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Abstract— We propose a novel hybrid cable-based robot
with manipulator and camera for high-accuracy, medium-
throughput plant monitoring in a vertical hydroponic farm
and, as an example application, demonstrate non-destructive
plant mass estimation. Plant monitoring with high temporal and
spatial resolution is important to both farmers and researchers
to detect anomalies and develop predictive models for plant
growth. The availability of high-quality, off-the-shelf structure-
from-motion (SfM) and photogrammetry packages has enabled
a vibrant community of roboticists to apply computer vision
for non-destructive plant monitoring. While existing approaches
tend to focus on either high-throughput (e.g. satellite, unmanned
aerial vehicle (UAV), vehicle-mounted, conveyor-belt imagery)
or high-accuracy/robustness to occlusions (e.g. turn-table scan-
ner or robot arm), we propose a middle-ground that achieves
high accuracy with a medium-throughput, highly automated
robot. Our design pairs the workspace scalability of a cable-
driven parallel robot (CDPR) with the dexterity of a 4 degree-of-
freedom (DoF) robot arm to autonomously image many plants
from a variety of viewpoints. We describe our robot design and
demonstrate it experimentally by collecting daily photographs
of 54 plants from 64 viewpoints each. We show that our ap-
proach can produce scientifically useful measurements, operate
fully autonomously after initial calibration, and produce better
reconstructions and plant property estimates than those of over-
canopy methods (e.g. UAV). As example applications, we show
that our system can successfully estimate plant mass with a
Mean Absolute Error (MAE) of 0.586g and, when used to
perform hypothesis testing on the relationship between mass
and age, produces p-values comparable to ground-truth data
(p=0.0020 and p=0.0016, respectively).

I. INTRODUCTION

Non-destructive methods for estimating plant properties
are of interest to both researchers and farmers to maximize
crop yields and minimize resource utilization by developing
more accurate growth models and monitoring plant health
more precisely [1]. While traditional methods of measuring
plant properties require harvesting the plant (e.g. placing on
a scale or performing a nutrient analysis) [2], harvesting the
entire plant makes it impossible to measure the same plant
multiple times. Instead, many “replicates” must be planted
to (1) harvest periodically and (2) obtain a larger sample size
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per harvest to compensate for plant variation, both of which
make developing plant models labor and resource inefficient.
Non-destructive methods, which are defined by not requiring
harvesting, for estimating plant mass (and other properties)
with both high throughput and accuracy would enable more
accurate plant modelling [3], [4].

Significant work has applied computer vision and/or
robotics to non-destructive plant analysis and can be broadly
categorized into 2D and 3D approaches [5]. Works focusing
on aggregate field biomass rather than individual plant mass
[6] do not achieve comparable accuracies to those dedicated
to individual plants, so we focus on the latter. 2D computer
vision approaches with single-plant resolution monitor plant
disease, health, and canopy area well [7], but struggle to
estimate mass with high accuracy [8]: a critical component
of growth modeling. 3D approaches include using RGB [9],
Stereo [10], Time-of-Flight-based [11], [12], and a number
of other specialized sensors to estimate plant properties such
as mass, dimensions [13], and organ structure [14], [15]. In
most cases, multiple viewpoints are required to accurately
assess the 3D structure of a plant, with occlusions posing par-
ticular difficulty [13], [14]. Existing approaches tend to focus
on either high-throughput or high-accuracy. High-throughput
approaches, such as satellite [16], [17], UAV [14], [18]–[20],
conveyor [21], and cart [22]–[26] -based systems, can pheno-
type large numbers of plants but are less capable of handling
occlusions due to their limited viewing angles. Meanwhile,
high-accuracy approaches collect data from many viewpoints
using e.g. robot arms/gantries [27], [28], scanner turntables
[29], and handheld scanners/photogrammetry [10], [11], but
are not designed to image large numbers of plants in an
automated fashion.

