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Abstract—Data augmentations are important in training
high-performance 3D object detectors for point clouds. Despite
recent efforts on designing new data augmentations, perhaps
surprisingly, most state-of-the-art 3D detectors only use a
few simple data augmentations. In particular, different from
2D image data augmentations, 3D data augmentations need
to account for different representations of input data and
require being customized for different models, which introduces
significant overhead. In this paper, we resort to a search-based
approach, and propose LidarAugment, a practical and effective
data augmentation strategy for 3D object detection. Unlike
previous approaches where all augmentation policies are tuned
in an exponentially large search space, we propose to factorize
and align the search space of each data augmentation, which
cuts down the 20+ hyperparameters to 2, and significantly
reduces the search complexity. We show LidarAugment can
be customized for different model architectures with different
input representations by a simple 2D grid search, and con-
sistently improve both convolution-based UPillars/StarNet/RSN
and transformer-based SWFormer. Furthermore, LidarAug-
ment mitigates overfitting and allows us to scale up 3D detectors
to much larger capacity. In particular, by combining with latest
3D detectors, our LidarAugment achieves a new state-of-the-art
74.8 mAPH L2 on Waymo Open Dataset.

I. INTRODUCTION

Data augmentations are widely used in training deep
neural networks. In particular, for autonomous driving, many
data augmentations are developed to improve data efficiency
and model generalization. However, most recent 3D object
detectors only use a few basic data augmentation operations
such as rotation, flip and ground-truth sampling [1], [2], [3],
[4], [5], [6], [7]. This is in a surprising contrast to 2D image
recognition and detection, where much more sophisticated
2D data augmentations are commonly used in modern image-
based models [8], [9], [10], [11], [12], [13]. In this paper,
we aim to answer: is it practical to adopt more advanced 3D
data augmentations to improve modern 3D object detectors,
especially for high-capacity models?

The main challenge of adopting advanced 3D data aug-
mentations is that 3D augmentations are often sensitive to
input representations and model capacity. For example, range
image based models and point cloud based models require
different types of data augmentation due to different input
representations. High capacity 3D detectors are typically
prone to overfitting and require stronger overall data augmen-
tation compared to lite models with fewer parameters. There-
fore, tailoring each 3D augmentation for different models is
necessary. However, the search space scales exponentially
with respect to the number of hyperparameters, which leads
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Fig. 1: Model scaling with LidarAugment on Waymo
Open Dataset. Baseline augmentations are from the prior
art of [14]. When scaling up UPillars to UPillars-L, our
LidarAugment improves both models, and the gains are more
significant for the larger model, thanks to its customizable

regularization. More results in

to significant search cost. Recent studies [15], [16] attempt to
address these challenges by using efficient search algorithms.
Those approaches typically construct a fixed search space,
and run a complex search algorithms (such as population-
based search [17]) to find a data augmentation strategy for
a model. However, our studies reveal that the search spaces
used in prior works are suboptimal. Despite having complex
search algorithms, without a systematic way to define a good
search space, we cannot unleash the potential of a model.

In this paper, we propose LidarAugment, a simplified
search-based approach for 3D data augmentations. Unlike
previous methods that rely on complex search algorithms to
explore an exponentially large search space, our approach
aims to define a simplified search space that contains a
variety of data augmentations but has minimal (i.e. two)
hyperparameters, such that users can easily customize a
diverse set of 3D data augmentations for different models.

Specifically, we construct the LidarAugment search space
by first factorizing a large search space based on operations
and exploring each sub search space with a per-operation
search. Then, we normalize and align the sub search space
for each data augmentation to form the LidarAugment search
space. The final LidarAugment search space contains only
two shared hyperparameters: m € [0,00) controls the nor-
malized magnitude and p € [0, 1] controls the probability of
applying each data augmentation policies. Our LidarAug-
ment search space significantly simplifies prior works [15]
by cutting down the number of hyperparameters to two, a
15 % reduction in number of hyperparameters.

