
Multi-embodiment Legged Robot Control as a Sequence Modeling
Problem

Chen Yu1,2, Weinan Zhang3, Hang Lai2,3, Zheng Tian4, Laurent Kneip1, and Jun Wang2,5

Abstract— Robots are traditionally bounded by a fixed em-
bodiment during their operational lifetime, which limits their
ability to adapt to their surroundings. Co-optimizing control
and morphology of a robot, however, is often inefficient due to
the complex interplay between the controller and morphology.
In this paper, we propose a learning-based control method that
can inherently take morphology into consideration such that
once the control policy is trained in the simulator, it can be
easily deployed to robots with different embodiments in the
real world. In particular, we present the Embodiment-aware
Transformer (EAT), an architecture that casts this control
problem as conditional sequence modeling. EAT outputs the
optimal actions by leveraging a causally masked Transformer.
By conditioning an autoregressive model on the desired robot
embodiment, past states, and actions, our EAT model can gen-
erate future actions that best fit the current robot embodiment.
Experimental results show that EAT can outperform all other
alternatives in embodiment-varying tasks, and succeed in an
example of real-world evolution tasks: stepping down a stair
through updating the morphology alone. We hope that EAT
will inspire a new push toward real-world evolution across
many domains, where algorithms like EAT can blaze a trail by
bridging the field of evolutionary robotics and big data sequence
modeling.

I. INTRODUCTION

In nature, animal species can exhibit physiological and
structural adaptations to changes in environments across mul-
tiple generations. This increases their likelihood of survival
and the preservation of their genes [1]. However, in the
field of robotics—although more and more robots show their
ability to evolve their controller through interaction with the
real world to improve their adaptivity to the environment [2],
[3], [4], [5]—real robots are traditionally bounded by a fixed
embodiment during their operational lifetime.

Some previous works in the field of Evolutionary Robotics
optimize morphology together with control of robots [6], [7],
[8], [9], [10], [11], [12], [13]. These robots and controllers
are relatively simple and hence hard to be deployed in real
applications. Other works propose hierarchical approaches
with two loops: The outer loop evolves morphology while the
inner loop optimizes a controller for each new morphology
[14], [15], [16], [17], [18]. However, for relatively compli-
cated robots that involve dynamic locomotion, hierarchical
approaches often only work in simulation, as it would usually
take millions of control steps for evolution [19].

1School of Info. Sci. and Tech., ShanghaiTech University, China.
2Digital Brain Lab, Shanghai, China
3Dept. of Computer Sci. and Eng., Shanghai Jiao Tong University, China.
4School of Creativity and Art, ShanghaiTech University, China.
5Centre for Artificial Intelligence, University College London, UK.

To tackle these challenges, in this work, we wish to have
a controller that inherently takes morphology into consider-
ation. In this way, once a general control policy is trained
(e.g., in the simulator), it can be deployed on robots with
different embodiments (e.g., in the real world), as shown in
Fig. 1. This is usually challenging because of the complicated
interplay between robot morphology and control [20].

Fig. 1. Demonstration of two robot evolution schemes. We compare the
hierarchical approaches (left) and our method based on a general purpose
controller (right).

While traditional model-based control approaches for
robots—especially with relatively complicated dynamics,
such as legged robots—are usually based on analytic dy-
namics models [21], [22], [23], it is possible to control such
a robot with varying morphology by system identification
[24], [25]. However, this requires a considerable amount of
tedious hand-engineering and a known robot model.

Learning-based methods, such as reinforcement learning
(RL), have proven effective at solving an increasing number
of real-world locomotion tasks [26], [27], [28]. Chen et
al. [29] formulate the policy as a function of the current
state and the hardware property encoding. However, it either
requires the full kinematics information of the robot, or
implicitly learns the hardware representation, in which case it
is challenging for zero-shot transfer to unseen robots. Schaff
et al. [30] maintain a distribution over designs and use RL
to maximize expected rewards over the design distribution.
Since the policy optimization is still embedded in a control-
morphology co-optimization pipeline, it would be inefficient
to update the morphology in the real world. Regarding
the morphology as a graph structure, preliminary works
also explore this problem through graph neural networks
for morphology generalization [31], [32], [33], but none of
which is validated in the real world. Concurrently with our
work, Feng et al. [34] propose an RL-based general-purpose
locomotion controller, GenLoco, using morphology random-
ization. They validate their controller on three commercially-
available robots in the real world.

Note there are recent works formulating RL as a sequence

ar
X

iv
:2

21
2.

09
07

8v
1

 [
cs

.R
O

]
 1

8
D

ec
 2

02
2

modeling problem [35], [36]. Decision Transformer [37],
[38], [39] uses state, action, and returns-to-go (sum of
future rewards) as tokens in a Transformer model. Trajectory
Transformer [40] uses a Transformer model to predict the
dynamics of a robot and uses beam search [41] for planning.
These Transformer-based approaches have achieved similar
or better performances in benchmark tasks compared with
classic RL algorithms thanks to the model capacity and the
self-attention mechanism.

