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Abstract— We consider the coordinated escort problem, where
a decentralised team of supporting robots implicitly assist the
mission of higher-value principal robots. The defining challenge
is how to evaluate the effect of supporting robots’ actions on
the principal robots’ mission. To capture this effect, we define
two novel auxiliary reward functions for supporting robots
called satisfaction improvement and satisfaction entropy, which
computes the improvement in probability of mission success,
or the uncertainty thereof. Given these reward functions, we
coordinate the entire team of principal and supporting robots
using decentralised cross entropy method (Dec-CEM), a new
extension of CEM to multi-agent systems based on the product
distribution approximation. In a simulated object avoidance
scenario, our planning framework demonstrates up to two-fold
improvement in task satisfaction against conventional decoupled
information gathering. The significance of our results is to
introduce a new family of algorithmic problems that will enable
important new practical applications of heterogeneous multi-
robot systems.

I. INTRODUCTION

Applications of coordinated multi-robot systems can in-
volve heterogeneous teams where a principal robot is assisted
in some way by one or more supporting robots, which may
be less capable and of lower cost. Supporting robots can play
various roles, such as acting as a source of remote sensing
and perception to better inform navigation decisions. One
of the fundamental challenges in designing such systems
is how to coordinate the behaviour of supporting robots to
facilitate the progress of the principal robot in achieving its
goal. It is desirable for supporting robots to actively collect
information that is relevant to the principal robot’s goals, but
the actions of the principal robot in turn may depend on such
information and thus are not known in advance.

Coordination algorithms that would enable a team of
robots to support a principal robot or agent must be able to
predict the effect that the supporting team’s measurements or
actions have on the principal agent’s task performance. We
introduce the term coordinated escort problem to refer to this
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Fig. 1. Example of coordinated escort. The principal agent with no on-
board sensing is tasked with avoiding the objects and reaching the goal. The
escort agent is equipped with a sensor to take measurements and update
the belief over object locations. Measurements and trajectory intent are
communicated between all agents. We consider escort teams with up to
three escort agents.

class of coordination problems, in the sense that supporting
robots act as an escort team for the principal robot/agent.

Escorting roles are prevalent during conflicts and emer-
gencies; for example, when ships or vehicles must pass
through an area that is suspected of being mined, and when
convoys must pass along routes that are open to attack. An
implicit aspect of this process is that escorts accept increased
risk of harm on behalf of those they are escorting; this
drives research into the use of robots in such roles. There is
typically an assumption in such cases that the escorts will act
somewhat independently of those they are protecting. Escorts
cannot assume that their behaviours will be coordinated, or
even understood, by the principal agent. On the other hand,
escorts must understand the goals of the principal agent
to behave appropriately. Escorts must also be capable of
communicating information about risk and safety, because
it is likely that the principal agent will have to modify its
own behaviour to make the escort’s task feasible.

In this paper, we define a specific instance of the general
coordinated escort problem and present DecCEM, a decen-
tralised solution based on a novel variant of the cross-entropy
method (CEM) for planning with continuous actions. The
problem we consider is where escort agents (EA) must per-
form information gathering with uncertain object locations
modelled by Gaussian beliefs, in order to support a principal
agent (PA). CEM [1, 2] is a sampling-based planning algo-
rithm that finds a control distribution that probabilistically
maximises a given reward. CEM admits arbitrary parameter-
isation of the control distribution, and thus extends product
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distribution-based planners [3, 4] from discrete to continuous
action spaces. Our approach in developing DecCEM is to
extend CEM to multi-agent systems based on the product
distribution approximation [3, 4].

DecCEM acts to maximise a joint reward function across
the entire team, including both EAs and PA. To faithfully
capture the effect of the EAs’ measurements on the PA’s
task performance, we define an auxiliary reward function
for the EAs. We propose two alternative auxiliary functions,
satisfaction entropy (SE) and satisfaction improvement (SI),
that directly measure improvement in the PA’s probability of
task satisfaction, or uncertainty of task success.

