM with n states, adding or removing a new state
requires checking the consistences between state outcomes
and transitions, which has complexity O(n) because we
might need to take care of up to n transitions.

In particular, to remove a state, it is necessary to delete all
transitions to and from the state. Then, the target state has to
be removed from the outcomes of any other state, if present.
This operation requires looping through all transitions and
all states, for a total complexity of O(2n).

A fundamental difference with BTs—a direct consequence
of BT modularity—is that while editing a FSM it is necessary
to have access to all states and transitions, making the
operation of adding/removing one element in the structure
dependent on all the others.

2) Edit Distance (ED): ED is a way to measure diversity
between structures. With the formulation proposed in [22],
two BTs to compare are padded with empty nodes into the

same shape. Since this formulation of the ED is defined for
trees alone, we cannot directly apply it to FSMs. Using the
fact that trees are a special type of graph, we propose instead
to use the Graph Edit Distance (GED). GED is defined as the
minimum number of edit operations (add/remove/substitute
nodes and edges) to execute on a graph g1 to make it
isomorphic to another graph g2 [23]. Using the standard
tuple definition of graphs, G = (V,E) with V,E the sets
of vertices and edges respectively, the GED between g1 =
(V1, E1) and g2 = (V2, E2), is defined as:

GED(g1, g2) = min
e1,...,ek∈γ(g1,g2)

k∑
i=1

c(ei), (1)

where c is the cost of the edit operation ei and γ(g1, g2)
denotes the set of edit paths to transform one graph into the
other. For this analysis, we use this measure as implemented
in the NetworkX Python library [24].

3) Cyclomatic Complexity (CC): This is a software met-
ric that measures the complexity of a program in the form
of a control-flow graph and is defined as,

CC = a+ s− n+ 1, (2)

where a, s, n represent the number of arcs, sinks (terminal
nodes) and nodes in a decision structure, respectively. This
measure is applied in [18] to BTs that have been transformed
to graphs with single entry and exit nodes. This implies
that BTs have optimal modularity as their Cyclomatic
Complexity is 1.

IV. EXPERIMENTS

We compare BTs and FSMs in the concrete case of con-
trolling a robot to perform a simulated mobile manipulation
(MoMa) task and we evaluate the metrics described above on



Fig. 5: Gazebo Simulation environment with the mobile manipulator.

some specific edits. The MoMa task shown in Figs 1 and 3
is used as the baseline. We target tasks that are typical and
representative of the MoMa domain, not to bias the analysis
in favor of one policy or the other. To this end, we consider
a set of variations of the Cleaning Up task as defined in
the RoboCup@Home benchmark [25]. In this task a robot
needs to collect a set of five unknown objects dispersed
throughout the scene. To do so, the robot has to find the
potential object, grasp it, and finally place it in a predefined
area in the scenario. The map is known in advance. To
perform this task the robot needs functional abilities such
as navigation, object recognition, and object manipulation,
as well as system properties such as adaptivity (the object
locations are not known in advance and the environment is
unpredictable), robustness, and general applicability.

We consider the simpler subtask of fetching one single
object of known position, as it facilitates the comparison
and reduces the execution time. The evaluation is divided
into pairs of experiments, where the task becomes more
complicated as new behaviors are added to the policy. The
task is solved once with a BT and once with a FSM. We
aim at studying the behavior of the robot as well as the
effort of programming such a policy, in terms of the number
of operations required. The code is available online2. To
complexify the task, we add functionalities according to the
following scenarios, Fig. 4:
• The robot must recharge its batteries if they run low at

any point during task execution.
• The robot must dock once the task is completed.
In the simulation environment for the task (Fig. 5), the

robot docks at the inspection table. The mobile manipulator
is a Franka Emika Panda arm mounted on the omnidirec-
tional Clearpath Ridgeback base. The arm’s end-effector is
equipped with an Intel RealSense RGBD camera.

A. Skill Description

Since the scope of the paper is to compare the high-level
behavior of the control policies, we make some assumptions
to simplify the execution of the low-level skills. In the case
of the navigation, the robot has a limited set of target poses
available (one for each station/table of the environment).

