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Abstract—To achieve autonomy in unknown and unstruc-
tured environments, we propose a method for semantic-based
planning under perceptual uncertainty. This capability is cru-
cial for safe and efficient robot navigation in environment
with mobility-stressing elements that require terrain-specific
locomotion policies. We propose the Semantic Belief Graph
(SBG), a geometric- and semantic-based representation of a
robot’s probabilistic roadmap in the environment. The SBG
nodes comprise of the robot geometric state and the semantic-
knowledge of the terrains in the environment. The SBG edges
represent local semantic-based controllers that drive the robot
between the nodes or invoke an information gathering action to
reduce semantic belief uncertainty. We formulate a semantic-
based planning problem on SBG that produces a policy for
the robot to safely navigate to the target location with min-
imal traversal time. We analyze our method in simulation
and present real-world results with a legged robotic platform
navigating multi-level outdoor environments.

I. INTRODUCTION

Consider a robot tasked to explore complex and unknown
environments autonomously. The environment can contain
various mobility-stressing elements such as rubble, stairs,
slippery surfaces, and narrow passages (Fig. 1). To navigate
safely through these elements, the robot needs to identify
the high-level semantic information of the terrain, and adapt
its motion planning policy accordingly. However, making
decisions based on semantics can be risky because of the
observation noise and uncertainty of semantic recognition. In
particular, in safety-critical systems, robot navigation using
incorrect semantic classification can lead to catastrophic
outcomes. This work investigates how to use semantic in-
formation robustly for planning in real-world operation.

Semantic-based planning under uncertainty has three ma-
jor challenges. The first challenge is handling the uncertainty
and misclassification from the semantic detection. The sec-
ond challenge is in building a semantic representation that
can be used for decision making and that is scalable to model
complex and large-scale environments. The third challenge
is in folding the semantic information into the robot planning
and control framework that typically relies on geometric
information.

To address these challenges, we develop a method to
model semantic information for robot navigation and com-
pute a semantic-based planning policy. We introduce the
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Fig. 1: Boston Dynamics Spot quadrupeds endowed with
NASA JPL’s NeBula autonomy solution [1] explores chal-
lenging real-world environment by traversing various terrains
including: i) slippery passages, ii) stairs, iii) rubble, and iv)
narrow passages. Each domain requires a specific controller
to safely navigate the environment.

Semantic Belief Graph (SBG) to jointly model geometric and
semantic information on the robot’s probabilistic roadmap
(PRM) [2]. The nodes in the SBG capture the uncertainty
of semantic information. By capturing semantic uncertainty,
we can model a semantic-based local controller as the SBG
edges that enable the robot to choose a terrain-specific con-
troller based on the semantic-type of the terrain. Moreover,
we include information gathering actions in the SBG edges
to model robot actions that can reduce semantic information
uncertainty. Additionally, we discuss how to formulate the
graph transition probabilities and semantic-dependent cost
function. We show policy computation in SBG is tractable
for real-world navigation problems.
Our technical contributions are as follows:

1) We propose the Semantic Belief Graph (SBG), a geo-
semantic-based representation of a robot’s probabilistic
roadmap in the environment.

2) By representing the semantic information in the SBG,
we can predict and control the semantic uncertainty
in planning rather than purely reacting to the semantic
detection.

3) We propose a new motion planning architecture that
incorporates semantic information. By using high-level
semantic information, this approach can perform bet-
ter in navigating environments that require switching



between terrain-specific controllers.
4) We tested the proposed method on representative sim-
ulations and in the field with a physical robot.

II. RELATED WORK

Semantic Representation. Several different approaches
have been proposed for representing the high-level semantic
information used for planning and navigation [3]. Some
earlier works introduce multi-hierarchical [4] and layered
spatial representations [5]. Nuechter and Hertzberg present
a semantic 3D mapping method built with onboard robotic
sensors [6]. Nieto-Granda et al. build semantic mapping by
classifying regions of space [7]. There are also several works
in semantic-based SLAM to estimate 3D geometry of a
scene with semantic labels such as Kimera [8], SegMap [9],
Semantic Fusion [10], and Voxblox++ [11]. In our work,
we consider a graph representation to capture the semantic
information and its uncertainty in the graph and associate
the information directly with the robot’s geometric roadmap.
The sparsity of the graph reduces the computational and
memory requirements while capturing relevant information
for semantic-based planning.