Despite only having two hyperparamters, our LidarAug-
ment search space contains a variety of existing 3D data



(3) Global

Scale

(6) Global

Drop Drop

(7) Frustum

Translate
Sk

#imy (8) Frustum
Noise

N

(11) Swap ¢
" Background

AT N

Fig. 2: Visualizing LidarAugment. (a) all data augmentation operations used in LidarAugment. For non-global operations,
we highlight the augmented parts in red (boxes). (b) occlusion introduced by data augmentation, e.g., paste a car object, is
handled by removing overlapping rays in range view based on distance. We show point clouds and the corresponding range
images with (bottom)/without (top) removing overlapping rays in the range view.

augmentations, such as drop/paste 3D bounding boxes, ro-
tate/scale/dropping points, and copy-paste objects and back-
grounds. In addition, LidarAugment supports coherent aug-
mentation across both point and range view representations,
which generalizes to multi-view 3D detectors.

We perform extensive experiments on the Waymo Open
Dataset [18] and demonstrate LidarAugment is effec-
tive and generalizes well to different model architectures
(convolutions-based and transformer-based), different input
views (3D point view and range image), and different
temporal scales (single and multi frames). Notably, Li-
darAugment advances state-of-the-art (SOTA) transformer-
based SWFormer by 1.4 mAPH on the test set. Furthermore,
LidarAugment provides customizable regularization, which
allows us to scale up 3D object detectors to much higher
capacity without overfitting. As summarized in
LidarAugment consistently improves UPillars models, and
the performance gains are particularly large for high-capacity
models. Our contributions can be summarized as:

1) New insight: we reveal that common 3D data aug-
mentation search spaces are suboptimal and should be
tailored for different models.

LidarAugment: we propose the LidarAugment search
space, which supports jointly optimizing 10 augmen-
tation policies with only two hyperparameters (15X
reduction compares to prior works), offering diverse
yet practical augmentations. In addition, we develop
a new method to coherently augment both point and
range-view input representations.

State-of-the-art performance: LidarAugment consis-
tently improves both convolution-based UPillars/Star-
Net/RSN and attention-based SWFormer. With Li-
darAugment, we achieve new state-of-the-art results
on Waymo Open Dataset. In addition, LidarAugment
enables model scaling to achieve much better quality
for high-capacity 3D detectors.

2)

3)

II. RELATED WORKS

Data augmentation. Data augmentation is widely used
in training deep neural networks In particular, for 3D object
detection from point clouds, several global and local data
augmentations, such as rotation, flip, pasting objects, and
frustum noise, are used to improve model performance [19],
[1], [20], [2], [4], [21], [15], [22], [23], [24]. However, as
3D data augmentations are sensitive to model architectures
and capacity, it often requires extensive manual tuning to
use these augmentations. Therefore, most existing 3D object
detectors [2], [6], [25], [26], [14] only adopt a few simple
augmentations, such as flip and shift pixels.

Several recent works attempt to use range images for
multi-view 3D detection, but very few augmentations are
developed for range images. [5] attempts to paste objects in
the range image without handling occlusions. Our Paste Box
augmentation support coherently augmenting both range-
view and point-view input data while handling occluded
objects in a simple way (more details in [Figure 2), which
enables more realistic augmented scenes and enriches the
data augmentations for multi-view 3D detectors.

Learning data augmentation policies. Designing good
data augmentation normally requires manual tuning and
domain expertise. Several search-based approaches have
been proposed for 2D images, such as AutoAugment [9],
RandAugment [12], and Fast AutoAugment [27]. Our Li-
darAugment is inspired by RandAugment in the sense that
we both try to construct a simplified search space. However,
unlike 2D image augmentations, where a search space works
well for many models, we reveal that existing search space
for 3D detection tasks are suboptimal, which motivates us to
propose the first systematical method to define search spaces
for 3D detection tasks.

On the other hand, for 3D detection, PPBA [15] and
PointAugment [16] propose efficient learning-based data
augmentation frameworks for 3D point clouds. However,
both works require users to run a complex algorithm on
an exponentially large but not well-designed search space.
In contrast, our work provides a systematical framework to



design a simple and more effective search spaces with only
two hyperparameters.

III. LIDARAUGMENT

In this section, we first introduce data augmentation poli-
cies used in LidarAugment. Next, we analyze the perfor-
mance of each data augmentation policy on Waymo Open
Dataset [18]. Finally, we propose a systematic approach to
progressively design 3D augmentation search space.