In this work, we also take advantage of Transformer
models to design a controller for robots with changing
morphology. In particular, we present Embodiment-aware
Transformer (EAT), an architecture that casts this control
problem as conditional sequence modeling. EAT uses a
Transformer architecture to model distributions over trajecto-
ries and robot morphology and outputs the optimal actions by
leveraging the causally masked Transformer. By conditioning
the autoregressive model on the desired robot embodiment
(we focus on the morphology in this work), past states, and
actions, our EAT model can generate future actions that best
fit the current robot embodiment, as shown in Fig. 2.

We validate EAT on a locomotion control task—learning
to walk stably from scratch—on the quadruped robot Mini
Cheetah [42] both in the simulator and in the real world. We
allow the robot to grow its body and leg size to simulate on-
togenetic morphological changes. After deploying the trained
EAT model on the real robots, we further use Bayesian
Optimization (BO) [43] to optimize the morphology of the
robots online, while the fixed EAT policy is conditioned on
the current body shape.

Experimental results show that EAT can successfully find
the controller that fits the current robot morphology. As
a consequence, it outperforms all other alternatives in the
simulator and succeeds in our real-world evolution task.
To the best of our knowledge, this is the first time that a
Transformer is applied to an evolutionary robotics task; and
this is the first time that real-world morphology evolution is
applied to a dynamic quadruped robot.

II. PRELIMINARIES

The Transformer model is introduced by Vaswani et al.
[44] for efficient sequential data modeling, which has been
shown to perform strongly on various tasks from Natural
Language Processing [45], [46] to Computer Vision [47],
[48]. It consists of stacked self-attention layers with residual
connections. Each self-attention layer maps an input se-
quence of symbol representations (x1, . . . , xn) with a context
length of n to a sequence of continuous representations
z = (z1, . . . , zn). Each token is mapped linearly to a key
ki, query qi, and value vi. The corresponding output of the
self-attention layer is given by weighting the values vj by
the normalized dot product between the query qi and other
keys kj :

zi =

n∑
j=1

softmax

(
{〈qi, kj′〉}nj′=1√

dk

)
j

· vj , (1)

where dk is the dimension of queries and keys.

This can be used for forming state-return associations
via similarity of the query and key vectors in the context
of offline RL [37]. Offline RL algorithms learn effective
policies from previously collected, fixed datasets without
further environment interaction [49], [50], [51].

III. EMBODIMENT-AWARE TRANSFORMER

Fig. 2. Embodiment-aware Transformer architecture. We learn a linear
layer for embodiment, states, and actions for token embeddings, while a
positional episodic timestep encoding is added. Tokens are fed into a GPT
model that predicts actions autoregressively with a causal self-attention
mask.

In this section, we present Embodiment-aware Trans-
former, as summarized in Fig. 2 and Algorithm 1.

A. Embodiment-aware Markov Decision Process

We model the control of the robot as a variant of Markov
decision process (MDP), referred to as embodiment-aware
MDP, described by the tuple (E ,S,A, PE ,R). The MDP
tuple consists of embodiment e ∈ E , states s ∈ S , actions
a ∈ A, embodiment-dependent state transition dynamics
PE (· | s, a; e), and a reward function r = R(s, a). We use e
to denote the robot embodiment and st, at, and rt for state,
action, and reward at timestep t, respectively. Within each
episode, we sample an embodiment e from a distribution
ρ(e). Given a policy π(· | s, e), a trajectory can be generated
by interacting with the environment, which is made up of a
sampled embodiment and a sequence of states, actions, and
rewards: τ = (e, s1, a1, r1, s2, a2, r2, . . . , sT , aT , rT), where
T is the episode length. Similar to the setting of standard
MDP, our goal is to learn a policy that maximizes the
expected return across different embodiment-aware MDPs:

π∗ := argmax
π

Eρ,π,PE

[T∑
t=1

rt

]
. (2)

We set the reward discount factor as 1 here since we assume
each step is equally important.

B. Embodiment-aware Transformer

Trajectory representation. Different from Decision Trans-
former [37], we expect the trajectory representation to enable
the Transformer to learn meaningful patterns between robot
embodiment and actions, and the Transformer to condition-
ally generate actions based on embodiment at test time.
Therefore, instead of feeding the returns-to-go as in [37],

Algorithm 1 Embodiment-aware Transformer (EAT)

Input: D0
expert, D

1
expert, . . . , D

M−1
expert

Output: Trained EAT Model
1: Dexpert = D0

expert ∪D1
expert ∪ · · · ∪DM−1

expert
2: for i = 0, . . . , I − 1 iterations do
3: Sample H-long (e, s, a, t) in Dexpert
4: Stack embeddings of (e, s, a) for each timestep
5: Feed the Stacks to the GPT model
6: Update the GPT model
7: end for

we feed the vector representation e of the robot embodiment
(e.g., length of legs and torso of the robot) at each timestep.
This leads to the following trajectory representation which
enables autoregressive training and generation:

τ = (e, s1, a1, e, s2, a2, . . . , e, sT , aT). (3)

Note that although theoretically, the robot embodiment e
in Eq. (3) can be time-varying, it is set as fixed during an
episode in our experiment since varying the body shape of
the real robot within an episode is impractical so far.

