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Abstract— Real-world manipulation problems in heavy clut-
ter require robots to reason about potential contacts with
objects in the environment. We focus on pick-and-place style
tasks to retrieve a target object from a shelf where some
‘movable’ objects must be rearranged in order to solve the task.
In particular, our motivation is to allow the robot to reason over
and consider non-prehensile rearrangement actions that lead
to complex robot-object and object-object interactions where
multiple objects might be moved by the robot simultaneously,
and objects might tilt, lean on each other, or topple. To support
this, we query a physics-based simulator to forward simulate
these interaction dynamics which makes action evaluation
during planning computationally very expensive. To make
the planner tractable, we establish a connection between the
domain of Manipulation Among Movable Objects and Multi-
Agent Pathfinding that lets us decompose the problem into two
phases our M4M algorithm iterates over. First we solve a multi-
agent planning problem that reasons about the configurations
of movable objects but does not forward simulate a physics
model. Next, an arm motion planning problem is solved that
uses a physics-based simulator but does not search over possible
configurations of movable objects. We run simulated and real-
world experiments with the PR2 robot and compare against
relevant baseline algorithms. Our results highlight that M4M
generates complex 3D interactions, and solves at least twice as
many problems as the baselines with competitive performance.

I. INTRODUCTION

Manipulation Among Movable Objects (MAMO) [1] de-
fines a broad class of problems where a robot must complete
a manipulation task in the presence of obstructing clutter.
In heavily cluttered scenes, there may be no collision-free
trajectory that solves the task. This does not make the
problem unsolvable since MAMO allows rearrangement of
some objects a priori designated as ‘movable’. In addition,
MAMO may associate each object with constraints on how
it can be interacted with – it is undesirable to allow robots
to carelessly push or throw objects around.

In this paper, we consider MAMO problems for pick-and-
place manipulation tasks where the robot needs to retrieve
a target object from a cluttered shelf, cabinet, fridge, or a
similar structure. Fig. 1 (a) shows an example of such a scene
where two movable objects must be rearranged in order to
retrieve the desired object, while ensuring they do not topple
and no contacts are made with an immovable obstacle.

1The authors are with the Robotics Institute, Carnegie Mel-
lon University, Pittsburgh, PA 15213, USA. e-mail: {dsaxena,
mlikhach}@andrew.cmu.edu. This work was in part supported
by ARL grant W911NF-18-2-0218 and ONR grant N00014-18-1-2775.

(a) (b)

Fig. 1. (a) An example MAMO problem to retrieve the beer can (yellow
outline). Access is blocked by the movable box of milk and tub of yogurt
(blue outlines). In order to retrieve the can, they must be rearranged out of
the way without toppling them, and without anything making contact with
the glass of juice (red outline). (b) A complex non-prehensile action that
tilts the movable potted meat can (blue outline) to rearrange it.

Solving such MAMO problems requires answers to three
difficult questions: which objects to move, where to move
them, and how to move them. Thus MAMO problems assign
the robot a goal with respect to the overall task and object-of-
interest (OoI), without any additional goal specifications for
other objects except for satisfying their associated interaction
constraints; while MAMO solutions exist in a composite
configuration space that includes the configuration of the
robot arm and all objects in the scene. The search for a
solution is computationally challenging since the size of this
space grows exponentially with the number of objects.

We are interested in non-prehensile rearrangement actions
since they allow robots to manipulate objects that may be
too big or too bulky or otherwise ungraspable. In many cases
it is more time- and energy-efficient to push an object off
to the side than to grasp it, pick it up, move it elsewhere,
place it down, and release it before proceeding. Furthermore,
we allow the robot to move multiple objects simultaneously
with the same push action, and we allow objects to tilt,
lean on each other, and slide (an example is shown in
Fig. 1 (b)). Planning with these actions requires the ability
to predict the effect of robot actions on the configuration of
objects, typically through computationally expensive forward
simulations of a rigid-body physics simulator.