Semantic-based planning for robot navigation.
Semantic-based navigation considers various planning
problems and methods. Hahnheide et al. proposes task
planning under uncertainty by classifying semantics into
three knowledge layers for object search, mapping, and
room categorization [12]. Kostavelis et al. introduces a
hierarchical navigation graph by building semantic maps
that consist of metric, topometric, sparse topological map,
and augmented navigation graphs [13]. Some works use
learning-based methods by including semantic information
in deep reinforcement learning models [14] and imitation
learning [15]. In our work, in addition to using semantic
knowledge for robot path planning, we also consider the
problem of changing robot locomotion controllers based on
semantics. Moreover, we also include semantic uncertainty
prediction into robot actions by modeling information
gathering behavior.

Semantic-based controller switching. Our work is re-
lated to choosing suitable controller profiles based on the
semantic type of the traversed terrains. Switching between
controllers based on semantics is beneficial for efficient and
safe navigation. One example when controller switching is
critical is stair climbing because the robot needs to reliably
identify stairs and perform different locomotion [16], [17]. In
legged robot navigation, switching between gait controllers is
used to safely walk on slippery surfaces [18] and maximize
multiple objectives [19]. In this work, we develop a general
framework that captures the semantic uncertainty of terrain
detection and reasons over which controller should be used.

III. PROBLEM FORMULATION

We first formulate the problem of semantic-based planning
under uncertainty.

Geo-semantic state. We define a geo-semantic state that
consists of a robot geometric state and a terrain semantic

state. A robot geometric state z, € X is the geometric
description of a robot state in the environment. A semantic
state [, € L is a type of terrain. description in which
the robot resides over. For example, in robot navigation,
useful semantic classes include stairs, flat ground, doorways,
slippery surfaces, and rubble. The geo-semantic state is
defined as a tuple of the robot and semantic state (zy,l))

Semantic-based robot controller. Let w, € U de-
note the semantic-based robot control. It contains con-
troller parameters to enable the robot to traverse a specific
type of terrain safely and efficiently. The process model
(k+1,lk+1) = f(Tk, Uk, uk, wg) describes how the geo-
semantic state evolves as a function of the robot control and
process noise wyg.

Observation model. In a partially observable system, the
true value of the geo-semantic state is unknown and can
only be inferred by the observation variable z; € Z. The
observation model z = h(z,li,vr) encodes the relation
between (zy, (i) and zj, where vy, is the observation noise.

Belief. As the system operates in a partially observable
setting, we use information state or belief by, € B as the data
for decision making in time step k. We define by, = p(xy, i |
20:k, Uo:5k—1) @s a conditional probability distribution over all
possible states given the history of observations and actions.
Beliefs are estimated with the belief evolution model: by4; =
T(bk7u§€,zk+1).

Policy and cost-to-go. The policy m € II returns the
next semantic-based robot control uy, given the belief by. To
determine an optimal policy 7*, we define a cost function
c(b,u) as a one-step cost of taking action w in b. A cost
function can encode different metrics to be minimized, for
example, time to traverse a specific terrain using a specific
controller, control energy consumption, or computational
resources. In this formulation, the cost function calculates
the traversal time. Taking an action that risks the robot’s
safety, such as robot falling down stairs, will incur a high
cost.

Semantic-based planning problem. We formulate the
problem of semantic-based planning as follows—given the
current robot configuration xg and semantic state [g and
the goal configuration xg, find an optimal policy 7* that
moves the robot from xg to ¢ with minimal expected time
of traverse by selecting the best path and semantic-based
controllers:

T
= argminE{Zc(bk,uk)} (D

w€ll k=0
s.t. bpp1 = 7(bg, U, Zky1)
2k = hag, Ik, o),
To=2xg,lp =lg, 7 = ¢,
Vk € {0,...,T}.