A. Data augmentations for point clouds and range images.

3D point cloud and 2D range image are two different
representations of LiDAR data. Despite being the native
representation of LiDAR data, data augmentations for range
image is not well studied compared to point clouds. Here,
we revisit data augmentations for point clouds, and introduce
a new method for coherently applying data augmentation to
both point clouds and range images.

Augmenting point clouds. We follow the implementation
of data augmentation policies described in recent studies [1],
[15], [28], which contain global operations (rotate, scale,
translate, flip, and drop points) and local operations (drop
boxes, paste boxes, swap background, drop points and add
feature noise in a frustum), shown in (a).

Augmenting range images. Different from sparse 3D
point representation, pixels in range image are compact. Data
augmentations, such as pasting objects and swap background,
disturb the compact structure of range representation. Here,
we propose a novel approach to coherently augment both 3D
point view and 2D range view by leveraging the bijective
property between point clouds and range images, while
account for occlusion.

First, we transform the range image pixels to point cloud
based on (x,y,z) coordinates. To preserve the bijective map-
ping between a pixel in a range image and a point in
the corresponding point clouds, we concatenate the (row,
column) index of each pixel in the range image as additional
features before scattering pixels to 3D. After performing data
augmentation in the point representation, we transform the
augmented point clouds back to the range view by scattering
each point to a pixel in a 2D image based on its (row,
column) index.

Leveraging the compactness of range images. Coher-
ently augmenting both range and point views leads to more
realistic augmented scenes. Because each pixel in a range
image corresponds to a unique ray from LiDAR, overlapping
pixels in the range view represent that the same light ray
penetrates trough multiple surfaces. When this happens, we
compare the distance among overlapping pixels in the range
view and keep the pixel that is closest to the ego vehicle.
This effectively removes occluded points in both the range

and point views, as shown in (b).

B. Effects of each data augmentation.

In this section, we assess the effects of each data augmen-
tation policy on Waymo Open Dataset [18]. To benchmark
the policies, we develop a UPillars architecture, which is

Policy Hyperparameters | WOD (Veh./Ped.) | mAP L1

No Aug ‘ ‘ 60.2
Probability p/p

Drop Box Number of boxes ‘ 2m/2.8m 66.0 (+5.8)
Probability 1.4p/p

Paste Box Number of boxes ‘ 3.2m/4.4m 66.6 (+6.4)

Swap Background ~ Probability | 0.6p | 63.6 (+3.4)

§ Probability L.4p
Global Rot Max rotation angle ‘ 0.22m ‘ 733 (+13.1)
i . Probability p

Global Scale Scaling factor ‘ 0.036m ‘ 66.0 (+5.8)
Probability P

Global Drop Drop ratio ‘ 1-0.18m ‘ 64.9 (+4.7)
Probability p
Theta angle width 0.1zm

Frustum Drop Phi angle width 0.1wm 64.1 (+3.9)
R distance 75—-17.5m
Drop ratio 1-0.1m
Probability 0.6p
Theta angle width 0.14mwm

Frustum Noise Phi angle width 0.147mm 65.1 (+4.9)
R distance 75—10.5m
Max noise level 0.14m

S Probability 1.4p
Global Translate Stdev. of noise (x, y) 0.66m 67.5 (+7.3)
Global Flip Probability | p | 69.0 (+8.8)

TABLE I: Aligned search spaces and performance. The
search space of each hyperparameter for Waymo Open
Dataset (WOD) for UPillars is listed. (p,m) are two global
hyperparameters to control all data augmentation policies.
After aliging the search space, the optimal (p,m) for each
data augmentation are (0.5,5). The probability of each policy
is clipped to [0, 1]. The min R distance is clipped to 0. The
maximum rotation angle is clipped to [0, ]. The maximum
flip probability is clipped to 0.5. The ratio of dropped points
are clipped to [0, 0.8]. The theta angle and phi angle are
clipped to [0, 7] and [0, 2x], respectively.

based on the popular PointPillars [2], but incorporates recent
optimizations in architecture design, i.e., unet backbone [29],
and center net detection head [30].