In this work, we propose a medium-throughput, high-
accuracy approach that pairs the large workspace of a
cable robot with the dexterity of a robot arm manipulator
to collect photos of many plants from many viewpoints.
We validated the hybrid cable-manipulator approach with a
3m× 2m cable-driven parallel robot (CDPR) and 4 degree-
of-freedom (DoF) manipulator moving an RGB camera to
image lettuce plants in the vertical hydroponic system shown
in Fig. 1. We collected a dataset consisting of photos, fresh
masses, and dehydrated masses of 54 plants. Finally, we
demonstrated the scientific utility of the data collected by
our robot both qualitatively and quantitatively by comparing
dense 3D reconstructions, mass estimates, hypothesis tests,
and occlusions against 3 baselines based on simulated photos
for competing approaches.
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Fig. 1. The robot is placed in a vertical indoor grow chamber between
the plants and the grow lights (Left: side view; Right: top view). The robot
consists of a CDPR which moves the robot arm (circled in red) from plant
to plant to take photos from a wide set of viewpoints.

II. APPROACH

The robot used for collecting photographic data of the
lettuce plants consists of 2 subsystems: a robot arm mounted
on the end effector of a cable-driven parallel robot (CDPR).
The purpose of the robot arm is to collect large numbers of
photos of a plant from various, repeatable angles for use in
SfM and other analysis techniques. Meanwhile, the CDPR
enables analyzing a larger quantity of plants by moving the
robot arm from plant to plant, enlarging the workspace of
the robot arm to cover dozens of plants.

A. Mechanical Design

1) CDPR: The cable-based robot platform is chosen for
its scalability and economy [30], [31], which allow the robot
to reach multiple plants and remain permanently installed
for complete autonomy. Although our demonstrated robot
is only 2.9m× 2.3m in size, in principle it can scale to
almost any size vertical grow towers. As compared to e.g.
gantry or conveyor type systems, cable-based systems remain
almost constant in price relative to size. The planar design
is chosen for its favorable tradeoff between capability and
cost/complexity, since collisions with plants would limit the
utility of out-of-plane motions anyway.

The CDPR is an 8-cable, 4-motor planar CDPR with a
workspace of roughly 2.9m× 2.3m. Details on the design
can be found in [32], with the primary distinctions being
that (a) the robot arm shown in Fig. 3 is used in place of the
spray paint carriage, and (b) the cables are doubled to provide
more out-of-plane stability. The doubled cables consist of
two cables spooled with two drums on a shared shaft driven
by a single motor, as depicted in Fig. 2. Although certain 4-
motor planar CDPR geometries can control both translation
and rotation in the plane, we choose a geometry which
largely precludes rotational motion. This choice was made
because the benefit of the additional stiffness enabled by
the chosen geometry outweighs the lack of CDPR rotation,
especially when coupled with the robot arm’s shoulder joint.
The CDPR with robot arm is shown in Fig. 2.

2) Robot Arm: The robot arm (Fig. 3) is chosen to
supplement the planar CDPR with the dexterity to reach
around a plant and take photos from a variety of viewpoints.
The robot arm was chosen to have 4DoF in a configuration

Fig. 2. Left: CDPR consists of 4 pairs of cables controlling a moving
platform on which a robot arm is mounted. Right: Each pair of cables is
crossed provide additional out-of-plane stability, but both cables in each pair
are driven by the same motor.

Fig. 3. 4DoF Robot arm with camera used to take a large number of photos
from various angles of a single plant. Left: Arm (without wooden cover or
CDPR) taking photos of a plant. Right: Arm inside wooden protective cover.

that, combined with the 2DoF of the CDPR, provides the
robot with full SE(3) motion. Although in theory 1DoF is
redundant with camera-axis rotation and another 2DoF are
unnecessary with a sufficiently wide field-of-view camera,
we found in practice that they are helpful when reaching
around plants to avoid collisions with neighboring plants.

The robot arm is adapted from a Trossen Robotics Phan-
tomX Pincher Mark II [33], which is a 4DoF robot ma-
nipulator using Dynamixel AX-12A servos. The links were
extended to have lengths of 0.107m, 0.194m, and 0.032m
after the shoulder, elbow, and wrist joints respectively. We
also replaced the gripper with a Raspberry Pi Camera Module
v2, which uses a IMX219 8MP sensor. The 4 DoF allow
rotation in θ with the base joint and both translation and
rotation in the x− r plane (see Fig. 4). The completed robot
arm is shown in Fig. 3.
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Fig. 4. Coordinate frame of the camera with respect to a lettuce plant.
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Fig. 5. System communication overview.