Training. For robots with M types of sampled embodiment,
we are given a dataset Di

expert of expert demonstration of
offline trajectories τ for each of the i-th embodiment. We
integrate these datasets and feed the sampled H timesteps
of each trajectory into EAT. For token embeddings, we learn
linear embedding layers for robot embodiment e, state s,
and action a, with layer normalization [52]. Similar to [37],
an embedding for each timestep is added to each token.
Here, such a tuple (e, s, a) plays a similar role as a “word”
in a language model. The tokens are then processed by a
Generative Pre-trained Transformer (GPT) [53] model, which
autoregressively predicts future tokens tuples (e, s, a). The
predicted action is used for calculating the mean-squared
error for backpropagation.

Evaluation. For evaluation, we can specify the current robot
embodiment e and the robot’s initial state, as the condition-
ing information to initiate generation. We feed the last H
timesteps of the current trajectory τ into EAT to obtain the
predicted action for the last observed state.

C. Evolution of Morphology with EAT

Once we have a unified control policy πEAT for robots
with varying morphology, we can further apply EAT to a
real-world evolution task to find the best morphology:

e? = argmax
e∈E

f(e|πEAT), (4)

where the objective f : E → R is a black-box function that
can be different from the reward function r. We can use an
off-the-shelf black-box optimizer, such as BO, to solve this
problem, as shown in Algorithm 2.

In this way, we solve the inefficiency challenge of the
morphology-controller co-optimization problem by taking
advantage of our embodiment-aware control mechanism.

Algorithm 2 Real-world Evolution
Input: Trained EAT Model πEAT, m0

Output: e?
1: for g = 0, . . . , G− 1 generations do
2: for t = 0, . . . , T − 1 timesteps do
3: Action = πEAT(eg, st, at, t)
4: end for
5: Optimizer give the next candidate mg

6: end for
7: return The best morphology e?.

IV. EVALUATIONS IN SIMULATION

Fig. 3. The robot with changeable morphology. We conduct the real-
world experiment on a quadruped robot with variable lengths of lower limbs
and torso. We show the robot with embodiment representation e of (0.27 m,
0.2 m, 0.2 m) and (0.35 m, 0.3 m, 0.3 m) on the top and the corresponding
simulated counterparts on the bottom.

In this section, we focus on the locomotion training tasks
of the quadruped robot Mini Cheetah [42] with variable
lengths of the tibia and torso in simulation (Fig. 3). We want
to train the robot to walk stably from scratch using EAT as
described in Section III. The setup of this task is similar to
[54]. Specifically, the state s here consists of: base linear
and angular velocities, the gravity vector, joint positions and
velocities, and the previous actions performed by the policy.
The action a is the desired joint positions of the motors,
sent to a PD controller. The total reward is a weighted sum
of nine terms, as in [55], including velocity tracking error,
velocity penalty, action penalty, and a bonus of feet-in-the-air
duration. We defer the reward details to [54].

The embodiment vector e here consists of three dimen-
sions: front tibia length, hind tibia length, and torso length.
We sample some robots with specific embodiment ei: 0.2,
0.25, and 0.3 m for front tibia length; 0.2, 0.25, and 0.3 m
for hind tibia length; 0.2, 0.3, and 0.4 m for torso length.
We use Proximal Policy Optimization (PPO) to train these
27 (3× 3× 3) robots separately with domain randomization
[56] in Isaac Gym [55]. For all embodiment, we keep the
reward function and initial state consistent. We collect 1000
trajectories from each environment for the training of EAT,
while each trajectory has a length of 1000 timesteps.

We compare EAT with Embodiment-aware Behaviour
Cloning (EABC), Vanilla Transformer, and a single PPO
policy. For EABC, we concatenate the embodiment vector
with the robot observation; for Vanilla Transformer, we
use the same model architecture as EAT but without the
embodiment vector e in the trajectory representation. We use
the same training dataset as for EAT for these two methods.
We also evaluate a baseline method: run a single PPO

0.4

0.35

0.3

0.25

0.2

24.4122.4919.3414.8223.7626.3026.1924.0718.84 20.6524.4923.3818.2220.3221.5523.15

21.76 19.2513.93 6.76 23.3726.2525.3324.6718.66 19.7423.5520.8218.2220.4122.1724.17

17.51 13.24 8.64 0.88 22.8526.0825.1023.8618.69 19.7722.2423.4917.7220.2321.1023.39

14.26 7.29 0.80 0.20 22.9925.6123.6917.8318.9520.5422.5924.8516.8519.4320.3221.04

8.73 0.89 0.29 0.09 23.2724.4415.0911.2119.0920.6822.4624.7216.4418.8520.4920.02

EAT (Ours)
11.96 5.14 2.86 0.30 11.60 11.04 6.57 2.95 5.40 6.85 8.74 6.92 6.15 5.63 5.56 4.98

4.68 1.63 0.51 0.13 11.90 7.54 2.84 0.80 5.06 6.47 7.54 4.71 5.94 5.29 5.47 4.80

1.47 0.69 0.28 0.07 11.85 4.03 1.14 0.29 5.05 6.47 5.87 2.64 4.50 4.94 4.78 4.16

0.61 0.40 0.16 0.04 6.10 1.98 0.63 0.16 4.85 5.49 3.49 1.16 3.02 4.71 4.34 3.77

0.38 0.22 0.09 0.03 2.62 1.05 0.39 0.10 3.90 3.43 2.34 0.76 1.42 3.23 3.39 3.20

EABC

0.1
5 /

 0.
15

0.1
5 /

 0.
2

0.1
5 /

 0.
25

0.1
5 /

 0.
3

0.2
 / 0

.15

0.2
 / 0

.2

0.2
 / 0

.25

0.2
 / 0

.3

0.2
5 /

 0.
15

0.2
5 /

 0.
2

0.2
5 /

 0.
25

0.2
5 /

 0.
3

0.3
 / 0

.15

0.3
 / 0

.2

0.3
 / 0

.25

0.3
 / 0

.3

0.4

0.35

0.3

0.25

0.2

19.83 16.77 9.40 6.42 20.36 21.30 19.08 12.98 18.47 19.87 21.59 21.05 16.91 16.67 19.14 19.82