Datasets and training. Waymo Open Dataset [18] con-
tains 798 and 202 training and validation sequences. For
the following studies, we train UPillars with batch size 64,
Adam optimizer [31] and cosine decay learning rate with
max learning rate 3e-3 and total step 80000.

Effect of each data augmentations. We factorize the
LidarAugment search space into per-policy sub search space
and show the UPillars performance when trained using only
one policy on Waymo Open Dataset (WOD) in
Interestingly, on WOD, the most effective data augmentation
technique is global rotation, whereas on KITTI [32], pasting
ground truth bounding boxes is commonly regarded as the
most effective data augmentation [1]. A closer look at the
statistics of the two datasets reveals that, on average, each
KITTI LiDAR frame contains about five objects, whereas,
each frame in WOD on average contains more than 50
objects. Thus, pasting ground truth objects has larger impact
on KITTI, due to the significantly lower object density, than
WOD. On the other hand, smaller global rotation angle /4
is commonly used when training KITTI dataset, but we find
much stronger rotation 7 is preferred for WOD.
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Fig. 3: UPillars architecture. Input points are processed by two full connected layers with channel size (MLPO, MLP1)
before voxelized into pillars. The bird-eye-view pillars are processed by a Res U-Net, where the channel size and number
of blocks at each resolution are (Ci, Bi). CenterNet detection head, box regression, and other attributes regression heads are
applied to the output of U-Net. For both models, we use the same voxel size 0.32m and range 81.92m.

C. Defining LidarAugment search space.

As indicated from the previous section, different from

RandAugment for 2D images [12], naively using the same
search space across different datasets is suboptimal, which
is a unique challenge for 3D detection tasks. To mitigate
this new challenge, we propose to factorize the whole search
space and align each data augmentation based on its optimal
hyperparameters.
Align the search space. Using global hyperparameters
to control all data augmentations requires normalizing the
search domain of each hyperparameter. Without normaliza-
tion, the same global magnitude could lead to an aggressive
application of one data augmentation, and an insufficient
application of another data augmentation. To align the search
domain of each data augmentation policy, we train a UPillars
model on a given dataset while only applying a single data
augmentation policy at each time. Based on the optimal
values of hyperparameters, we rescale the search domain
of each hyperparameter in a data augmentation policy from
[0,arbitrary_value] to [0,optimal value] such that the opti-
mal value for each hyperparameter corresponds to the same
global magnitude or probability hyperparameter. Since each
data augmentation policy contains multiple parameters, to
save cost, we perform a small scale 2D grid search to scale
the probability and magnitudes of all hyperparameters in
each sub search space.

Here, we use Global Translate as an example. We define
the initial search domain for the probability of applying
Global Translate data augmentation to be {0.3,0.5,0.7,0.9},
and the domain for the magnitude of translation noise

augmentations = [
DropBox, PasteBox, SwapBackground, GlobalRot,
GlobalScale, GlobalDrop, FrustumDrop ,
FrustumNoise, GlobalTranslate, GlobalFlip]
def lidaraugment (m, p, input_frame):
for aug in augmentations:
aug.set_magnitude (m)
aug.set_probability (p)
input_frame = aug.transform(input_frame)
return input_frame

Fig. 4: Pseudo Python code for LidarAugment.

to be {0.9,1.5,2.1,2.7,3.3,3.9}. If the optimal values
(Pnoise; Moise) = (0.7,3.3), we rescale the search domain to
(Pnoises Mnoise) = (1.4p,0.66m) such that when the global
hyperparameters (p,m) = (0.5,5), the hyperparameters for
Global Translate are optimal. Details about all the hyperpa-
rameters are listed in The LidarAugment pseudocode

is shown in
IV. EXPERIMENTS

In this section, we first introduce our experimental setups.
Then we show LidarAugment significantly improves the
performance for both convolution-based and attention-based
models. Lastly, we show the model scaling results, followed
by ablations studied on different models and datasets.

A. Experimental setup

Our experiments are mostly based on Waymo Open
Dataset [18] (WOD) where the main metric is mAPH L2,
with additional ablation studies on nuScene [33]. We evaluate
LidarAugment on a variety of 3D object detectors, as well as
different model sizes. For fair comparison, we strictly follow
the original training settings for each model, and only replace
the baseline augmentation with our new LidarAugment. We
train UPillars using Adam optimizer [31] and apply cosine
learning rate with max learning rate le-3, total 16e4 steps
and batch size 64.