Our key insight in this work draws a connection between
the MAMO domain and Multi-Agent Pathfinding (MAPF)
to decompose the problem into two parts. First, we treat
the movable objects as artificially actuated agents tasked
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Fig. 2. Sequence of images showing a solution found by our M4M
algorithm for a simple MAMO scene. From left to right: (a) initial scene, (b)
rearranged scene after one push action, (c) successful OoI retrieval. Movable
objects are blue, immovable obstacles are red, and the OoI is yellow.

with avoiding collisions with (i) our robot arm retrieving
the OoI, (ii) each other, and (iii) immovable obstacles.
A solution to this abstract MAPF problem searches over
potential rearrangements of objects without the need to query
a physics simulator. Next, we use the MAPF solution to
compute informed push actions to rearrange movable objects
without searching over their possible configurations. These
actions are forward simulated with a physics model to ensure
validity. The decomposition helps us keep track of object
configurations in the full SE(3) space and generate informed
push actions that lead to realistic multi-body interactions in
the 3D workspace as shown in Fig. 1 (b). Fig 2 shows a
complex and interesting solution found by our algorithm for
one of the simpler scenarios in our test data.

The main contributions of our work in this paper for
solving MAMO planning problems are:
• Enable reasoning over and usage of complex non-

prehensile interactions that may push multiple objects
in tandem and produce object-object interactions like
leaning and toppling (Fig. 1 (b)).

• MAPF abstraction for computing suitable rearrange-
ments for MAMO planning problems, without using a
simulation-based model.

• An efficient algorithm to solve MAMO problems that
iterates between calls to an MAPF solver (to determine
which objects to move where) and a push planner (to
verify how to move the objects).

• A thorough experimental evaluation of our approach in
simulation and in the real-world on a PR2 robot.

We provide details of relevant works from MAMO lit-
erature in Section II. Section III formalises the MAMO
planning problem. Section IV presents our iterative planning
algorithm M4M, including the abstraction from MAMO to
MAPF (Section IV-A) and a non-prehensile push planner
(Section IV-B). We provide extensive quantitative evaluation
against relevant MAMO baselines in simulation in Section V
along with real-world results of our algorithm on the PR2
robot. Section VI discusses the benefits, limitations, and
future extensions of this work.

II. RELATED WORK

MAMO generalises Navigation Among Movable Obstacles
(NAMO) where a mobile robot must navigate from start
to goal in a reconfigurable environment [2]–[4]. It is also

related to the rearrangement planning problem [5], [6] which
explicitly specifies desired goal configurations for movable
objects. Wilfong [3] showed that rearrangement planning is
PSPACE-hard, and MAMO problems are NP-hard to solve.

Many existing MAMO and rearrangement planning
solvers make use of prehensile actions [1], [7]–[11]. This
simplifies planning since grasped objects behave as rigid
bodies attached to the robot, but assumes access to known
stable configurations of and grasp poses for objects [1], [7]–
[9]. In some cases a “buffer” location to place grasped objects
is required [10], [11]. In particular, [7] and [9] utilise the
concept of “pebble graphs” [12], [13] from MAPF literature
to find prehensile actions for rearrangement planning. Their
formulation restricts the motion of the movable objects (peb-
bles) on a precomputed roadmap of robot arm trajectories
via prehensile actions. This limits the possible configurations
of objects they consider since motions are limited to poses
from where they can be grasped and to those where they
can be stably placed. Since we utilise non-prehensile pushes
for rearrangement and a physics-based simulator for action
validation, our planner explores a richer space of robot-object
and object-object interactions in the 3D workspace.

Allowing non-prehensile interactions with objects typi-
cally requires access to a simulation model to obtain the
result of complex interaction dynamics [14]–[19]. Of these
approaches, only Selective Simulation [19] considers realistic
interactions in the 3D workspace and is one of our compar-
ative baselines in Section V. Others rely on planar robot-
object interactions which fail to account for object dynamics
in SE(3) where they might tilt, lean, or topple. In Section V,
we adapt the MAMO solver from [15] to use our push actions
that lead to 3D robot-object interactions and require a physics
simulator during planning. Originally their work was limited
to interacting with a single object at a time, and used an
analytical motion model in SE(2) to propagate the effect
of the push on the planar configuration of the object being
pushed (tilting and toppling was not considered in [14]–[18]).