16.00 9.27 7.86 1.09 20.32 21.08 16.69 7.18 18.17 19.88 21.37 20.66 16.65 17.13 19.10 20.51

8.40 2.75 2.72 0.35 20.11 19.53 5.38 5.81 17.99 19.61 20.90 14.78 16.27 17.71 19.41 21.32

1.45 1.15 0.52 0.16 18.98 5.11 3.20 3.34 17.84 19.91 20.09 9.88 15.63 17.30 19.2821.81

0.78 0.58 0.25 0.08 11.00 1.86 2.37 0.76 17.33 19.50 11.01 6.77 14.94 17.04 19.2620.77

Transformer

0.1
5 /

 0.
15

0.1
5 /

 0.
2

0.1
5 /

 0.
25

0.1
5 /

 0.
3

0.2
 / 0

.15

0.2
 / 0

.2

0.2
 / 0

.25

0.2
 / 0

.3

0.2
5 /

 0.
15

0.2
5 /

 0.
2

0.2
5 /

 0.
25

0.2
5 /

 0.
3

0.3
 / 0

.15

0.3
 / 0

.2

0.3
 / 0

.25

0.3
 / 0

.3

23.5022.9919.30 1.43 25.5126.04 25.11 22.3919.8721.1922.24 22.3018.4819.23 19.06 20.17

23.2222.17 5.83 0.08 25.2826.05 24.85 17.1419.3221.0122.0821.9017.88 18.24 18.78 19.68

22.8714.63 0.24 0.05 24.8925.80 24.11 10.2419.1320.5821.77 22.43 16.39 17.48 18.45 19.38

21.56 1.75 0.15 0.11 24.2525.23 18.47 4.89 18.7920.5521.07 20.97 13.94 16.45 17.87 19.16

11.80 0.23 0.04 0.01 23.2724.07 13.63 0.19 17.17 17.89 19.88 17.57 10.06 13.96 16.51 17.05

PPO

0

5

10

15

20

25
Le

ng
th

 o
f T

or
so

Length of Front Tibia / Back Tibia

Fig. 4. Performance of trained policies on robots with different embodiments for a locomotion task of walking on a flat plane. Each block
corresponds to a specific robot embodiment—encoded by the length of torso, front tibia, and hind tibia—whose color represents the accumulated reward
within an episode using a single trained policy. The best score for each robot embodiment is highlighted in yellow. In most cases, EAT can have the best
performance compared with other alternatives.

policy—that trained on the original shape of Mini Cheetah—
directly on robots with variable embodiments. Experimental
results are shown in Fig. 4, where each block corresponds
to a specific robot embodiment and the color represents the
accumulated reward within an episode using the same trained
policy. For each robot, we evaluate the performance of 1000
agents in parallel for 3 trails and report the average results.

A single EAT policy can successfully control robots with
different shapes to walk: Except in some cases where robots
have extremely unbalanced shapes, EAT can achieve a return
higher than 10 in 70 / 80 cases. For 57 / 80 of the robot
embodiments, EAT can outperform all other methods (scores
highlighted in yellow). Specifically, for body shapes that
are not in the training dataset (body length of 0.25 m and
0.35 m; front tibia and hind tibia of 0.15 m), EAT can
still have a good walking score. For example, for the zero-
shot evaluation of embodiment with a torso length of 0.4 m
(the first line of the return matrix), EAT achieves the best
score among these methods in 11 / 16 cases. This shows the
generalization ability of EAT for unseen embodiments. EAT
outperforms all other methods on average (Tab. I).

To evaluate the robustness of EAT, we add noises to
the evaluation environment, including random friction co-
efficient, base mass, and pushing. The amplitudes of these
noises are twice that used in the training stage. Results are
shown in Tab. I, where EAT demonstrates its superiority even
in a noisy environment. We will show in our real-world ex-
periment that Transformer-based controllers are more robust
than PPO, especially after the sim-to-real transfer.

We hypothesize that the superiority of EAT comes from
the context information of previous tokens and the capacity
of the model for fitting our diverse training dataset that
contains both varying trajectories and robot morphology. To
investigate the importance of access to previous states and
actions, we ablate on the context length H .

The performance of EAT degrades significantly when the

TABLE I
SCORES OF LOCOMOTION USING DIFFERENT METHODS.

Method Average Score Average Score in Noisy Env.
EAT (Ours) 18.87± 0.52 18.61± 0.13

EABC 3.8± 0.9 2.18± 1.32
Transformer 13.32± 1.37 13.49± 1.38

PPO 16.53± 0.57 14.26± 1.01

EAT with H = 1 15.06± 0.53 14.15± 0.32

EAT with LD 13.54± 0.16 13.64± 1.19
EAT with LD-5k 14.19± 0.55 14.07± 0.67
EAT with LD-10k 15.32± 1.18 15.35± 0.34

horizon length is 1 (Tab. I), indicating that past information
is essential for this morphology-varying locomotion task.