2https://github.com/ethz-asl/bt_fsm_comparison

The navigation is implemented with the ROS Navigation
Stack. We use AprilTags to identify the location of the
items. Manipulation is implemented with ROS MoveIt!. For
grasping, we rely on a shape-based grasp synthesis method
called the Volumetric Grasping Network (VGN) [26].

In the ROS framework, skills are implemented as action
servers. A client interface allows the policy (BT or FSM)
to interact with the skills, i.e. to initialize them, send goals,
monitor the execution status and cancel goals. In the follow-
ing, we describe the skills and the conditions available to the
robot.

a) Move-To!: this action moves the robot to a target
pose given explicitly or reconstructed from the object marker.

b) Robot-At?: this condition checks that the robot
reached the desired pose with the desired tolerance in x,
y and yaw.

c) Pick!: this action moves the robot arm to a target
pose and grasps the object. Once the grasp is successful, the
arm is tucked in a compact configuration for navigation.

d) In Hand?: this condition checks if the robot is
holding an object.

e) Place!: this action moves the robot arm to a target
pose and drops the object. Then the robot moves the arm
to a configuration that allows it to monitor the scene and
evaluate the end pose of the object with the wrist camera.

f) Object-At?: this condition checks that the object is
in the desired pose with the desired tolerance in x, y, and z.

g) Recharge!: this action makes the robot go to the
recharge station and then it instantaneously fills up the
battery level.

h) Battery Lv?: this condition determines when the
robot shall recharge its batteries.

i) Dock!: this action makes the robot dock at the
inspection table. The corresponding condition is ‘Robot-At’?

B. Experiment 1

In this experiment the robot has to fetch the cube placed at
‘fetch table 1’ in Fig. 5 and place it on the ‘delivery station’.
The robot starts in the center of the room and the position of
the cube is known a priori. This is the only task that is also
attempted with the sequential FSM of Fig. 2. The BT and
fault-tolerant FSM solving the task are those of Fig. 1 and
Fig. 3, respectively. The sequential FSM successfully solves
the task only in the case all actions execute correctly and
within the tolerances. Failures in the execution require the
task to be reset. As per the BT and the fault-tolerant FSM,
failed actions are re-attempted. In addition, since the BT is
recursively ticked from the root, it keeps being executed also
upon success. This implies that if the the task is completed
but then a human operator brings the cube to another table,
the robot can react to it and go fetch the cube again (provided
it knows where the cube is). To calculate the ED when adding
behaviors, for this base task, the BT in Fig. 1 is a graph with
14 nodes and 13 edges, while the FSM in Fig. 3 has 6 nodes
and 18 edges. This FSM has CC = 14.

https://github.com/ethz-asl/bt_fsm_comparison


C. Experiment 2

This experiment adds a recharging behavior to the existing
manipulation task. This requires the operator to edit the
policy as in Fig. 4a and Fig. 4c. In the case of the BT we
would need to prepend the recharge subtree in a Sequence
root node to the subtree solving the task, so the recharging
subtree has higher priority. There are 8 elementary operations
to perform: create the 4 nodes—the root node and the nodes
in the left subtree—in Fig. 4a, add the two leaves to the
Fallback node and finally add the recharge subtree and the
already existing BT for the MoMa task to the new root.

Note that it is assumed that the recharge behavior loads
the batteries instantaneously. This can be motivated by a
situation in which for example, an operator switches the
batteries of the robot when it stops at the recharge station.
In the case where the batteries are gradually loaded when
the robot stays in the recharge station, the recharge subtree
could be given a different design to preempt charging if a
more important task arises.

The BTs in Fig. 4a has 18 nodes and 17 edges, which
infers an ED of 8 with respect to the baseline.

In the case of the fault-tolerant FSM, there are also 8
operations to perform: create the recharge state and the
Running transition, add a transition from the recharge state
to the IDLE state and from every state to the recharge state.
There are two considerations to make. First, the number of
new transitions to create depends on the number of already
existing nodes, while in the case of the BT, the number of
operations required does not depend on the size of the tree.
Then, the internal logic of the states must also be modified
to implement the case triggering a transition to the new state.
This is a clear benefit of a BT, where the switching logic is
explicitly implemented in the representation.

The FSM in Fig. 4c has 7 nodes and 25 edges, which
infers an ED of 8 with respect to the baseline, and the new
FSM now has CC = 20.