Querying physics-based simulators for the result of an
action is much more expensive than collision checking it.
KPIECE [20] is a randomised algorithm for planning with
a computationally expensive transition model (querying a
physics-based simulator is an example of such a model).
KPIECE and RRT [21] are two other baselines we compare
against in Section V. In our own prior work on MAMO
planning [22], we find a collision-free trajectory to a region
near the OoI grasp pose, and simulate goal-directed non-
prehensile actions only within this region. The assumption
that such a collision-free trajectory exists is easily violated
in the cluttered MAMO workspaces we instantiate in our
experiments (see Figs. 1 (a), 6, and 7 for example).

III. PROBLEM STATEMENT

Let XR ⊂ Rq denote the configuration space of a
q degrees-of-freedom robot manipulator R. Let O =
{O1, . . . , On} be the set of objects in the scene, and XOi ≡
SE(3) be the configuration space of object Oi that includes
its 3D position and orientation. The search space for a
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Fig. 3. MAMO workspace (left) and its 2D projection labelled with movable
object IDs. Movable objects are in blue, immovable obstacles in red, and
the object-of-interest to be retrieved in yellow.

MAMO planning problem is X = XR × XO1
× · · · × XOn

.
We denote movable objects by OM and immovable obstacles
by OI such that O = OM ∪ OI and OM ∩ OI = ∅.

Each object is associated with a set of interaction con-
straints. For example, an ‘immovable’ obstacle (an object
that cannot be interacted with, such as a wall) will contain
a constraint function which is satisfied so long as neither
the robot nor any other object makes contact with it. In
our problems similar functions encode that movable objects
cannot fall off the shelf, tilt too far (beyond 25°), or move
with a high instantaneous velocity (above 1 m s−1). A state
x ∈ X is valid if all constraints for all objects are satisfied
at that state. Let XV be the space of valid states.

A MAMO planning problem can be defined with the tuple
P = (X ,A, T , c, xS ,XG). A is the action space of the robot,
T : X × A → X is a deterministic transition function, c :
X × X → R≥0 is a state transition cost function, xS ∈ XV
is the start state, and XG ⊂ X ,XG ∩ XV 6= ∅ is the set
of goal configurations. The start state xs includes a “home”
robot configuration in XR and the initial poses of all objects.
We would like to find the least-cost valid path π∗ from start
to goal i.e., a path made up of a sequence of valid states.
Formally, we can write this as:

find π∗ = argmin
π={x1,...,xT }

T−1∑
i=1

c(xi, xi+1)

s.t. x ∈ XV , ∀x ∈ π (path of valid states)

x1 = xS , xT ∈ XG (start, goal constraints)

xi+1 = T (xi, ai), ai ∈ A, ∀xi, xi+1 ∈ π
(transition dynamics)

In our work we discretise A to include “simple motion
primitives” that independently change each robot joint angle
by a fixed amount and dynamically generated “push actions”
described in Section IV-B. For transition xi+1 = T (xi, ai),
action ai ∈ A can affect object configurations between xi
and xi+1 only if ai is a push action or the OoI has been
grasped. The cost of robot actions c is proportional to the
distance travelled in XR. We assume XG is defined in two
parts – a grasp pose in SE(3) for the OoI and a goal
pose in SE(3) where it must end up (while grasped by the
robot). Our solution to MAMO problems is a sequence of
arm trajectories in the robot configuration space XR ⊂ Rq
(q = 7 for the PR2 robot) that (i) rearrange movable clutter
and (ii) retrieve the OoI. Fig. 3 shows an example of the
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Fig. 4. The negative goal region (NGR) V (π̂R) in gray for the MAMO
problem from Fig. 3. (left) 3D volumes of the NGR and all objects at
their initial poses (we omit the shelf for ease of visualisation). (right) 2D
projection of the NGR and the workspace, overlayed with the solution to
the abstract MAPF problem from Section IV-A formulated for this scene.
Objects A and B need to move outside the NGR, and object C needs to
move to allow A to reach its goal. MAPF solution paths are shown in pink.

MAMO problems we consider in this paper, along with its
2D projection. Red objects are immovable obstacles OI , blue
objects are initial movable objects Oinit

M , and the goal for the
robot arm is to extract the yellow OoI from the shelf. There
is no collision-free trajectory for the arm to extract the OoI
from the shelf. Upon rearrangement of some movable objects
(A and B in particular), such a trajectory may be found.