B. Electrical and Communication Design

A Raspberry Pi 4 controls the camera, robot arm, and
CDPR using ROS, as overviewed in Fig. 5. The electronics
are shown in Fig. 6, excepting the motor controllers and
motors which are available in [32, Fig. 6 (right)]. The camera
is connected and controlled directly by the Pi. The arm is
controlled by an Arbotix-M microcontroller which receives
joint angle position commands from the Pi and sends back
joint angle position feedback. The CDPR is controlled by
a Teensy 4.1 which receives high-level cartesian position
commands from the Pi and applies low-level motor torque
commands to the motor controllers using the algorithm from
[34, Sec. III.A] using factor graphs [35]–[37].

C. Data Collection Algorithm

The algorithm used for a data collection session consists
of using the CDPR to move to a plant, then using the
robot arm to take photos from a variety of viewpoints. The
positions of the plants on the grow towers are known and
pre-programmed for the CDPR to move to, and the set of
camera poses is adjusted based on the age of the plant: the
view angles remain consistent while the distance to the plant
increases with plant age.

III. EXPERIMENTAL METHODS

We validate our robot design and data collection procedure
by collecting data across 2 growth cycles with different nutri-
ent (fertilizer) schedules, analyzing the mass estimates using
SfM, and comparing against 3 baseline methods simulat-
ing high-throughput or high-accuracy approaches. Although
more modern techniques for estimating plant properties using
computer vision are available, we use a simple, off-the-shelf
SfM approach as it is sufficient to validate the data collection
capabilities of our robot.

A. Lettuce Growing and Dataset Collection Procedure

The data collection procedure was designed to collect
photos, masses, and elemental nutrient contents of 72 total
plants distributed across various growth stages and 2 different
nutrient schedules (“Experiment 1” and “Experiment 2”).
We used Bibb Butterhead Lettuce plants because they are

Fig. 6. Electronics mounted on the CDPR moving platform inside a
protective wooden cover.

economically well-suited to indoor farming, grow fast, and
have qualities that make them challenging for computer
vision approaches (e.g. high degree of self-occlusion and
self-similar texture).

Due to learned lessons from Experiment 1, the experiments
used slightly different procedures, but the growing procedure
for each individual plant remained the same:

1) To germinate, place seeds in a dampened rockwool
substrate, and place the substrate in an incubator next
to grow lights for 14 days.

2) Transplant the seedlings (with substrate) into the ver-
tical hydroponic grow towers (“Day 0”).

3) Take 64 photos (1 top-down, and 21 from each of 3
rings with constant φ) per day.

4) Harvest and measure ground truth (GT) data at the
scheduled time.

The harvest process consists of cutting the plant at the base,
weighing immediately (“Fresh Mass”), dehydrating for 48
hours, weighing again (“Dry Mass”), and performing a nu-
trient analysis. The fresh mass must be weighed immediately
since, once cut, transpiration causes the plant to lose mass
so quickly that the reading on a gram scale will observably
decrease during the few seconds it is being weighed.

For Experiment 1, the General Hydroponics Flora Series
fertilizer is used with ratios 3:2:1 of FloraGro, FloraMicro,
and FloraBloom totalling 138ml of fertilizer per 100L of
water. The pH is monitored and buffered daily, and the
hydroponic system is flushed/replenished every 2 weeks. For
Experiment 2, the Modified Sonneveld’s solution from [38]
is used. The pH is monitored and buffered daily, and the
hydroponic system is flushed/replenished 3 times per week.

For Experiment 1, 48 plants were planted in sets of
12 each week and harvested at the same time when the
oldest plant reached maturity (28 days after transplant). For
Experiment 2, 24 plants were planted at the same time and
harvested 3/day from 21 to 28 days after transplant. The



Experiment 2 plants were planted at the same time to reduce
variability due to germination conditions. Consequently, they
reached maturity at similar times so they were planted at
half the density as in Experiment 1 to reduce overcrowding.
The harvest schedule was designed to capture the most
“interesting” portion of the logistic growth curve.

The specifications for the indoor vertical hydroponic setup
will be available in [39], and the vertical grow rig with cable
robot is shown in Fig. 1.