In an example reach-avoid scenario depicted in Fig. 1,
we compare our algorithm to traditional approaches that do
not consider the PA’s actions online. The SE approaches
demonstrates up to two-fold improvement over basic infor-
mation gathering and three-fold over when a principal agent
planning over the prior alone. The SI approach performs
up to twice as better as planning over the prior alone, and,
interestingly, equally or worse than basic information gath-
ering. Finally, we demonstrate that our objective functions
adaptively adjust the exploration and exploitation of the prior
to influence the trajectory of the PA to improve overall
mission success.

The contribution of this work is: 1) to introduce the coordi-
nated escort problem as a specific type of joint optimisation
problem where the coordination objective depends on the
actions of an independent agent, and 2) to introduce the
DecCEM algorithm that solves this problem for decentralised
agents with continuous action spaces. This work helps to en-
able important practical applications of multi-robot systems
where robots play an essential supporting role.

II. RELATED WORK

There are a range of interpretations of the escorting
problem. Early variants define an optimal control problem
where escort agents must entrap and shepherd principal
robots to a goal region [5–12]. More complex definitions
come recently, in the form of coordinated escort problems,
where control for escorting and principal agents are jointly
addressed to achieve a goal task [13, 14]. Coordinated escort
formulations of particular relevance focus heavily on the
escort agent solving an information gathering problem to aid
in goal completion [15–18].

Typical information gathering approaches such as [19–
28] employ sensors (mobile or otherwise) to take mea-
surements to reduce the uncertainty of state estimates of
any target system in the environment. Others focus instead
on reducing uncertainty about environmental processes or
phenomenon [29–31]. In both cases uncertainty reduction is
often achieved by assuming a Gaussian belief over the target
or environment, which is maintained using variants of the
Kalman filter or Gaussian Processes. In these works, infor-
mation gain can be directly evaluated because the covariance
update procedures used are independent of the explicit value
of measurements. We follow a similar formulation for our
escort agent’s information gathering mission to describe an

Fig. 2. Probabilistic graphical model (PGM) representation of the decou-
pled escorting problem [18]. The escorting agent (blue dashed line) surveys
the environment and measures O. The principal agent (orange dotted line)
moves to accomplish φ and may collide with O. Collision results in a failed
mission.

uncertain environment and to evaluate the effect of infor-
mation gathered by the escorts. In our case, however, the
information gathering objective for our escort agent differs
to these papers.

Similar to [15–18], our proposed information gathering
objectives for escort agents focus not on reducing envi-
ronmental uncertainty overall, but on reducing uncertainty
specifically to aid the principal robot in achieving its task.
While these works rely on sequential planning for EAs
and PAs to solve the joint control problem in a centralised
manner, our work presents a fully decentralised solution
inspired by concepts from [3].

III. PROBLEM FORMULATION

The coordinated escort problem depicted in Fig. 2 com-
prises a team of robots R. The state xrt of each robot r ∈ R
at discrete time t+1 is described by a state transition model:

xrt+1 = fr(xrt ,u
r
t ), (1)

where the states xrt ∈ RN actions urt ∈ RM are con-
tinuous. The robots operate in a partially known environ-
ment comprising a set of objects, whose locations O =
{o1, · · · ,oN} ⊂ RN are known imprecisely.

There are two distinct classes of robots, principal
agents (PAs), and escort agents (EAs). The set of PAs
and EAs are disjoint subsets of R denoted by A,B ⊂ R
respectively.

Each EA β ∈ B is equipped with a noisy sensor that can
measure the locations of objects that are within a certain
radial range RS . Thus, the measurements yβt at state xβt are
described by the sensor model:

yβt (xβt ) = {oi + ε | oi ∈ O, ||oi − xβt ||< RS}, (2)

where ε ∼ N (0, σ2I) is zero-mean Gaussian noise. We
assume that all measurements yβt taken by each EA are
made available to all other robots. PAs are not equipped
with sensors to take measurements, and must rely on the
measurements from EAs to estimate the environment.