B. LidarAugment achieves new state-of-the-art results

compares the validation set results on Waymo
Open dataset. Our LidarAugment significantly improves both
convolution-based and transformer-based models. In partic-
ular, by scaling up the basic UPillars, our LidarAugment
achieves 71.0 mAPH of L2 on UPillars-L, which is 1.9 AP
better than the previous best convolution-based 3D detec-
tor PVRCNN++ [34]. Notably, the latest transformer-based
SWFormer [14] already uses 4 strong data augmentation
policies, i.e., rotation (probability 0.74, yam angle uniformly
sampled from [—7, 7]), random flip (probability 0.5), ran-
domly scaling the world (scaling factor uniformly sampled
from [0.95,1.05], and randomly drop points (drop probability
0.05), where the rotation angle and flip probability are



mAPH

Vehicle AP/APH 3D

Pedestrian AP/APH 3D

Method Type L2 ‘ 12 L1 12

P.Pillars [2] T conv 51.9 63.3/62.7  55.2/54.7 | 68.9/56.6 60.4/49.1
CenterPoint [25] conv 67.1 76.6/76.1  68.9/68.4 | 79.0/73.4 71.0/65.8
RSN_3f [6] conv 68.1 78.4/78.1  69.5/69.1 | 79.4/76.2 69.9/67.0
PVRCNN++ [34] conv 69.1 79.3/78.8  70.6/70.2 | 81.8/76.3 73.2/68.0
UPillars-L¥ conv 60.0 69.5/69.0 61.5/61.0 | 70.4/66.1 63.0/59.0
UPillars-L(+LA) conv 71.0 79.5/79.0 71.9/71.5 | 81.5/77.3 74.5/70.5
SST_1f [26] attn 63.4 74.2/73.8  65.5/65.1 | 78.7/69.6 70.0/61.7
SST_3f [26] attn 69.5 77.0/76.6  68.5/68.1 | 82.4/78.0 75.1/70.9
SWFormer [14] attn 70.9 79.4/78.9  71.1/70.6 | 82.9/79.0 74.8/71.1
SWFormer(+LA)  attn 72.8 80.9/80.4  72.8/72.4 | 84.4/80.7 76.8/73.2

TABLE II: WOD validation-set results. LA denotes our LidarAugment, conv denotes convolutional networks, and attn
denotes attention-based transformer models. LidarAugment improves both types of models, and achieves the best results
among each category. T model is trained using augmentations shown in prior art [14].

maxed out. Despite that, LidarAugment still outperforms
SWFormer by 1.9 AP, establishing a new state-of-the-art
result for single-modal models without ensemble or test time
augmentation on Waymo Open Dataset.

[Table III| compares the test-set results among latest mod-
els. Compared to the latest SWFormer, our LidarAugment
improves the test-set L2 mAPH by 1.4 AP, outperforming
all prior arts by a large margin.

competitive with the latest SWFormers, i.e., their mAPH are
71.0 vs. 72.8. This opens up new research opportunities on
exploring much larger and higher performance 3D detectors
in the future.

‘ Veh/Ped AP L1 ‘ Veh/Ped APH 1.2

UPillars UPillars-L UPillars UPillars-L
BaseAugment | 72.1/72.3 69.3/70.3 63.5/52.1 61.0/59.0
LidarAugment | 77.1/77.5 79.5/81.6 68.5/58.9  71.5/70.5

Method ‘ mAPH ‘ Vehicle AP/APH 3D Pedestrian AP/APH 3D
L2 L1 L2 ‘ L1 L2
PPillars [2] T 55.1 68.6/68.1  60.5/60.1 | 68.0/55.5 61.4/50.1
CenterPoint [25] 69.1 80.2/79.7  72.2/71.8 | 78.3/72.1 72.2/66.4
RSN_3f [6] 69.7 80.7/80.3  71.9/71.6 | 78.9/75.6  70.7/67.8
PVRCNN++ [34] 71.2 81.6/81.2  73.9/73.5 | 80.4/75.0  74.1/69.0
SST_TS_3f [26] 72.9 81.0/80.6  73.1/72.7 | 83.1/79.4  76.7/73.1
SWFormer [14] 73.4 82.9/82.5  75.0/74.7 | 82.1/78.1 75.9/72.1
SWFormer(+LA) 74.8 84.0/83.6  76.3/76.0 | 83.1/79.3  77.2/73.5

TABLE III: WOD test-set results. LidarAugment (LA)
significantly improves detection performance for SWFormer,
and achieves new state-of-the-art mAPH L2.