IV. SEMANTIC BELIEF GRAPH

In this section, we discuss the Semantic Belief Graph
(SBG), a geo-semantic information roadmap in the belief
space. The SBG is defined as a tuple of nodes and edges



(V, M). We first introduce the formulation of SBG nodes
V and edges M. Then we discuss how to model transition
probabilities and graph costs. Finally, we show how to find
the graph policy and plan with the SBG.

A. SBG nodes

A node in SBG is a small region of belief B’ around a
sampled belief b°. In the SBG graph, we parameterized the
geo-semantic belief into two independent representations: a
Gaussian geometric belief and a categorical semantic belief.

Gaussian geometric belief. We assume the noise in the
robot geometric belief x; is a Gaussian. We denote the ge-
ometric random estimation vector by ™+, whose distribution
is p(xZ) = p(xk | 20k, Uo:k—1). The mean and covariance of
xt is denoted by T = E[zT] and P = E[(xt —27)(z " —
27)T] respectively. In SBG nodes, the Gaussian geometric
belief is characterized by the pair (27, P).

Categorical semantic belief. The semantic random
estimation vector [T follows a categorical distribution,
whose distribution is p(l;) = p(lg | 20:k,u0.k—1). For
a finite number of the semantic type d;, [T can be
represented as (d; + 1)-dimensional vector denoted as
It = [I%,02,... 14 [unknown] guch that [™ > 0 Vn and
Zifll I = 1. The unknown class is used when the
semantic variable can not be classified to any of the defined
semantic classes.

Constructing SBG nodes. To construct SBG nodes B,
we first sample PRM nodes denoted by {v’ }évzl from the
obstacle-free space [20]. We then associate the nodes with the
mean and covariance of the geometric belief. The geometric
covariance can be set according to the mission specification,
for example, setting a small covariance to align the robot to
stairs with a small tolerance. Then we associate the semantic
belief by initializing the semantic belief distribution with
unknown labels or with prior knowledge of the environment
if any.

B. SBG edges

We design the SBG edge as a local semantic-based con-
troller. There are two types of semantic-based controllers:
i) navigation controller and ii) information gathering con-
troller. A semantic-based navigation controller, denoted by
u for an edge connecting nodes B® and B7, drives the robot
from B to B, using a low-level motion controller designed
to traverse terrain with a semantic type [. A semantic-based
information gathering controller, denoted by ut, for a self-
loop edge on B, performs an information gathering action
to reduce the uncertainty of the semantic classification on
the current node B.

C. Belief Transition Probabilities

Taking a local semantic-based controller results in updates
in beliefs: i) the geometric belief update due to the robot
configuration changes by a navigation controller i, ii) the
semantic belief update due to additional observation by an
information gathering controller 1. Such belief updates,
i.e., belief transition probabilities, should be modeled since
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Fig. 2: Visual representation of Semantic Belief Graph.
Graph nodes in the geo-semantic belief is denoted by B?.
The pie chart represents the categorical belief distribution
of the semantic type around the location of the node. The
graph edges represent terrain specific local controller s’
The circular edge represents information gathering action
Wi to reduce semantic belief uncertainty.

the optimal policy depends on the geometric and semantic
beliefs. In this work, we assume the transition between
geometric belief nodes using controller 4%/ is deterministic,
though it is possible to extend this framework to account for
failure probabilities [21].

To model the semantic belief transition probabilities, we
sample a finite number of semantic belief vectors I*. We
assume the updated semantic belief after information gather-
ing actions will only reduce the uncertainty of the belief and
reveal the most probable s_emantic type. Let B} +1,; denote
a j-th sample of node B* at time-step k + 1 after taking
controller y. Then the transition probability of the action
is defined as P(B}, 41, j|B,i, Wi). The transition probability
can be assumed uniform or learned from observation data.

D. Graph Cost

To find a policy on an SBG graph, we need to define
the cost associated with the graph edges and nodes. Let
CY9(B*, i) denote the cost of using controller x at node
Bt. The graph cost CY9(B?, ;1) sums all one-step costs along
the edge until it reaches the target node B’ or updated the
semantic belief in current node B°.