B. Mass Estimation using SfM
We validated the efficacy of our robot and data collection

by estimating the masses of the lettuces using SfM. For each
plant, we first used COLMAP to generate a dense point cloud
of the plant from the photos taken by the robot. Using robot
forward kinematics as camera pose priors, we transformed
the point cloud into a canonical frame to resolve monocular
ambiguity. We then applied a number of programmatic
cleaning steps to discard outlier and background points from
the point-cloud. Next, we generated a mesh of the plant using
Poisson Surface Reconstruction and applied Poisson Disk
Sampling to make a more uniform mesh while maintaining
a point density sufficient to voxelize without bias on a 3mm
grid size. We computed both (1) the surface area of the mesh
and (2) a volume estimate by voxelizing the mesh at a 3mm
grid size and counting the total occupied voxels. Finally,
we applied linear regressions to estimate mass using either
surface area or volume.

C. Baseline Methods
We evaluated our approach against (a) high-throughput

methods -satellite, UAV, or conveyor-belt imagery- by using
subsets of the total photos collected, and (b) high-accuracy
methods by using only the robot arm without the CDPR to
replicate similar high-accuracy methods in the literature.

1) Baseline 1: Here we used only a single top-down photo
of each plant. We applied a 2-layer CNN to segment the plant
(foreground) from the background in the undistorted photos
and count the number of pixels occupied by the plant. We
then used the known pose of the camera relative to the base
of the plant, combined with the calibrated camera intrinsics,
to approximate the projected area of the plant.

2) Baseline 2: Here we simulated over-canopy ap-
proaches (such as UAV or conveyor-belt) by using only the
photos with camera poses that do not “reach around” the
plant. Specifically, we set the minimum threshold for the x-
position of the camera to be 17cm (the maximum observed x-
dimension of any plant in the datasets) and used only photos
from the dataset with camera poses beyond the threshold.
We applied the same mass estimation algorithm as in III-B.

3) Baseline 3: Here we replicated a low-throughput, high-
accuracy method by using only the robot arm without the
CDPR, instead manually placing the base of the robot arm
in front of each plant. For each plant, we commanded the
robot arm to a “top-down photo” pose for reference, fixed
the arm’s base in place on a stand (see Fig. 3, left), and took
the same set of photos per plant we used for our method.
We compared the throughput and camera pose consistency.

TABLE I
LINEAR REGRESSION RESULTS

Estimation Metric GT: Fresh Mass GT: Dry Mass
R2 MAE (g) R2 MAE (g)

Surface Area (ours) 0.845 11.216 0.846 0.586
Volume (ours) 0.833 11.671 0.832 0.617
Baseline 1: Projected Area 0.537 19.976 0.505 1.084
Baseline 2: Surface Area 0.292 26.049 0.285 1.401
Baseline 2: Volume 0.277 26.439 0.269 1.422

IV. EXPERIMENTAL RESULTS

Using our robot system, we produce a dataset of 54 plants,
each containing 64 photos/day, fresh mass, dry mass, and
elemental nutrient content. Of the 72 plants initially planned,
18 were discarded due to overcrowding or death. The full
datasets are available online [40].

We applied a number of quantitative and qualitative met-
rics on the datasets to evaluate our design:

1) characterize the speed (throughput) of data collection,
2) evaluate regressions between GT and estimated metrics

(using R2 and cross-validation MAE),
3) compare statistical power using GT vs estimated met-

rics for hypothesis testing,
4) estimate point cloud occlusion using a non-linear re-

gression, and
5) visualize point clouds.

A. Data Collection Throughput

Our robot system was capable of autonomously collecting
data at approximately 2640 photos/hour and spanning 56
plants at a density of 350 cm2/plant (although the experi-
ments had fewer viable plants than the robot was capable
of imaging). Given the inherent scalability of cable robots,
increasing the size of the cable robot to reach a greater
number of plants should be possible. Additionally, higher
quality cameras can dramatically increase the photo capture
rate by enabling faster shutter speeds or even continuous
robot arm motion (currently, the arm must stop for each
photo to eliminate motion blur and rolling shutter effects;
motion input-shaping may also improve the capture rate).

Whereas Baseline 3 required a pair of skilled humans to
collect data and was only capable of collecting 300-600
photos/hour (64 photos/plant) (depending on the skills of
the operators), during experiment 2, our robot system was
demonstrated to run autonomously without human supervi-
sion across several days. We anticipate that the robot can be
run 100% autonomously in future growth cycles.