C. LidarAugment enables better model scaling

Scaling up model capacity is a common approach to
achieve better performance, but large 3D object detectors
often suffer from overfitting. shows scaling results,
where UPillars-L is a larger model with more layers and

channels than UPillars, detailed in

Here, we adopt the strong data augmentations used in
the latest SWFormer as Baseline (see [subsection IV-B)). As
shown in with Baseline augmentations, UPillars-L
does not benefit much from its significantly larger capacity.
In fact, several metrics, such as Veh/Ped L1 AP, even become
worse (e.g. 69.3/70.3 for UPillar-L vs 72.1/72.3 for UPillars).
We observe the training loss of UPillars-L is much smaller
compared to loss of UPillars, indicating severe overfitting.

On the other hand, LidarAugment achieves much better
performance on larger models, especially on the most chal-
lenging metric, i.e., +7.3AP for 3D L2 mAPH as shown in
Perhaps surprisingly, although the baseline UPillar
(mAPH=57.8) is much worse than latest 3D detectors, the
final performance of UPillar-L (+ LidarAugment) is actually

TABLE IV: UPillars scaling results on WOD.

D. LidarAugment supports different representations

Different from 2D image models, 3D detectors are more
diverse and could utilize different input representations due
to the additional dimensionality and sparsity of point cloud
data. Other than UPillars and SWFormer, which are both
pillar-based architectures and taking 3D sparse points as
inputs, we further demonstrate LidarAugment generalizes to
other input representations. First, StarNet [35] is a point-
based detector which directly processes raw points in 3D
to detect objects. RSN, on the other hand, utilize multi-view
property of point clouds and takes both range images and 3D
sparse points as inputs. However, due to the lack of multi-
view data augmentations in prior works, RSN only utilize
two simple augmentations, i.e. random flip and rotation.

Model Augmentation | Vehicle Pedestrian
StarNet [35] +Lidb;rszlli$nem 16 742
RSN-Iframe [6] +Lidb::1§1:;nent 753 790
RSN-3frame [6] +Lidb:1:1211i1;€1:nent ;;g ;(’;é
SWFormer [14] +Lidb:xi§11i1;inent ;(9)3 2421491

TABLE V: LidarAugment improves various models. Start-
net is a point-based detector. RSN is a range image and
pillar-based detector. Results are WOD L1 AP.



LidarAugment is a general method which supports aug-
menting different views of point clouds, including range
images, as explained in [subsection III-A] [Table V| shows
the performance of LidarAugment on point-based StarNet,
range image based RSN, and transformer-based SWFormer.
In general, our LidarAugment improves all kinds of 3D
detectors, sometimes by a large margin.

E. Abletion studies: comparing to other approaches.

In this section, we show LidarAugment outperforms other
common data augmentation approaches on UPillars.

Manually tuned data augmentation. Due to the com-
plexity of search space scales exponentially with respect to
the number of parameters, commonly used data augmenta-
tion strategies often consists of few data augmentation oper-
ations. Here, we benchmark two sets of data augmentation
strategies used in training high-performance 3D detectors.
First, we adopt random flip (probability 0.5) and rotation
(probability 0.5, yaw angle uniformly sampled from [—7/4,
7 /4]) data augmentations used in training RSN [6]. Then we
benchmark more advanced and stronger data augmentation
strategy used in training SWFormer [14], detailed in
Our results show both data augmentation strategies
significantly improved UPillars performances, about +10 AP
for Vehicle and Pedestrian 3D L1 AP, when compared to
the no augmentation baseline, shown in However,
tuning the data augmentation hyperparameters is challenging,
e.g., if we only search 4 values for each hyperparameter, the
number of searches of 5 hyperparameters exceeds 1000.