In particular, a semantic-based navigation controller %/
has a different cost depending on the specified mission
objective and type of terrain traversed by the controller. In
this work, we use traversal time to determine the cost. Using
a terrain-specific controller on the wrong type of terrain
incurs a higher cost as the robot locomotion will not be
efficient on the wrong terrain. As the robot does not know the
true semantic type of the terrain, C9(B?, 1) is estimated by
taking the expected value of taking controller y%/ over the
semantic distribution:

ng+1
CIB',pif) = > p™Co((«', ™), 1), (@)
m=1
E. Graph policy on SBG

We define a graph policy 79 : V — M as a function that
returns an edge for any given node in the graph. The edge
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Fig. 3: An example of a simple planning problem on SBG to
move the robot from the start node to the goal node. The top
part of the graph shows possible path to the goal, but initially
the confidence of the stair on node B} at time step k is low.
Meanwhile the bottom part of the graph shows a path through
a rubble with a longer traversal time than moving through
the stair. The red box shows two most probable realization
of the node B} . after taking information gathering action
wrg- The dashed arrows through the top part of the graph
shows the most likely path by taking the best local controller
policy on every node.

is the local controller y that then controls the robot. Given
a target node B9°*, the graph policy 9 can be seen as a
planning tree that drives the robot to Bg,, from any node
in the SBG.

Graph cost to go. To choose the best graph policy, we
define the optimal graph-cost-to-go J9 from every node. The
cost-to-go from a given node B° is equal to the cost of the
next local controller 1 and the expected cost-to-go from the
next node. The local controller is picked among available
edges M (i) connected to B. The dynamic programming
(DP) equations for this graph are

J9(BY) = min CY9(B%, u) + J9(B%) (3)
HEM(1)

79(B%) = arg min J9(B"). 4)
HEM(i)

As there is a finite number of nodes in the graph, the DP
equation can be solved offline. Standard techniques can be
used to solve the DP such as with value/policy iteration
methods.

V. EXPERIMENTAL RESULTS

We first illustrate SBG construction and show planning
results in a small domain. Then, we present simulation results
in a larger environment. Finally, we report the results in a
real-world scenario with JPL’s Boston Dynamic legged robot.

A. Constructing and planning with SBG in a small environ-
ment

In this experiment, we consider a planning problem of
moving a robot to a goal in a two-level environment repre-
sented as a roadmap.

System description. The geo-semantic state is composed
of the 3D geometric state and semantic state with four

goal location
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Fig. 4: Course map of the simulation based on real-world
urban environment depicted by the photos on the bottom.
Red dots on the map marked the location of stairs and rubble.
The most likely paths computed by all the methods are
overlaid on the map. The circular edges represent information
gathering action.

possible labels [ = {flat_ground, stair, rubble, unknown}. The
action u is generated from four possible local controllers:
Mstairs [ flats Hrubble, and prg. The first three are controllers
to traverse specific types of terrain and p ;¢ is the controller
to gather semantic information around the robot. In this
experiment, the robot is assumed to have accurate geometric
localization. The robot observes the semantic type as a
categorical distribution of possible labels and the accuracy of
the semantic classification increases as the robot gets closer
to the observed semantic terrain.

SBG. The constructed SBG and computed policy is shown
in Fig. 3. Every PRM node is associated with a geo-semantic
belief state. The closed-loop graph policy is then computed
with value iteration. We compute the optimal policy on every
node in the graph. In the planning phase, two new nodes are
sampled to account for the most possible outcome of the
semantic label after the information gathering action.

Benefits of planning with SBG. There are two key
benefits by planning with SBG. First, by reasoning about
the uncertain information regarding possible stairs in the
environment, the robot can be directed to investigate a
potential stair that can lead to a shorter path to the goal.
Second, by considering the semantics of the terrain, the robot
can plan to switch to different controllers that are safer and
more efficient for the specific terrain type in the environment.

B. Simulation Results

To show that our framework is applicable to complex real-
world robot navigation scenarios, we evaluate the planning
performance in a simulated urban environment of the SubT
Challenge Final event. The urban part of the course consists
of 27 segments spanning around 300 m. The terrains and



TABLE I: Simulation results of the experiment in Section
V.B. The traversal time (in time steps) is the average time
across 20 runs taken by the robot from the starting location
to the goal by following a planning policy. The percentage of
correct terrain-specific controller is computed for all edges
in the computed graph policy, including edges not on the
most-likely path to the target.