IV. THE M4M PLANNING ALGORITHM

We call our algorithm M4M: Multi-Agent Pathfinding
for Manipulation Among Movable Objects. M4M is given
access to a physics-based simulator (PyBullet [23]) to ensure
that no interaction constraints defined in the MAMO problem
are violated. We note that a MAMO problem P to retrieve
the OoI with OM 6= ∅ is solvable iff the simpler problem P̂
without any movable objects i.e., OM = ∅ can be solved. We
denote a solution trajectory to P̂ as π̂R. Let V (π̂R) denote
the volume occupied by the robot arm in the workspace
during execution of π̂R. V (π̂R) specifies a “negative goal
region” (NGR) [15] for the movable objects. A NGR is a
sufficient volume of the 3D workspace which, if there are
no objects inside it, allows the robot arm to retrieve the
OoI without other contacts. If all movable objects can be
rearranged such that they are outside V (π̂R), the robot can
execute π̂R to retrieve the OoI. Fig. 4 shows a NGR V (π̂R)
for the problem from Fig. 3.

Algorithm 1 contains the pseudocode for M4M. At a high-
level, M4M first computes π̂R (Line 4) and the NGR V (π̂R)
(Line 5). It then iterates over two steps:

1) Section IV-A: Compute a solution to the abstract
Multi-agent Pathfinding (MAPF) problem where each
movable object is treated as an agent that needs to
escape the NGR without colliding with other agents
using Conflict-Based Search (CBS) [24], a complete
and optimal MAPF algorithm.

2) Section IV-B: Pick a movable object to be rearranged
according to the MAPF plan computed in 1 and find a
valid non-prehensile push for it by forward simulating
potential pushes using a physics-based simulator.

Algorithm 1 uses replan to ensure CBS is only called
to solve new MAPF problems. After the first CBS call,
replan triggers subsequent CBS calls once a valid push
has been found i.e., at least one object has been moved. This



Algorithm 1 Multi-Agent Pathfinding for Manipulation
Among Movable Objects

1: procedure M4M(Oinit
M ,OI )

2: OM ← Oinit
M . Rearranged object positions

3: Ψ← ∅ . Sequence of arm trajectories
4: π̂R ← PLANRETRIEVAL(OI) . OoI retrieval trajectory
5: Compute V(π̂R)
6: replan ← true, done ← false
7: while time remains do
8: if replan then
9: πR ← PLANRETRIEVAL(OI ∪ OM )

10: if πR exists then
11: Ψ← Ψ ∪ {πR}, done ← true
12: break
13: {πom}om∈OM ← CBS(OM ,OI ,V(π̂R))
14: replan ← false
15: for om ∈ OM do
16: if πom = ∅ then
17: continue
18: ψ ← PLANPUSH(om, πom ,OM ,OI)
19: (valid, o′m)← SIMULATEPUSH(ψ)
20: if valid then
21: Ψ← Ψ ∪ {ψ}, replan ← true
22: UPDATEPOSE(OM , o

′
m)

23: break
24: if ¬done then
25: return ∅
26: return Ψ

leads to a different MAPF problem with new object poses.
Until a valid push is found, we sample and simulate pushes
for all objects that move in the MAPF solution.

The PLANRETRIEVAL function takes as input a set of
objects to be considered as immovable obstacles for the robot
and runs Multi-Heuristic A∗ [25] to find an arm trajectory
in XR to retrieve the OoI.

CBS is called in Line 13 with the latest known movable
object poses in SE(3) to obtain a set of paths that ensure they
all satisfy the NGR V (π̂R). This searches over all possible
rearrangements of the scene from the current state, without
ever querying a physics simulator, by assuming that movable
objects are artificially actuated agents (Section IV-A).

We then loop over all objects that need to be rearranged
(from Line 15) and try and find a valid push for them
(Section IV-B). If a valid push is found (Line 20), it is added
to the final sequence of arm trajectories to be executed Ψ,
and the pose of that object is updated for future iterations.

M4M terminates either when the allocated planning bud-
get expires, or we successfully find a trajectory to retrieve
the OoI in the presence of all objects (OI∪OM ) as obstacles
in Line 9. Although this trajectory πR may be different
from π̂R (Line 4), it will still retrieve the OoI successfully
since it is guaranteed to not make contact with any object
(immovable or movable). The sequence of trajectories Ψ can
then be executed in order to rearrange the movable objects
(if required) and finally ending in successful OoI retrieval.