B. Mass Estimation Regression Results

Based on R2 and leave-one-out cross-validation MAE
values, our estimated metrics using the full dataset are better
correlated to the GT masses than the baseline metrics. Figure
7 shows the linear regressions and R2 values for a couple
representative pairs, and Table I shows the R2 and MAE
values for linear regressions between estimated metrics and
ground truth masses.
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Fig. 7. Sample linear regression results estimating dry mass (GT) using the
surface area computed from SfM (top) and the projected area estimate from
a single top-down photo of each plant (bottom). Our regression is better
than the baseline’s which demonstrates that the our robot design’s ability
to capture many viewpoints obtains better performance than a simulated
high-throughput approach with limited viewpoints of a plant.

C. Statistical Power

Ultimately, one primary application of non-destructive
phenotyping is to draw scientific conclusions from the com-
puted metrics. To this end, we evaluated our method by
running statistical significance tests using (1) ground-truth
masses, (2) estimated masses our method in III-B, and (3)
estimated masses using the baseline methods from III-C. We
used ANOVA [41] to test 2 hypotheses: (a) the age of the
plant is correlated with the mass of the plant and (b) nutrient
schedule is correlated with the mass of the plant.

To test the hypothesis that age is correlated with mass,
we grouped the plants into their harvest days and run one-
way ANOVA tests to determine if the different groups have
different means of each of the mass metrics. Due to the non-
uniform frequencies of ages in the harvested plants, shown
in Table II, we performed separate tests for Experiments 1
and 2, and for Experiment 1 we only used the 15 and 21
day-old age groups (note that 2-group ANOVA is equivalent
to t-test with independent samples [41]). The results are
presented in columns 2 and 3 of Table III and show that both
our estimate volume and surface area have similar statistical
powers as the GT masses (p < 0.005), while the baselines are
nearly an order of magnitude less powerful. The exception
is Baseline 1 for Experiment 1, which is likely an artifact of
the camera position algorithm used for experiment 1 using
different camera positions for the different age groups.

TABLE II
PLANT HARVEST AGE DISTRIBUTION

# of Samples for Each Age

Age (days) 8 15 21 22 23 24 25 26 27 28
Experiment 1 6 11 11 3
Experiment 2 3 3 2 3 3 3 3 3

TABLE III
ANOVA STATISTICAL SIGNIFICANCE TESTS

Metric
p-value for p-value for

Age Discrimination Nutrient Schedule
Exp. 1 Exp. 2 Discrimination

Fresh Mass (GT) 0.00156 0.00037 0.00284
Dry Mass (GT) 0.00137 0.00263 0.00288
Surface Area (ours) 0.00219 0.00352 0.03134
Volume (ours) 0.00204 0.00338 0.03766
Baseline 1: Projected Area 0.00086 0.02661 0.32745
Baseline 2: Surface Area 0.00287 0.31166 0.32066
Baseline 2: Volume 0.00265 0.26535 0.28106

To test the hypothesis that nutrient schedule is correlated
with plant mass, we tested whether Experiments 1 and 2
have different mean mass metrics (since Experiments 1 and 2
were executed with different nutrient schedules, as in III-A).
To balance the data, only 28 day-old plants were used. The
results are presented in column 4 of Table III and show that
our method’s metrics are less powerful than the GT masses,
but still more powerful than the baseline methods.

D. Point Cloud Occlusion

We claim that a key advantage of our robot design is
that the dexterity of the robot arm allows us to see more of
the lettuce plant thereby reducing occlusions (as compared
to high-throughput, over-canopy methods). To assess the
degree of occlusion, we used a number of assumptions to
generate a metric for “occlusion proportion”. Intuitively, we
observed that the smallest plants had negligible occlusion
so their estimates should be the most accurate. This is
reflected by the slightly convex shapes of the data in Figure
7, indicating that extrapolating the lettuce density from small
plants would produce under-estimates for the masses of
large plants. Assuming that underestimates in the mass are
due primarily to occlusion, we approximated the occlusion
proportion d ≈ 1− m̂

m where m is the true mass, m̂ := ρXest

is a naı̈vely estimated mass (because it does not compensate
for occlusions), and Xest is the computed metric from the
plant photos (surface area, volume, or projected area). We
also approximated d to be proportional to the depth of
a cube with the same mass and density as the lettuce:
d ≈ km