We further investigate the impact of the training dataset
on the performance of EAT. We consider another training
dataset that contains only 8 robot shapes instead of 27: torso
length is 0.2 m or 0.4 m; front and back tibia length is 0.2 m
or 0.3 m. We refer to this dataset as LD (Less Diverse). We
also test on training datasets with variants of LD: LD with 5k
trajectories per robot morphology and a 10k version, denoted
as LD-5k and LD-10k.

Results in Tab. I show that training datasets with fewer
types of robots (dataset LD) yield degraded performance of
EAT, even if the dataset is larger (dataset LD-5k and LD-
10k). This suggests that EAT can leverage the embodiment
information in the dataset and implicitly build state-return
associations via the similarity of the query and key vectors.
This makes it superior in embodiment-conditioned control.

V. REAL-WORLD EXPERIMENT

We directly deploy the EAT model that is trained in the
simulator to the real robots without any fine-tuning. The
representation of the state, action, and embodiment remains
the same as in simulation. We change the originally fixed
tibias of the robot Mini Cheetah to configurable modules
that we can easily adjust the length by replacing the steel

Fig. 5. Robots with different morphologies controlled by the same EAT policy. We run a trained EAT policy on robots with embodiment (0.3 m,
0.2 m, 0.2 m), (0.3 m, 0.2 m, 0.25 m), and (0.3 m, 0.25 m, 0.2 m) in each row of the figure respectively. EAT can successfully control the robot to move
forward in these three cases where the positions of CoM are different.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0

1

2

3

Embodiment 1
EAT (Ours)
EABC
Transformer
PPO

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Embodiment 2
EAT (Ours)
EABC
Transformer
PPO

0 5 10 15 20 25

Embodiment 3
EAT (Ours)
EABC
Transformer
PPO

Di
st

an
ce

Time (second)

Fig. 6. Walking trajectories of robots with three different embodiments. Embodiment 1 represents a body shape of the original Mini Cheetah, where
the front lower limbs and hind lower limbs have the same medium length (0.2 m). In this case, both EAT and Vanilla Transformer can enable the robot
to move forward, while PPO leads the robot to unstable states because of the reality gap. Embodiments 2 and 3 represent robots with asymmetrical front
and hind lower limbs, leading to forward and backward CoM respectively. In these two cases, only EAT can successfully control the robot.

tube, and design 3D-printed parts to lengthen the torso, as
shown in Fig. 3, with an accuracy of 1 cm.

A. EAT for Walking on Plane

We start from the same scenario as in the simula-
tors: walking on real-world flat terrain. We do experi-
ments on three different embodiments: (0.3m, 0.2m, 0.2m),
(0.3m, 0.2m, 0.25m), and (0.3m, 0.25m, 0.2m), referred to
Embodiment 1, 2, and 3. These embodiments for testing
represent three cases: 1) robots with the shape of the original
Mini Cheetah; 2) robots with an asymmetric shape and a
forward Center of Mass (CoM); and 3) robots with a back-
ward CoM. However, our model is not limited by only these
three embodiments. Rather, we use them as representative
examples for demonstration purposes, and we expect that
EAT can generalize to other possible embodiments.

Fig. 5 snapshots of successful walking with these three
embodiments using EAT and Fig. 6 shows the walking
distance in the first 15 or 25 seconds.

Experimental results of Embodiment 1 reveal the sim-to-
real transfer ability of different control methods. In this test,
EAT and Vanilla Transformer successfully controls the robot
to walk stably. Robots with PPO can walk for the beginning
few steps but quickly goes into unstable states as we can see
in the accompanying video and Fig. 6. This is likely because
of the reality gap that comes from the mismatch of motor
models, floor material, and control latency. These reality gaps

continuously feed out-of-distribution (OOD) observations—
that do not conform to the underlying distribution of the
training data—to the policy. Thanks to the generalization
ability of Transformers when decoding and the stable na-
ture of offline RL, both EAT and Vanilla Transformer can
overcome this reality gap and perform as in the simulator.

For Embodiment 2, PPO still leads the robot to unstable
states very quickly. Robots with Vanilla Transformer fall
forward after the first few steps, because of the unstable
CoM of the robot. EAT successfully finds a control strategy
to balance the robot and walk forward.

The backward CoM of Embodiment 3 makes the task
harder since this would prevent the friction force to pull
the robot forward. In this case, PPO still quickly leads the
robots to unstable states, and only EAT can control the robot
to stably walk forward.

B. EAT for Real-world Evolution

In this section, we showcase the application of EAT in
Evolutionary Robotics: a robot can solve an unseen task by
updating the morphology alone, using a fixed control policy.
Here, we consider a locomotion task of walking down a stair
of 10 cm, using the EAT policy that is trained in the simulator
based only on training data of walking on flat terrains.