For brevity, we write Xr
t = {xrt , ...xrt+T } to mean the

trajectory of robot r ∈ R over a time horizon T starting from



t. The same applies to control actions and measurements
(i.e., Ur

t = {urt , ...urt+T }, for r ∈ R, Yβ
t = {yβt , ...y

β
t+T },

β ∈ B). Similarly, we replace the superscript with a set of
robots to mean a set of trajectories of all robots in the set,
e.g. XRt = {Xr

t | r ∈ R}.
Although the PAs cannot measure the object locations,

they are required to complete a task φ that depends on
the object locations O. The task is modelled in terms of
satisfaction likelihood P (φ | XA

t ,O), which describes the
probability of success given fully known object locations.
This can be, for example, a Boltzman distribution logP (φ |
XA
t ,O) ∝ −C(XA

t ,O) for a generic cost function C [32],
or the probability of satisfaction of some temporal logic
formula Ψ so that P (φ | XA

t ,O) = P (XA
t |= Ψ | O) [33–

36].
Since the environment O is uncertain, P (φ | XA

t ,O) can-
not be directly computed. Instead, we maximise the posterior
probability of satisfaction P (φ | XA

t ,Y
B
t ) conditioned on

the EAs’ measurements YB
t . Doing so averages over all

possible object locations according to the environmental be-
lief afforded by the EA. Therefore, the posterior probability
of satisfaction captures the effect of measurements taken
by EAs, and hence the quality of their paths. Overall, the
problem is formally stated as follows.

Problem 1 (Coordinated escort problem). Given PAs A,
EAs B in a partially known environment E with hidden
objects O ⊂ E , find optimal sequences of controls UA∗,
UB∗ for PAs and EAs respectively that maximises the PAs’
probability of satisfying a task φ:

UA∗,UB∗ = arg max
UA,UB

P (φ | XA
t ,Y

B
t ), (3)

The challenge of Problem 1 is twofold. Most immediately,
a naive approach would necessitate centralised planning
due to the complicated dependence of the objective on the
EAs’ trajectory. We resolve this issue using a decentralised
variant of the cross-entropy method (CEM) [1], which can
compute high-quality solutions as long as the objective can
be evaluated given the robots’ trajectories. More significantly,
the values of future measurements YB

t are not available at
planning time. We mitigate this issue by deriving alternative
reward functions for EA that capture improvement in PA’s
planning performance with predicted Gaussian beliefs.

IV. PLANNING FOR COORDINATED ESCORT

We propose a receding-horizon planning framework for
solving Problem 1 that addresses the aforementioned chal-
lenges of decentralisation and measurement selection. Alg. 1
outlines the framework for a single robot r. In line 1, the
belief Bt(O) over object locations is updated with latest
measurements. The updated belief is then used for evaluation
of reward functions Rr for which to optimise the controls
(lines 2-6). EAs and PAs solve are given different rewards
Rr to circumvent the challenge of measurement simulation.

To find controls that maximise the reward, we introduce
DecCEM outlined in Alg. 2. Instead of a single set of
controls, DecCEM finds a control distribution Q(URt ) that

Algorithm 1 Overview of decentralised receding-horizon
planning for robot r
Inputs: Object measurements yBt , reward function Rr

Outputs: Control for robot r Ur
t ,

1: Bt(O)← update belief(Bt−1(O),xBt ,y
B
t )

2: Q(Ur
t )← N (0, σ2

0I)
3: for fixed number of iterations do
4: Q(U

R\r
t )← receive distribution()

5: Q(Ur
t )← dec cem(Rr,Q(U

R\r
t ))

6: broadcast distribution(Q(Ur
t ))

return Ur
t ∼ Q(Ur

t )