1/3
est , where k (“occlusion coefficient”) indicates a

method’s susceptibility to occlusion (smaller k is better).
Finally, we can derive a new equation for the occlusion-
compensated mass estimate:

m̂occ =
m̂

1− d
=

ρXest

1− k (ρXest)
1/3

. (1)

By running a new regression using this model instead of the
linear one in IV-B, we can compare k for different methods,
where small k indicates less occlusion.
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Fig. 8. Representative regression results using the occlusion-compensated
model (Eq. (1)) to estimate fresh mass (ground truth) from (top:) the surface
area computed from SfM and (bottom:) projected area estimate from a single
top-down photo of each plant, suggest that our method is less susceptible
to occlusion. Lower k signifies less occlusion (better).

TABLE IV
SUSCEPTIBILITY OF DIFFERENT METHODS TO OCCLUSION

Estimation Method
Occlusion coefficient, k (g−1)

(lower is better)
GT: Fresh Mass GT: Dry Mass

Surface Area 0.236 0.593
Volume 0.261 0.659
Baseline 1: Projected Area 0.519 0.883
Baseline 2: Surface Area 0.333 0.680
Baseline 2: Volume 0.350 0.743

The occlusion-compensated regression results show that
our method has the smallest occlusion coefficient, indicating
that the dexterity of the robot arm was helpful in reducing
occlusions and capturing a more complete reconstruction of
the plant. Representative regressions are shown in Figure 8
and the occlusion coefficients are shown in Table IV.

E. Point Cloud Visualizations and Qualitative Descriptions

Both the photos (Fig. 9) and resulting point clouds (Fig.
10) show that our robot is capable of capturing lettuce
plant photos from a variety of viewpoints for use in non-
destructively estimating plant mass. Fig. 10 identifies gaps
in the reconstruction due to occlusion that would result from
an over-canopy approach (Baseline 2), thereby supporting
the claim that the additional dexterity afforded by our hybrid
CDPR with robot arm is helpful in reducing occlusions.

A comparison between photos taken by our robot design
and photos taken by Baseline 3 (the arm alone), depicted in
Fig. 9, demonstrates the improved consistency with which
our robot can position the camera for photos. Camera pose
relative to the plant center is highly variable due to human
placement error, and the human labor/oversight required is
significant (6-9 plants / hour vs no supervision required
for the CDPR). 3D reconstructions for Baseline 3 are not
shown: aside from the occasional missing points due to
improperly framed photos (human error), the reconstructions
were similar to those obtained using our robot design.

Fig. 9. Left: Example photos from our plant dataset depict the consistency
with which our robot is able to photograph different plants from the same
relative camera angle. Right: In contrast, photos taken using only the robot
arm (Baseline 3) are inconsistent and labor-intensive.

Fig. 10. Dense reconstructions of an example lettuce plant using all the
photos (left) vs a subset of photos according to Baseline 2 (right) collected
by our robot show that the additional camera viewpoints enabled by our
hybrid CDPR+arm design are helpful in reducing occlusions (circled in
yellow) and capturing a more complete reconstruction of the plant.

V. CONCLUSIONS AND FUTURE WORK

In this work, we designed and validated a medium-
throughput, high-accuracy plant monitoring robot. We
demonstrated its utility by estimating the masses of leafy
plants across 2 growth cycles and comparing against 2
baselines simulating higher-throughput systems with fewer
available camera viewpoints. We achieved comparable sta-
tistical power to ground-truth mass measurements, signify-
ing scientific utility. We also achieved consistently superior
performance to the baselines, signifying that, compared to
high-throughput approaches to plant monitoring, we achieve
higher accuracy in return for our slightly reduced through-
put. As compared to prior approaches prioritizing (1) high-
throughput but limited viewpoints or (2) low-throughput
but many viewpoints, our approach strikes a balance to
autonomously collect large numbers of plant photos from
a diverse, repeatable set of viewpoints.

Future works include applying visual servo-ing and other
real-time computer vision processing techniques to collect
better framed photos, analyzing the minimal mechanical
design required of the robot arm to achieve high accuracy,
and applying more modern techniques for estimating plant
properties using computer vision.
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