A. MAPF Abstraction for Manipulation

A fundamental challenge to solving MAMO problems
requires determining which objects need to be rearranged

and where they should be moved. The key idea in this
paper uses an existing MAPF solver to search over potential
rearrangements of the scene which lead to successful OoI
retrieval. Importantly, the MAPF solver does not require
access to a physics simulator for this purpose – it only
relies on 3D collision checking. Our MAPF abstraction
includes all movable objects om ∈ OM as agents. We check
for collisions between agents in space and time in their
full SE(3) configuration space. All agents have a discrete
action space corresponding to a four-connected grid on the
(x, y)−plane of the shelf. We assume each action takes unit
time and either the agent remains in place, or the x− or
y−coordinate of the agent pose changes by 1 cm.

Agent start configurations are determined by their latest
pose in SE(3) prior to the MAPF call (Algorithm 1,
Line 13). Each agent om in the MAPF problem has a set of
possible goals that include all states where the agent satisfies
the NGR by being “outside” it.

We call CBS to obtain a solution, shown in Fig. 4, to this
MAPF abstraction. The solution is a set of paths for movable
objects {πom}om∈OM

whose final states πendom satisfy the
NGR, and suggests a rearrangement strategy in terms of
which objects to move and where. If we can rearrange all
om ∈ OM to their respective πendom poses, we know that
the trajectory π̂R will successfully retrieve the OoI, thereby
solving the MAMO problem.

B. Generating Non-Prehensile Push Actions

Given a path πom for om ∈ OM from the MAPF solution,
PLANPUSH (Algorithm 1, Line 18) determines how an object
may be rearranged (Fig. 5). We would like to move the
object to πendom , which is known to satisfy the NGR. To
compute a push trajectory, we first shortcut πom (taking
into account collisions with immovable obstacles OI ) into
a series of straight line segments defined by points {x1 =
πstartom , . . . , xn = πendom }. We also compute the point of
intersection xaabb of the ray from x1 along the direction−−−−−→
(x2, x1) with the axis-aligned bounding box of om.

PLANPUSH computes a collision-free path between suc-
cessive pushes by planning in XR with all objects OI ∪OM
as obstacles to a point x0push sampled around xaabb1. If this
path is found, PLANPUSH similarly samples points xipush
around each xi in the shortcut path. It runs inverse kinematics
(IK) in sequence for each segment of the push action between
points

(
xi−1push, x

i
push

)
, i = {1, . . . , n}. If all IK calls succeed,

we return the full push trajectory by concatenating π0 with
all push action segments.

This push action, informed by the MAPF solution about
which object to move where, is forward simulated with a
physics model to verify whether it satisfies all interaction
constraints for all objects. If so, it is queued into the sequence
of rearrangements that will be executed as part of the MAMO
solution returned by M4M (Algorithm 1, Line 20).

1We sample (x, y) coordinates for x0push from N (xaabb, σI), σ =
2.5 cm. The z−coordinate is fixed at 3 cm above the shelf for the entire
push action.
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Fig. 5. 2D illustration of our push planner. Given a movable object
om (blue) and its MAPF solution path πom (pink), we shortcut πom
while accounting for immovable obstacles OI (red) to get the green
path of straight line segments. After computing xaabb by intersecting
the
−−−−−→
(x2, x1) ray with the axis-aligned bounding box for om, the push

action (cyan) is computed via inverse kinematics between sampled points
xipush ∼ N (xi, σI), i = {0, . . . , n}, x0 := xaabb.

V. EXPERIMENTAL RESULTS

A. Simulation Experiments

We run our simulation experiments in MAMO workspaces
of three difficulty levels shown in Fig. 6. Each workspace has
one OoI (yellow), four immovable obstacles (red), and differ-
ent numbers of movable objects (blue). Objects are cylinders
and cuboids with random sizes, initial poses, masses, and
coefficients of friction. We assume perfect knowledge of
the initial workspace state and all object parameters. We
set a planning timeout of 120 s for 100 randomly generated
MAMO problems at each level. Our analysis includes two
versions of our algorithm – M4M refers to Algorithm 1, and
M̂4M refers to a version which only calls CBS once (after
Line 5) and does not iterate between calling CBS and finding
a valid push in simulation.