Algorithm 2 Procedure dec cem for robot r
Inputs: Reward function Rr, other robots’ control distribu-
tions Q(U

R\r
t )

Outputs: Control distribution for robot r, Q(Ur
t )

1: for fixed number of iterations do
2: Ûr

t ∼ Q(Ur
t ) //Sample own controls

3: Û
R\r
t ∼ Q(U

R\r
t ) //Sample others’

//Compute own elite set
4: Ûr∗

t = {Ut ∈ Ûr
t | Rr(Ûr

t , Û
R\r
t ) > R}

//Update own distribution
5: Q(Ur

t )← fit gaussian(Ûr∗
t )

return Q(Ur
t )

maximises the task satisfaction probability P(φ | XA
t ,Y

B
t ).

Inspired by [3, 4], we impose a product distribution factori-
sation Q(URt ) =

∏
r∈RQ(Ur

t ). This decouples all robots’
planning, so that each robot updates and communicates their
own control distribution Q(Ur

t ) (lines 6 and 4). In line 5,
each robot runs an independent CEM loop that updates its
own actions Q(Ur

t ) towards maximising the team’s reward
given communicated distributions of other robots. The com-
munication need not be synchronous, and line 4 returns only
the latest distributions that are available.

A. Belief Update Procedure

Given measurements YB
t , we use the information form

of the Kalman filter to obtain a Gaussian belief over ob-
jects Bt(O) = N (Ôt,Λ

−1
t ) with mean Ôt and information

matrix Λt, which is the inverse of covariance. The benefit of
using the information form is that belief updates are additive.

Λt = Λt−1 +
∑
β∈B

I(xβt ),

Ôt = Λ−1t (Λt−1Ôt−1 +
∑
β∈B

I(xβt )yβt ).
(4)

Here, I(xβt ) is the innovation matrix. We account for the
sensing range constraint (2) by setting I(xβt ) = σ−2I
if yβt is within sensing range, and 0 otherwise (i.e. the
measurement is spurious). This automatically ignores objects
outside of the sensing range, and corresponds to having
infinite measurement error.



B. Decentralised Cross Entropy Method

Given the updated belief, the DecCEM procedure up-
dates the control distribution of each robot Q(Ur

t ) towards
maximising the team’s reward. In doing so, it uses other
robots’ control distributions Q(U

R\r
t ) that are periodically

communicated (lines 4, 6, Alg. 1). The receipt of other
robots’ distributions may be asynchronous, and the algorithm
gracefully degrades with loss of communication.

A DecCEM iteration for a robot r comprises the follow-
ing. First, random samples Ûr

t are drawn from the current
distribution of its own controls (line 2). Additionally, random
samples Û

R\r
t are drawn from the other robots’ control

distributions that are communicated (line 3). The samples
are propagated through the robot dynamic model and used
to evaluate the team’s reward function. Using the reward
values, an ‘elite set’ Ûr∗

t of robot r’s own control samples
is extracted whose reward exceeds a set threshold R (line 4).
Subsequently, the robot r’s control distribution is updated
by fitting a Gaussian to the elite set (line 5). This process
is repeated for a fixed number of iterations before broad-
casting. The outer loop of updating and communicating the
distributions is repeated to yield the final control distribution.

In our implementation, we improve the CEM iteration by
extracting the best Ne samples rather than using a threshold.
Further, we terminate the iteration if the average variance
of the control actions falls below a set threshold to prevent
over-fitting.

Whilst we do not provide convergence guarantees, the
computational complexity of DecCEM in Alg. 2 is a pri-
marily a function of the number of iterations and choice
of control distribution, Q(Ur

t ). In this paper we select a
Gaussian distribution due to the high availability of efficient
expectation maximisation algorithms.

C. Reward Functions

The reward function Rr used for DecCEM differs for PAs
and EAs. For PAs, the reward is set as simply the marginal
log probability of task satisfaction given the current belief
over objects:

RA(UA
t ) = logP (φ | XA

t ) = logEO∼Bt(·)[P (φ | XA
t ,O)].