Planning policy  Percentage of correct controller ~ Traversal time

Our Approach 93.9% 18
Conservative 100% 22
Optimistic 78.8% 23
25
20
2
%15
(1]
£
o 10
£
E
5
0
Our Approach Conservative Optimistic

M Traversal time with correct controller Traversal time with wrong controller

M Informating gathering

Fig. 5: The time breakdown of the traversal time in the
simulation.

environmental model are based on the DARPA Callout
document, and we use the same geo-semantic and controller
model as the previous experiment.

We compare our method to two naive policies:

1) Conservative policy: this policy only directs the robot

to traverse terrains with > 95% semantic confidence
I,
2) Optimistic policy: this policy always assumes the most
likely semantic type.
Fig. 4 shows the course map of the simulation and the paths
computed by all methods. Simulation statistics are provided
in Table I and Fig. 5.

Traversal time. We first compare the efficiency of the
traversal time. The average traversal time of our method
is shorter than other policies. The conservative policy takes
longer to traverse as it often performs information gathering
actions to correctly identify the terrain type. While the
optimistic policy takes longer because it uses the wrong
controller for the suitable type of terrain (e.g. it uses the
rubble controller to walk slowly on flat terrain). Our planning
method on SBG balanced the two policies by accounting
for the expected cost to perform information gathering or
choosing an appropriate controller based on the semantic
belief.

Efficient controller switching. We also compare the
accuracy of the semantic-based controller to the true se-
mantics of the terrain. While the controller accuracy of our
planner is lower than the conservative policy, it balances the

@ S o
Fig. 6: Top: Field experiment setup in a two-level outdoor
environment by using the NASA JPL Spot robot [22] and
Spot’s stair climbing behavior. Bottom: Visual representa-
tion of the policy computed with the SBG on Information
Roadmaps [20]. The red arrows show the most likely path
from the starting location (green square) to the goal (yellow
star). The circular arrow represents information gathering ac-
tions. Initially, the only path in the graph between the starting
and goal location is through the ramp. By considering the
path through nodes labeled with stairs, the robot chooses a
shorter path by climbing the stairs.

information gathering actions and takes a more conservative
policy to minimize the overall traversal time. For example,
in an area classified as rubble with low confidence, it saves
time by choosing a more conservative policy that slows
the robot movement rather than performing information
gathering actions in places that takes a longer time to identify
the terrain type with greater confidence.

C. Field Test Results

We tested our approach on the Boston Dynamics Spot
legged robot in a two-level outdoor area connected by
stairs and ramp as shown in Fig. 6. The robot geometric
localization is provided by onboard LIDAR-based SLAM so-
Iution [23] and the stairs are detected visually by the robot’s
camera and using point cloud segmentation around the robot.
The robot has two different semantic-based controllers to
walk through flat-terrain and stairs. The robot is assigned to
move to a specific goal location on a different level. The prior
map is built by allowing the robot to explore the environment
autonomously [24].

The computed policy to the goal on the SBG directs
the robot to visit the closest stair to the goal location.
Before attempting the stair climbing, the robot performed



information gathering actions. The information gathering
action directs the robot to pitch up to map the stair area and
validate the location of the stair with the local pointcloud.
Using probabilistic semantic information helps the robot to
find a shorter path because without it the robot will take a
longer route through the ramp to reach the goal.

VI. CONCLUSIONS

We presented our method for semantic-based planning
under uncertainty with SBG (Semantic Belief Graph). By
capturing geo-semantic belief uncertainty, our method can
account for it in planning and actively reduce the semantic
uncertainty. The computed policy also selects the best terrain-
based controller on every SBG edge. We demonstrate the
benefit of our approach for time-efficient and safe motion
planning in environments with a variety of challenging
terrain. We believe the proposed method is an important step
to integrate semantic knowledge for safe real-world robot
navigation in such complex environments.
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