Baselines: We compare the performance of M4M against
three types of baselines for solving MAMO problems with
non-prehensile interactions. The first are standard imple-
mentations of sampling-based algorithms KPIECE [20] and
RRT [21] from OMPL [26] that search the entire MAMO
state space X by randomly sampling robot motions.

The second baseline, Selective Simulation [19] (SELSIM),
is a search-based algorithm that interleaves a ‘planning’
phase and a ‘tracking’ phase. The former queries the physics-
based simulator for interactions with a set of ‘relevant’
movable objects identified so far. The latter executes the
solution found by the planning phase in the presence of all
objects in simulation and, if any interaction constraints are
violated, it adds the ‘relevant’ object to the set. It only uses
the simple motion primitives described in Section III.

Our final baseline is the work from Dogar et al. [15]
(DOGAR) which introduced the idea of a negative goal region
(NGR) we use in M4M. DOGAR recursively searches for a

Level 1 Level 2 Level 3Level 1
(1, 4, 10) (1, 4, 15)(1, 4, 5)1 4 5 1 14 410 15

Fig. 6. MAMO problems of differing complexity. From left to right, Levels
1, 2, and 3 have 5, 10, and 15 movable objects respectively. Each Level has
1 OoI and 4 immovable obstacles.

solution backwards in time, similar to [1]. It first finds an OoI
retrieval trajectory ignoring all movable objects. The NGR
induced by this trajectory helps identify a set of objects to be
rearranged, and the OoI is added as an obstacle. If an object
is successfully rearranged, the NGR and set of objects still to
be rearranged are updated with the trajectory found, and the
rearranged object is added as an obstacle at its initial pose.
This process continues until no further objects need to be
rearranged. Our implementation of DOGAR finds the same
OoI retrieval trajectory as M4M, and uses the same push
actions (Section IV-B) to try and rearrange objects. Notably,
DOGAR only has information about which objects to move
but not where to move them. Our implementation finds the
closest cell outside the latest NGR for an object and samples
points around this location to try to move the object towards.

Results: Table I shows the result of our experiments
where we present the min/median/max values for total
planning time and simulation time of successful runs only.
Experiments were run on a 4 GHz Intel i7-4790K CPU with
28 GB 1600 MHz DDR3 RAM.

Both versions of M4M solve the most problems across all
difficulty levels. For Levels 1, 2, and 3, the M4M solution
successfully executed 0.8, 1.9, and 3.1 push actions on
average. The difference in performance between M4M and
M̂4M highlights the benefit of the iterative nature of M4M.
Since MAPF paths are usually not precisely replicated in
simulation via pushes, querying the solver repeatedly with
an updated workspace configuration leads to more informed
future paths for objects, instead of trying to forcibly push
them to the first goal configuration suggested by MAPF.

All baseline algorithms from Table I suffer due to poor
exploration over the space of rearrangements. Our approach
benefits from the MAPF abstraction to produce guidance
on where to move each object to free up the NGR. The
stochastic sampling of push actions used by our push planner
leads to complex, multi-body non-prehensile interactions that
satisfy interaction constraints in the final solution. In contrast
DOGAR naively samples pushes to be simulated, and neces-
sarily tries to ensure there is no overlap between the NGR
and movable objects, even if a slightly different collision-
free path can be found to retrieve the OoI (Algorithm 1,
Line 9). This strategy suffers when sampled points are near
immovable obstacles, and limits the possible rearrangements
considered since movable objects that are rearranged suc-
cessfully are treated as immovable obstacles. DOGAR also
never executes a potential trajectory until there is no overlap
between the NGR and movable objects, unlike SELSIM



TABLE I
SIMULATION STUDY FOR MAMO PLANNING IN CLUTTERED SCENES - SUCCESS RATES AND min/median/max PLANNING AND SIMULATION TIMES

Metrics Level Planning Algorithms

M4M M̂4M DOGAR [15] SELSIM [19] KPIECE [20] RRT [21]

Success
Rate (%)

1 92 79 40 33 48 55
2 73 54 20 21 33 40
3 62 36 6 16 17 26

Total
Planning
Time (s)