(5)
Notably, the PA’s reward function does not depend on future
measurements gathered by the EA, which prompts the PAs
to plan conservatively, given only the current belief.

Given the PAs’ control distribution Q(UA
t ) computed to

maximise (5), an EA should choose its own controls to best
support the PAs in satisfying tasks. The EA’s plan should
therefore focus not solely on improving B over the entire
environment E as is typical in information gathering [19–21],
but rather on improving B to increase the PAs’ probability
of task satisfaction. Here, we present two reward functions
that capture this logic, and one more traditional information
gathering reward based on MI-UCB.

1) Satisfaction Improvement (SI): The most immediate
approach is for EAs to directly maximise the PAs’ probability
of task satisfaction. To this end, the SI approach aims to

maximally improve the PAs’ expected probability of task
satisfaction, through conditioning with EA measurements. In
other words, it solves:

RBSI(U
B
t ) = EXA

t ∼Q(·)
[
P (φ | XA

t ,Y
B
t )− P (φ | XA

t )
]
,
(6)

where XA
t is sampled implicitly from Q(UA

t ) through the
dynamic model.

A challenging aspect of computing the SI objective (6) is
the implicit dependence between UB

t and the conditioning
measurements YB

t . To alleviate this difficulty, we use the
following rearrangement of the first term, which can be
derived from Bayes’ rule and the conditional independence
properties in the PGM (Fig. 2):

P
(
φ | XA

t ,Y
B
t

)
= EO∼Bt(·|UB

t )

[
P (φ | XA

t ,O)
]
. (7)

Here, Bt(O | UB
t ) is the predicted belief over objects after

the EA executes action UB
t . For the Gaussian targets we

consider, such prediction can be achieved by propagating
the information matrix (4) forward in time, while retaining
the mean. In other words, Λt+T = Λt +

∑
τ∈T,β∈B I(xβτ ).

2) Reduction in Satisfaction Entropy (SE): Whereas the SI
approach aims to simply increase the probability of satisfac-
tion implied by the PAs’ control distribution, one may argue
that from an information gathering perspective, decreasing
probability of task satisfaction is equally as valuable as
increasing it. In other words, it may be of equal value
to measure the change in task satisfaction. To this end,
we consider reducing the binary entropy of probability of
satisfaction with the measurement set YB

t . Formally, the SE
approach solves:

RB
SE(U

B
t ) = EXA

t ∼Q(·)

[
h(P (φ | XA

t ))− h(P (φ | XA
t ,Y

B
t ))

]
,

(8)
where h(P ) = −P logP − (1 − P ) logP is the binary
entropy. The posterior probability of task satisfaction P (φ |
Xα
t ) is calculated analogously to SI using (7). Here the

reward favours lower entropy after EA measurements. Since
binary entropy takes its maximum of 1 at P = 1/2 and
is otherwise symmetric decreasing around this point, the
SE objective either increases or decreases the probability of
satisfaction of the samples drawn from the EAs, towards
greater certainty.

3) MI-UCB: The MI-UCB provides an upper bound on
the posterior task satisfaction in terms of prior expected task
satisfaction and information gain. Using MI-UCB, it can be
shown that, with probability ≥ 1− δ [18]:

P (φ |XA
t ,Y

B
t )

≤ logEO∼Bt(·) expP (φ | XA
t ,O) +

1

δ
I(YB

t ;O).

(9)
Here, the expectation in the first term is taken with respect to
the current belief, and I(YB

t ;O) is the Shannon information
gain between the measurements YB

t and object locations O.
For Gaussian targets considered in this paper, the information
gain is given by I(YB

t ;O) = 1
2 (log det Λt+T − log det Λt)

in terms of information matrices.



Fig. 3. PA’s failure rate with different EA reward variants. Higher is worse.
Failure is recorded when the PA collides with an object. Dark grey: blind,
light grey: MI-UCB, red: SI, green: SE.