UPillars (AP Level 1) | Hparams | Vehicle Pedestrian
No Augmentation 58.0 62.4
Rotate & Flip [6] 3 70.8 70.0
Rotate, Flip, Scale, Drop points [14] 5 72.1 72.3
PPBA [15] 29 71.6 72.6
LidarAugment | 2 | 771 (+5.0) 77.5 (+4.9)

TABLE VI: LidarAugment outperforms common data
augmentation strategies. UPillars L1 APs on Waymo Open
Dataset validation set are reported. LidarAugment requires
the least number of hyperparameters (Hparams) but achieves
the best results compared to manually designed and automl-
based data augmentations strategies.

AutoML-based data augmentation. To alleviate the chal-
lenge of exponentially large search space, population-based
training is proposed to tune hyperparameters in data augmen-
tations online [17], [11], [15]. We follow the implementation
of progressive-population based data augmentation (PPBA)
[15] and use the same sets of data augmentation policies
and search space. We set population size 16, generation step
4000, perturbation and exploration rate to 0.2. Our results,
in[Table VI show PPBA significant outperforms the no aug-
mentation baseline. Despite PPBA introduces significantly
more data augmentation policies, it is on par with manually
tuned data augmentations, which only contains 4 policies.

We find the search space of PPBA is suboptimal after
inspecting the search domain of each hyperparameter. For

example, the maximum rotation angle for global rotation in
the PPBA search space is 7/4, a common value used for
KITTI dataset. However, 7 /4 is insufficient compared to the
tailored max rotation angle 7 used in our LidarAugment. Sur-
prisingly, a single well-tuned global rotation augmentation
achieves L1 mAP 73.3, shown in which outperforms
PPBA with L1 mAP 72.1 over vehicle and pedestrian tasks.
Although PPBA algorithm is more efficient than grid search
and contains diverse augmentation policies, the suboptimal
search domain of rotation angle restricts the performance
of PPBA, which highlights the importance of tailoring 3D
detection search space.

LidarAugment Alternatively, LidarAugment mitigates
both the curse of dimensionality and suboptimal search
domain issues by aligning and scaling the magnitude and
probability of each data augmentation policy. This signifi-
cantly reduces the search complexity (only 2 hyperparame-
ters) while allowing exploration of a larger hyperparameter
space. As indicate in LidarAugment significantly
outperforms both manually designed and AutoML-based data
augmentation strategies by about 5 AP for both vehicle and
pedestrian detection tasks and only requires a simple grid
search of two hyperparameters.

FE. Generalize to nuScenes dataset

To further validate our method, we evaluate LidarAugment
on a different dataset: nuScenes [33]. For simplicity, we
adopt the same training settings as Waymo Open Dataset, but
reduce the voxel size to 0.25 and the total training steps by
half for faster training. We use the same baseline augmenta-
tion as SWFormer, and redefine LidarAugment search space
for nuScenes following [subsection III-C| [Table VII| shows
LidarAugment is a general approach, which outperforms the
baseline augmentation by a large margin on nuScenes.

UPillars | mAP NDS
Rotate, Flip, Scale, Drop points [14] | 40.6 48.2
LidarAugment 46.7 (+6.1) 534 (+5.2)

TABLE VII: nuScenes validation-set results.

V. CONCLUSION

In this paper, we propose LidarAugment, a scalable and
effective 3D augmentation approach for 3D object detec-
tion. Based on the insight that 3D data augmentations are
sensitive to model architecture and capacity, we propose a
simplified search space, which contains two hyperparameters
to control a diverse set of augmentations. LidarAugment
outperforms both manually tuned and existing search-based
data augmentation strategies by a large margin. Extensive
studies show that LidarAugment generalizes to convolution
and attention-based architectures, as well as point-based
and range-based input representations. More importantly,
LidarAugment significantly simplifies the search process for
3D data augmentations and opens up exciting new research
opportunities, such as model scaling in 3D detection. With
LidarAugment, we demonstrate new state-of-the-art 3D de-
tection results on the challenging Waymo Open Dataset.
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