1 1.0 / 2.6 / 102.5 1.0 / 2.4 / 103.8 0.1 / 0.9 / 115.3 0.004 / 0.02 / 0.03 7.4 / 23.4 / 117.8 7.1 / 15.8 / 101.4
2 1.2 / 6.6 / 115.4 1.3 / 2.6 / 100.3 0.3 / 0.5 / 113.5 0.002 / 0.008 / 0.2 9.3 / 28.2 / 112.0 8.6 / 27.6 / 104.9
3 1.3 / 7.2 / 116.1 1.6 / 2.4 / 72.6 0.2 / 0.4 / 55.0 0.004 / 0.01 / 0.03 10.6 / 32.0 / 98.5 10.3 / 26.7 / 113.4

Simulation
Time (s)

1 0 / 0 / 58.6 0 / 0 / 20.1 0 / 0 / 42.0 27.3 / 35.0 / 43.6 0 / 10.6 / 99.0 0 / 4.4 / 87.2
2 0 / 0.4 / 75.9 0 / 0 / 37.0 0 / 0 / 20.9 36.7 / 44.1 / 58.3 0 / 16.1 / 95.4 0 / 16.7 / 83.7
3 0 / 0.4 / 55.1 0 / 0 / 24.3 0 / 0 / 20.0 47.3 / 55.7 / 76.0 0 / 18.3 / 79.3 0 / 15.3 / 101.2

Fig. 7. A MAMO solution generated by M4M. The tomato soup can (yellow outline) is the OoI, all other objects are movable.

which simulates all trajectories found during planning. In
fact, all SELSIM successes in Table I correspond to scenes
where the very first planned trajectory succeeds in OoI re-
trieval in simulation. This is only true when there is minimal
overlap between the NGR and movable objects. When any
movable object needs to be rearranged, SELSIM suffers from
its poor action space – the simple motion primitives are
ineffective at causing meaningful robot-object interactions
in the workspace. KPIECE and RRT benefit significantly
from goal biasing in simpler scenes where either little to no
robot-object interactions are required or the objects that need
to be moved have nice physical properties (large supporting
footprint, low center-of-mass, low coefficient of friction).

B. Real-World Performance on the PR2
We ran M4M on a PR2 robot where we used a refrigerator

compartment as our MAMO workspace (Fig. 7). We placed
five objects from the YCB Object Dataset [27] in the
refrigerator. Four of these were movable and the tomato soup
can was the object-of-interest. Objects were localised using
a search-based algorithm [28] run on a NVidia Titan X GPU.
We gave M4M a total planning timeout of 120 s.

Out of 16 perturbations of the initial scene from Fig. 7,
12 runs successfully retrieved the OoI. Across the successful
runs the planner took 56.41± 27.29 s to compute a plan of
which 49.26±24.21 s was spent simulating pushes. Failures
were due to interaction constraints being violated during
execution by the PR2. Since M4M returns a solution that
does not violate constraints in simulation, failures are due to
modelling errors between the simulator and the real-world.
Specifically, accurately computing coefficients of friction

is difficult and can lead to differing contact mechanics in
simulation than the real-world. Fig. 7 shows the solution to
a MAMO problem being executed by the PR2. It moves the
coffee can out of the way, pushes the potted meat can slightly
aside, and finally the OoI (tomato soup can) is extracted
while also nudging the potted meat can.

VI. CONCLUSION AND DISCUSSION

This paper presents M4M: Multi-Agent Pathfinding for
Manipulation Among Movable Objects, an algorithm to plan
for manipulation in heavy clutter that considers complex
interactions such as rearranging multiple objects simultane-
ously, and tilting, leaning and sliding objects. M4M uses a
MAPF abstraction to the MAMO problem to find suitable
rearrangements, and a non-prehensile push planner to realise
these rearrangements by utilising complex multi-body inter-
actions. It dramatically outperforms alternative approaches
that do not reason about such interactions efficiently.

M4M greedily commits valid pushes found to its sequence
of rearrangement trajectories. This greedy behaviour makes
M4M incomplete, given that it has no ability to backtrack
from this decision. In the future we hope to address this
incompleteness of M4M by developing an algorithm that
considers (i) all feasible pushes for an object that needs to
be rearranged to a specific location, (ii) all orderings of all
feasible push actions to realise a particular rearrangement
for a set of objects, and (iii) all possible rearrangements
for a set of objects. Additionally, the MAPF solver used in
M4M should be modified to use a cost function which has
information about robot kinematics and pushing dynamics
so as to compute and thus simulate better push actions.
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