We evolve the robot morphology by optimizing the em-
bodiment vector e: length of the torso, front lower limb, and
back lower limb. For each generation, we use BO to sample
a morphology eg from ranges of (0.27 m, 0.35 m), (0.15 m,

Fig. 7. Snapshots of the robot waking down a stair after morphology evolution. Our robot with the EAT controller successfully find a morphology
that suits this example task of stepping down: It finds a morphology of shorter front tibias (0.19 m), longer back tibias (0.22 m), and a longer torso (0.35
m). EAT successfully control the robot with this morphology, and this morphology helps the robot to keep balance during stepping down.

0.25 m), and (0.15 m, 0.25 m) respectively. We feed eg to the
EAT policy and test the walking performance—the furthest
distance f(eg) that the robot can walk across the step—
directly in the real world. We use BO to optimize f(eg)
as regard to eg for a maximum of 20 iterations. The furthest
distance f(eg) is measured from the step to where the robot
falls over. We assume that the robot can continuously walk
on a flat plane once it walks for a distance of 1.5 m.

Fig. 8 compares the training curves when using the three
strongest methods—EAT, Vanilla Transformer, and PPO—as
the backend controllers while the morphology of the robot
is updating.

0 3 6 9 12 15 18
Generation

0.25

0.50

0.75

1.00

1.25

1.50

Lo
ng

es
t D

ist
an

ce

EAT (Ours)
Vanilla Transformer
PPO

Fig. 8. Training curves of real-world evolution. We compare the training
processes using the same online morphology optimizer but different backend
controllers. Since both PPO and Vanilla Transformer are sensitive to changes
in robot morphology, only EAT can succeed in this task: The robot finds a
morphology that can adapt to a terrain that is unseen beforehand.

EAT together with BO can successfully find the mor-
phology that is capable of solving this task after around
10 iterations: The robot torso is extended to 0.35 m for
increasing stability; the length of front tibias is lengthened
at 0.22 m and that of hind tibias is shortened at 0.19 m,
to provide a backward-oriented CoM that may help to keep
balance while walking downstairs (Fig. 7).

Consistent with the previous experimental results, as PPO
and Vanilla Transformer are sensitive to the morphology
changes of our robots, they struggle in this real-world
evolution task. Since it is hard for these methods to control
a robot with variable morphology using a single policy, they
keep falling when a new body shape is given, and hence keep
giving the morphology optimizer noisy fitting values.

VI. DISCUSSION

Eiben [6] summarizes two limitations of the current state
of the art in Evolutionary Robotics: 1) most studies rely on
simulation for reproduction and evolution; 2) robot designs

are usually very simple and driven by elementary open-
ended control mechanisms. In this work, we attempt to solve
these challenges by bridging the fields of big sequential data
modeling [36] and evolvable hardware [57] for the first time.

Our proposed evolution pipeline is validated on a task
of transversing stairs. Although some previous works have
shown the ability of legged robots to climb stairs [58],
[27], [59], our method goes in a different direction toward
embodied intelligence: Unlike most of the previous work,
our robot does not see any rough terrain in the simulation
training phase, but use only online morphology optimization
to overcome the unseen tasks. This unlocks the full potential
for evolutionary robots to adapt to an unknown environment
that is hard to predict or model beforehand.

Last, although the embodiment representation in our ex-
periment involves only a three-dimension vector, a more
sophisticated representation of robot shape—for example,
pixel-based representation, which has been successfully em-
bedded in a Transformer network in previous work [37], [47],
[48]—can also be used in our framework. This inspires more
real-world evolution applications involving more diverse
morphologies in the future.

VII. CONCLUSIONS

In this work, we propose Embodiment-aware Transformer
(EAT), a learning-based control method that takes actions
conditioned on both state and embodiment. We pose this
challenge as a conditional sequence modeling problem, and
use Transformer to fit a data sequence of (embodiment, state,
action) tuples. We train this model using trajectory data
generated by multiple PPO policies from various morpholo-
gies. Evaluation results on a quadruped robot show that EAT
outperforms all other alternatives in cross-embodiment tasks.
By leveraging this feature, we apply EAT to a real-world
evolution task, i.e., the robot updates its morphology alone
online in the real world, for adapting to a locomotion task
where the terrain is unseen beforehand. The success of EAT
in solving this task shows the potential of embodiment-aware
controller and Transformer in the application of Evolutionary
Robotics. We hope that EAT can inspire a new push toward
real-world robot evolution based on the recent advance in
deep learning-based control.

REFERENCES

[1] R. A. Raff, The shape of life: genes, development, and the evolution
of animal form. University of Chicago Press, 2012.

[2] L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and S. Levine,
“Legged robots that keep on learning: Fine-tuning locomotion policies
in the real world,” in 2022 International Conference on Robotics and
Automation (ICRA), pp. 1593–1599, IEEE, 2022.

[3] C. Yu, J. Cao, and A. Rosendo, “Learning to climb: Constrained
contextual bayesian optimisation on a multi-modal legged robot,”
IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 9881–9888,
2022.

[4] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan, “Learning to walk
in the real world with minimal human effort,” arXiv preprint
arXiv:2002.08550, 2020.

[5] E. Massi, L. Vannucci, U. Albanese, M. C. Capolei, A. Vandesompele,
G. Urbain, A. M. Sabatini, J. Dambre, C. Laschi, S. Tolu, et al.,
“Combining evolutionary and adaptive control strategies for quadruped
robotic locomotion,” Frontiers in Neurorobotics, vol. 13, p. 71, 2019.