A striking feature of the MI-UCB (9) is that the PAs and
EAs are fully decoupled, in the sense that their rewards
simply add up. Since the EAs’ actions only affect the
information gain term, it is the only reward for the EAs to
maximise. Hence the MI-UCB approach solves:

RBMI-UCB(UB
t ) = I

(
YB
t ;O

)
. (10)

That is, the MI-UCB objective is equivalent to information
maximisation commonly considered in the literature [19, 20].

V. RESULTS

A. Simulation setup

In the following simulated results, the PAs plan toward
achieving a task φ with probability of success P (φ | Xα

t ,O)
given PAs’ trajectory and objects O. We consider a subset of
task classes where the objective is to reach a destination d
while avoiding objects O. Inspired by [33], we model this
reach-avoid task as a conjunction of reach and avoid tasks:

P (φ | Xα
t ,O) =

∏
τ,i

P
(
φO | xατ ,oi

)
P
(
φD | xατ

)
, (11)

with the reach (φD) and avoid (φO) tasks modelled as:

P (φO | xαt ,oi) = 1− PO exp

(
−||x

α
t − oi||2

2r2O

)
,

P (φD | xαt ) ∝ exp

(
−||x

α
t − d||2

2r2D

)
,

(12)

and rD,O are parameters that control the acceptance/collision
radius, and PO controls the peak probability of collision.

All agents follow the bicycle kinematic model:ẋẏ
θ̇

 =

v cos θ
v sin θ
u

 , (13)

where x, y and θ are the position and heading respectively.
v and u denote the linear and angular speed. v is fixed
separately for each agent, and u is controllable.

Simulations are performed in environments of size 100×
100m, each containing 20 objects spawned uniformly ran-
domly in the box [20, 80] × [20, 80]. All robots begin at
[10, 50]. The PA’s goal location is [90, 50]. The belief over

each target is initialised with a high variance of 25m2, and
the initial mean is corrupted correspondingly. The PA travels
at vPA = 2ms−1, and the EAs at vEA = 4ms−1.

B. Demonstration and Comparison

We validate our approach in Sec. IV-C by examining PA
task success rate over repeated simulations with each EA
reward. A ‘blind’ variant consisting solely of the PA is intro-
duced as a benchmark. The blind PA plans a path given only
the prior belief, without any measurements from the EAs.
For fair comparison, we generated 10 random environments
and examined the percentage of failed PA trajectories, where
failure is defined as trajectories that collided with objects in
the ground truth. The result is shown in Fig. 3.

Figure 3 shows that the SE approach (Sec. IV-C.1) gen-
erally performs best, followed by MI-UCB and SI (Sec. IV-
C.3 and IV-C.2), and then blind. Unsurprisingly, the blind
approach performs the worst with the highest failure rate
across all configurations due to the lack of resolution of
environmental uncertainty. The SE approach, in particular,
consistently offers more than two-fold improvement over the
blind benchmark. Compared against the MI-UCB approach,
SE performs better for lower number of escorts, and equally
for higher number of robots. This is because the SE approach
makes better use of limited information by guiding the
EAs towards objects that are more relevant to task. The
explicit consideration of PA’s task performance leads to
tighter coordination, and hence better performance, than
the exploration-exploitation balance achieved by MI-UCB.
Interestingly, the SI approach performs equally or worse than
the MI-UCB approach. This is because the SI approach only
tries to validate the current control distribution of the PAs,
and hence cannot distinguish plans that, in fact, fail.

To better understand the trends observed, we examine the
system behaviour over time, illustrated in Fig. 4. The red
heat-map represents the belief over obstacles (black crosses),
normalised to the highest probability of belief. Consequently,
when obstacles are observed the belief on the rest of the
environment appears decreased whilst they stay the same.