From a behavioral perspective, the execution of the task
remains the same and the robot successfully goes to recharge
the batteries if the level is below 20%.

D. Experiment 3

In this case, we also add a docking behavior as in Figs 4b
and 4d. Since the Sequence root node is already there, to
edit the BT it is necessary (1) to create the Fallback node,
the condition and the action, (2) to add the two leaves to the
control node, and (3) to add the subtree to the root. Again,
the rest of the tree is in no way influenced by the addition.

In the FSM, besides creating the new state, the Running
transition and the transitions to and from the IDLE state,
we need to remove the transition from the ‘Place’ state to
the Success outcome and create a transition from the ‘Dock’
state to the outcome.

In this experiment as well, there is no substantial differ-
ence in the executed robot behavior between the two policies.
The BT has 21 nodes and 20 edges, which gives ED = 6
to the previous case of Exp.2, while the FSM has 8 states

and 30 transitions which gives ED = 6 and CC = 24. The
figures for this examples are reported in the code repository.

E. Scalability

For the experiments, we have considered only one item
to fetch. While a task that simple allows us to detail the
implementation and programming efforts, it doesn’t fully
capture the real advantages that modularity gives to the BT
when compared to FSMs. We have commented that insertion
operations on FSMs depend on the number of states and
transitions already in the FSM. In fact, when we scale the
task to a case where the robot needs to search for 5 cubes,
to fetch all of them and finally to dock, we would have a BT
with 77 nodes and 76 edges and a FSM with 24 nodes and
90 transitions, given the set of skills that we presented. At
this point, adding a recharge behavior to the existing policy
representations would be more cumbersome in the case of a
FSM as we need to add the transition to the recharge state
from all other states. We would have ED = 6 in the case of
a BT (like in Exp.3, the root is already there) but ED = 26
in the case of a FSM, as the final BT would feature 80
nodes and 79 edges, while the final FSM 25 nodes and 115
transitions.

V. CONCLUSIONS AND FUTURE WORK

In this paper we analyzed modularity in BTs and FSMs in
terms of Computational Complexity, Edit Distance, and Cy-
clomatic Complexity. In order to ensure that the comparison
is between representations with equivalent functionalities,
we used a particular design of the FSM that gives it fault-
tolerance. This is also motivated by the fact that BTs are a
structured policy representation and there are implementation
guidelines, while the design of a FSM is less constrained.
Moreover, we built the BTs with the backchained design
for the discussed reasons. The results of the theoretical
analysis highlight how BTs are indeed more modular than
FSMs, as already identified by related work [15], [18]. We
contributed with a detailed analysis on the implementation
of the two policies and deployment on a set of MoMa
tasks in a simulation environment. From the experimental
section, it is undeniable that FSMs are more intuitive to
implement as the functioning and state-transitioning logic
is more straightforward. However, it is more complicated to
maintain a FSM and the number of operations needed to edit
the policy depends on the number of states in the structure.
Moreover, it is often necessary to change the logical behavior
of some states if the task requires it. Modularity allows us
to easily maintain, reuse, and extend BTs, as edit operations
depend only on the parent node of the subtree to modify.
Another remark is that the switching policy is more explicit
in a BT, while in a FSM it is integrated within the state. As a
future work, we will continue this analysis with an extended
set of experiments where we aim to find the size of the
policy (in number of states/action nodes) where the trade-off
between ease of implementation and maintainability tips the
balance in favor of BTs. Moreover, we plan to extend the



comparison to other key elements for policy representation
in robotics, e.g. reactivity and readability.
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[2] P. Ögren, “Convergence Analysis of Hybrid Control Systems in the
Form of Backward Chained Behavior Trees,” IEEE Robotics and Au-
tomation Letters, vol. 5, no. 4, pp. 6073–6080, Oct. 2020, conference
Name: IEEE Robotics and Automation Letters.

[3] M. Iovino, J. Styrud, P. Falco, and C. Smith, “Learning Behavior Trees
with Genetic Programming in Unpredictable Environments,” in 2021
IEEE International Conference on Robotics and Automation (ICRA),
May 2021, pp. 4591–4597, iSSN: 2577-087X.

[4] J. Styrud, M. Iovino, M. Norrlöf, M. Björkman, and C. Smith,
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