[6] A. Eiben, “Real-world robot evolution: why would it (not) work?,”
Frontiers in Robotics and AI, p. 243, 2021.

[7] T. F. Nygaard, C. P. Martin, J. Torresen, K. Glette, and D. Howard,
“Real-world embodied ai through a morphologically adaptive
quadruped robot,” Nature Machine Intelligence, vol. 3, no. 5, pp. 410–
419, 2021.

[8] T. F. Nygaard, C. P. Martin, D. Howard, J. Torresen, and K. Glette,
“Environmental adaptation of robot morphology and control through
real-world evolution,” Evolutionary Computation, vol. 29, no. 4,
pp. 441–461, 2021.

[9] T. F. Nygaard, D. Howard, and K. Glette, “Real world morphological
evolution is feasible,” in Proceedings of the 2020 Genetic and Evolu-
tionary Computation Conference Companion, pp. 1392–1394, 2020.

[10] T. F. Nygaard, C. P. Martin, E. Samuelsen, J. Torresen, and K. Glette,
“Real-world evolution adapts robot morphology and control to hard-
ware limitations,” in Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 125–132, 2018.

[11] A. Rosendo, M. Von Atzigen, and F. Iida, “The trade-off between
morphology and control in the co-optimized design of robots,” PloS
one, vol. 12, no. 10, p. e0186107, 2017.

[12] V. Vujovic, A. Rosendo, L. Brodbeck, and F. Iida, “Evolutionary de-
velopmental robotics: Improving morphology and control of physical
robots,” Artificial life, vol. 23, no. 2, pp. 169–185, 2017.

[13] M. Joachimczak, R. Suzuki, and T. Arita, “Artificial metamorphosis:
Evolutionary design of transforming, soft-bodied robots,” Artificial
life, vol. 22, no. 3, pp. 271–298, 2016.

[14] L. K. Le Goff, E. Buchanan, E. Hart, A. E. Eiben, W. Li, M. De Carlo,
A. F. Winfield, M. F. Hale, R. Woolley, M. Angus, et al., “Morpho-
evolution with learning using a controller archive as an inheritance
mechanism,” IEEE Transactions on Cognitive and Developmental
Systems, 2022.

[15] L. K. L. Goff and E. Hart, “On the challenges of jointly optimis-
ing robot morphology and control using a hierarchical optimisation
scheme,” in Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pp. 1498–1502, 2021.

[16] A. Zhao, J. Xu, M. Konaković-Luković, J. Hughes, A. Spielberg,
D. Rus, and W. Matusik, “Robogrammar: graph grammar for terrain-
optimized robot design,” ACM Transactions on Graphics (TOG),
vol. 39, no. 6, pp. 1–16, 2020.

[17] K. S. Luck, H. B. Amor, and R. Calandra, “Data-efficient co-adaptation
of morphology and behaviour with deep reinforcement learning,” in
Conference on Robot Learning, pp. 854–869, PMLR, 2020.

[18] M. Jelisavcic, K. Glette, E. Haasdijk, and A. Eiben, “Lamarckian
evolution of simulated modular robots,” Frontiers in Robotics and AI,
vol. 6, p. 9, 2019.

[19] A. Gupta, S. Savarese, S. Ganguli, and L. Fei-Fei, “Embodied intel-
ligence via learning and evolution,” Nature communications, vol. 12,
no. 1, pp. 1–12, 2021.

[20] G. Picardi, H. Hauser, C. Laschi, and M. Calisti, “Morphologically
induced stability on an underwater legged robot with a deformable
body,” The International Journal of Robotics Research, vol. 40, no. 1,
pp. 435–448, 2021.

[21] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
locomotion in the mit cheetah 3 through convex model-predictive
control,” in 2018 IEEE/RSJ international conference on intelligent
robots and systems (IROS), pp. 1–9, IEEE, 2018.

[22] M. V. Minniti, R. Grandia, F. Farshidian, and M. Hutter, “Adaptive
clf-mpc with application to quadrupedal robots,” IEEE Robotics and
Automation Letters, vol. 7, no. 1, pp. 565–572, 2021.

[23] R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter, “Feedback mpc
for torque-controlled legged robots,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 4730–4737,
IEEE, 2019.

[24] H.-W. Park, K. Sreenath, J. Hurst, and J. Grizzle, “System identifica-
tion and modeling for mabel, a bipedal robot with a cable-differential-
based compliant drivetrain,” in Dynamic Walking Conference (DW),
MIT, vol. 6, 2010.

[25] U. Nagarajan, A. Mampetta, G. A. Kantor, and R. L. Hollis, “State
transition, balancing, station keeping, and yaw control for a dynam-
ically stable single spherical wheel mobile robot,” in 2009 IEEE
International Conference on Robotics and Automation, pp. 998–1003,
IEEE, 2009.

[26] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
robotics, vol. 5, no. 47, p. eabc5986, 2020.

[27] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor
adaptation for legged robots,” 2021.

[28] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.

[29] T. Chen, A. Murali, and A. Gupta, “Hardware conditioned policies
for multi-robot transfer learning,” Advances in Neural Information
Processing Systems, vol. 31, 2018.

[30] C. Schaff, D. Yunis, A. Chakrabarti, and M. R. Walter, “Jointly learn-
ing to construct and control agents using deep reinforcement learning,”
in 2019 International Conference on Robotics and Automation (ICRA),
pp. 9798–9805, IEEE, 2019.