The poor performance of the blind PA in Fig. 3 is
exemplified by the failure at t = 30s in the first row. The
failure occurs because the blind PA is blocked by the large
initial uncertainty of the objects and corrupted mean, which
remain unresolved, and must therefore opt for a path that
is not sufficiently object-free. In other words, uncertainty
resolution is necessary for better planning performance.

With the MI-UCB approach (second row), the EAs act
towards reducing the uncertainty of targets. In doing so, at
t = 30s, the EAs cover a cluster of obstacles that are close
to the PA’s trajectory as they are information rich, however
fail to consider the information specific to the current PA
trajectory, resulting in a similar collision to the blind case.

With the SE and SI approaches, the EAs generally reduce
the uncertainty of targets that are closer to the PA’s trajectory.
In particular, it can be seen that the SI approach covers
nearby obstacles at t = 30s allowing the PA to avoid them
just beyond the collision range.
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Fig. 4. Comparison of the 2D object avoidance for the four reward functions with two escort agents (blue) and one principal agent (green). The solid
lines represent the path history and the triangle represents the robots position and heading at the given time t. The ground truth position of the objects are
represented with an ‘x’, and the circle represents the edge of those objects. The destination, d, is represented by the green heat-map. The red heat-map
represents the belief of those obstacles. Note: the colour intensity is normalised to the maximum probability of belief (i.e., observing the obstacle does not
affect the belief probability in other areas, despite appearing decreased).

VI. CONCLUSION AND FUTURE WORK

We presented the coordinated escort problem, a novel for-
mulation of a joint optimisation problem where the coordina-
tion objective is dependent on the actions of an independent
agent. We proposed DecCEM, a novel, decentralised solution
to the joint, continuous control problem of coordinated
escort. Based on the product-distribution approximation,
DecCEM admits arbitrary parameterisation of the total con-
trol distribution, thus extending existing product-distribution
based planners from discrete to continuous control spaces.

We proposed and evaluated two new information gathering
objective functions for escort agents whose mission is to
increase probability of task satisfaction for PAs. These ob-
jective functions exhibited improved or comparable task suc-
cess compared to general information gathering objectives.
Future work will address the coordinated escort problem
with dynamic adversarial objects, theoretical analysis of the
convergence and optimality of DecCEM.



REFERENCES

[1] D. P. Kroese, S. Porotsky, and R. Y. Rubinstein, “The cross-entropy
method for continuous multi-extremal optimization,” Methodol. Com-
put. Appl. Probab., vol. 8, no. 3, pp. 383–407, 2006.

[2] M. Kobilarov, “Cross-entropy motion planning,” Int. J. of Rob. Res.,
vol. 31, no. 7, pp. 855–871, 2012.

[3] G. Best, O. Cliff, T. Patten, R. R. Mettu, and R. Fitch, “Dec-
MCTS: Decentralized planning for multi-robot active perception,” Int.
J. Robot. Res., vol. 38, no. 2-3, pp. 316–337, 2019.

[4] D. H. Wolpert and C. E. M. Strauss, “Advances in distributed op-
timization using probability collectives,” Adv. Complex Syst., vol. 9,
2011.

[5] Y. Lan, Z. Lin, M. Cao, and G. Yan, “A distributed reconfigurable
control law for escorting and patrolling missions using teams of
unicycles,” in Proc. of IEEE CDC, 2010, pp. 5456–5461.

[6] J.-M. Lien, O. B. Bayazit, R. T. Sowell, S. Rodriguez, and N. M.
Amato, “Shepherding behaviours,” in Proc. of IEEE ICRA, 2004.

[7] E. Montijano and A. R. Mosteo, “Efficient multi-robot formations
using distributed optimization,” in Proc. of IEEE CDC, 2014, pp.
6167–6172.

[8] E. Montijano, D. Zhou, M. Schwager, and C. Sagues, “Distributed
formation control without a global reference frame,” in Proc. of ACC,
2014, pp. 3862–3867.
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