[31] W. Huang, I. Mordatch, and D. Pathak, “One policy to control them all:
Shared modular policies for agent-agnostic control,” in International
Conference on Machine Learning, pp. 4455–4464, PMLR, 2020.

[32] D. Pathak, C. Lu, T. Darrell, P. Isola, and A. A. Efros, “Learning
to control self-assembling morphologies: a study of generalization
via modularity,” Advances in Neural Information Processing Systems,
vol. 32, 2019.

[33] T. Wang, R. Liao, J. Ba, and S. Fidler, “Nervenet: Learning structured
policy with graph neural networks,” in International conference on
learning representations, 2018.

[34] G. Feng, H. Zhang, Z. Li, X. B. Peng, B. Basireddy, L. Yue,
Z. Song, L. Yang, Y. Liu, K. Sreenath, and S. Levine, “Genloco:
Generalized locomotion controllers for quadrupedal robots,” arXiv
preprint arXiv:2209.05309, 2022.

[35] R. K. Srivastava, P. Shyam, F. Mutz, W. Jaśkowski, and J. Schmid-
huber, “Training agents using upside-down reinforcement learning,”
arXiv preprint arXiv:1912.02877, 2019.

[36] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov,
G. Barth-Maron, M. Gimenez, Y. Sulsky, J. Kay, J. T. Springenberg,
et al., “A generalist agent,” arXiv preprint arXiv:2205.06175, 2022.

[37] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin,
P. Abbeel, A. Srinivas, and I. Mordatch, “Decision transformer:
Reinforcement learning via sequence modeling,” Advances in neural
information processing systems, vol. 34, pp. 15084–15097, 2021.

[38] M. Reid, Y. Yamada, and S. S. Gu, “Can wikipedia help offline
reinforcement learning?,” arXiv preprint arXiv:2201.12122, 2022.

[39] Q. Zheng, A. Zhang, and A. Grover, “Online decision transformer,”
arXiv preprint arXiv:2202.05607, 2022.

[40] M. Janner, Q. Li, and S. Levine, “Offline reinforcement learning as
one big sequence modeling problem,” Advances in neural information
processing systems, vol. 34, pp. 1273–1286, 2021.

[41] R. Reddy, “Speech understanding systems: A summary of results of
the five-year research effort at carnegie mellon university,” Pittsburgh,
Pa, 1977.

[42] B. Katz, J. Di Carlo, and S. Kim, “Mini cheetah: A platform for push-
ing the limits of dynamic quadruped control,” in 2019 international
conference on robotics and automation (ICRA), pp. 6295–6301, IEEE,
2019.

[43] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian
optimization of machine learning algorithms,” Advances in neural
information processing systems, vol. 25, 2012.

[44] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[45] N. Kitaev and D. Klein, “Constituency parsing with a self-attentive
encoder,” arXiv preprint arXiv:1805.01052, 2018.

[46] P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and
N. Shazeer, “Generating wikipedia by summarizing long sequences,”
arXiv preprint arXiv:1801.10198, 2018.

[47] Z. Liu, J. Ning, Y. Cao, Y. Wei, Z. Zhang, S. Lin, and H. Hu, “Video
swin transformer,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 3202–3211, 2022.

[48] T. Meinhardt, A. Kirillov, L. Leal-Taixe, and C. Feichtenhofer, “Track-
former: Multi-object tracking with transformers,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 8844–8854, 2022.

[49] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode rein-
forcement learning,” Journal of Machine Learning Research, vol. 6,
2005.

[50] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” in International conference on machine
learning, pp. 2052–2062, PMLR, 2019.

[51] A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine, “Stabilizing
off-policy q-learning via bootstrapping error reduction,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

[52] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[53] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., “Improv-
ing language understanding by generative pre-training,” 2018.

[54] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk
in minutes using massively parallel deep reinforcement learning,” in
Conference on Robot Learning, pp. 91–100, PMLR, 2022.

[55] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, et al., “Isaac gym:
High performance gpu-based physics simulation for robot learning,”
arXiv preprint arXiv:2108.10470, 2021.

[56] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” arXiv preprint arXiv:1804.10332, 2018.

[57] G. W. Greenwood and A. M. Tyrrell, Introduction to evolvable
hardware: a practical guide for designing self-adaptive systems, vol. 5.
John Wiley & Sons, 2006.

[58] H. Shi, B. Zhou, H. Zeng, F. Wang, Y. Dong, J. Li, K. Wang, H. Tian,
and M. Q.-H. Meng, “Reinforcement learning with evolutionary tra-
jectory generator: A general approach for quadrupedal locomotion,”
IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3085–3092,
2022.

[59] J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst, “Blind bipedal
stair traversal via sim-to-real reinforcement learning,” arXiv preprint
arXiv:2105.08328, 2021.

	I Introduction
	II Preliminaries
	III Embodiment-aware Transformer
	III-A Embodiment-aware Markov Decision Process
	III-B Embodiment-aware Transformer
	III-C Evolution of Morphology with EAT

	IV Evaluations in Simulation
	V Real-world Experiment
	V-A EAT for Walking on Plane
	V-B EAT for Real-world Evolution

	VI Discussion
	VII CONCLUSIONS
	References

