2208.02918v3 [cs.RO] 16 Sep 2022

arxXiv

LATTE: LAnguage Trajectory TransformEr

Arthur Bucker!, Luis Figueredo!, Sami Haddadin!, Ashish Kapoor?, Shuang Ma?, Sai Vemprala?, Rogerio Bonatti?

ITechnische Universitit Miinchen, 2Microsoft

Abstract— Natural language is one of the most intuitive ways
to express human intent. However, translating instructions and
commands towards robotic motion generation and deployment
in the real world is far from being an easy task. The chal-
lenge of combining a robot’s inherent low-level geometric and
kinodynamic constraints with a human’s high-level semantic
instructions traditionally is solved using task-specific solutions
with little generalizability between hardware platforms, often
with the use of static sets of target actions and commands. This
work instead proposes a flexible language-based framework
that allows a user to modify generic robotic trajectories. Our
method leverages pre-trained language models (BERT and
CLIP) to encode the user’s intent and target objects directly
from a free-form text input and scene images, fuses geometrical
features generated by a transformer encoder network, and
finally outputs trajectories using a transformer decoder, without
the need of priors related to the task or robot information. We
significantly extend our own previous work presented in [1]
by expanding the trajectory parametrization space to 3D and
velocity as opposed to just XY movements. In addition, we now
train the model to use actual images of the objects in the scene
for context (as opposed to textual descriptions), and we evaluate
the system in a diverse set of scenarios beyond manipulation,
such as aerial and legged robots. Our simulated and real-
life experiments demonstrate that our transformer model can
successfully follow human intent, modifying the shape and speed
of trajectories within multiple environments. Codebase avail-
able at: https://github.com/arthurfenderbucker/
LaTTe-Language—-Trajectory-TransformEr.git.

I. INTRODUCTION

Robots are increasingly working in proximity to humans,
sharing living and working spaces. Within this context, it is
of high importance for the robotics community to research
techniques that allow autonomous agents to seamlessly
interact with human users. This work focuses on one important
facet of human-robot interaction: given a user’s objective and
an obstacle environment, how can the robot best generate a
trajectory that respects the human preferences while tending
to safety and dynamics constraints in its surroundings?

Robots of today are still largely pre-programmed for
specific tasks, and have very limited capability to operate and
adapt to new contexts among unstructured human-centered
environments. Ideally, in such scenarios the robot should
have the ability to recognize and understand natural language
commands in a given context and map them to the task-
domain space — where tasks and constraints are largely
influenced by context, intent and affordances with objects [2].
This paradigm shift deviates from traditional motion planning,
and requires methodologies that are able to integrate multi-
modal inputs coming from perception systems (for instance
user-provided language commands and robot vision) together
with geometrical information to shape robot trajectories

ny n
Keep a much bigger distance from the computer.

Modified

Fig. 1: Trajectory reshaping obeying user’s constraints. Our method
fuses natural language commands, images of the environment, and
geometrical data to generate the modified robot’s trajectory.

towards the desired human intent. Figure 1 displays a typical
application scenario for our trajectory adaptation method.

The core of our method lies within natural language
understanding, which is the most intuitive way for a user to
express their intent. While large pre-trained large language
models (LLMs) such as BERT [3], GPT3 [4] and Megatron-
Turing [5] have revolutionized our ability to perform linguistic
tasks in recent years, we have just started to see pioneering
works that incorporate large foundation language models
with robotics tasks [1, 6]-[9]. The use of pre-trained LLMs
is extremely beneficial within the robotics context because
human-provided annotations are scarce and often costly
to obtain. The challenge which we explore in this paper
then becomes how we can exploit these rich semantic
representations and align them with geometrical trajectory
data when mapping commands towards trajectory waypoints.

In this work we propose a framework that allows a user
to reshape a trajectory using language instructions. Our
method uses a initialization from any geometrical planner
(e.g. A", RRT" [10], MPC [11]), which are concerned solely
about obstacle avoidance and dynamics constraints, and
augments it with semantic objectives. This paper serves as an
extension of our previous work in this domain [1], but with
significant improvements in the architecture and experimental
evaluations:

« Trajectory dimensionality: we expand the dimension
of each trajectory waypoint from planar (XY) to 3D and
velocity in this work;

« Environment images: while the original paper used
textual object labels (e.g. ’"Hammer’, ’Bottle’) as input
to the network, here we use images of objects when
inferring targets for the user’s commands, which is a

https://github.com/arthurfenderbucker/LaTTe-Language-Trajectory-TransformEr.git
https://github.com/arthurfenderbucker/LaTTe-Language-Trajectory-TransformEr.git

NL interaction

‘Stay far from
the bottle’

4BERT 1x768

BERT
(distilled)

CLIP #| QL
text enc.

L(0))

Obj images

2 ‘£
)
] !

1xM

m
devip

.-
/

© coeat.

\ P(0;) o B

. Initial
Obj poses Trajectory
Mx 4 Nx4

X 1
Transformer
Encoder

Base planner

= concat:
CLIP
img enc.

Modified Traj. Tral.
f f o Constraints
mod Iy
Constraints.
MLP satisfaction
Y module

1x (768 + M)
RS Gonnedt

no bias

concat.

()

x5
Transformer
Decoder

=

f

E'm, od
Shifted

Fig. 2: Systems architecture: in blue, the language and contextual encoding module, compose mainly of frozen pre-trained models. In
green the geometrical encoding . In orange the multimodal tranformer decoder.

more realistic setting;

« Multi-platform evaluation: We expand the experimen-
tal evaluation towards multiple robotics form factors
beyond manipulators. We show that the model’s outputs
are amenable to different robot dynamics and motion
controller in aerial and legged locomotion domains.

II. RELATED WORK

Natural language and robotics: Equipping robots with
natural language models provides an intuitive and straight-
forward interface to address these challenges through human
interaction and decision-making. Classically, modeling human-
robot interactions using language is challenging because it
forces the user to operate within a rigid set of instructions [12],
or requires mathematically complex algorithms to keep track
of multiple probability distributions over actions and target
objects [13, 14]. There has been an increase in recent works
that explore the use of deep models to implicitly keep track
of the complex mapping between language and actions, but
the downside is that they often require vast amounts of data
for training [15]-[18].

In the domain of navigation we find literature that in-
vestigates the use of multi-modal representations fusing
natural language and perception along with planning modules
through the use of cost functions or reinforcement learning
[7, 16, 19]-[24]. In the manipulation domain we also find the
work of [7], which uses CLIP [25] embeddings to combine
semantic and spatial information. To this end, it can be
often beneficial to use pre-trained multi-modal representations
that align visual and language inputs representation such
as [26]-[29], which often using BERT-style [3] training
procedures. Representations are often fine-tuned [30]—[32]
on the deployment scenario.

Transformers for robotics: Transformers, originally in-
troduced in the language processing [33], quickly proved
to be useful in modeling long-range data dependencies other
domains. Within the robotics motion planning context, trans-
formers architectures have been directly used for trajectory
forecasting [34] and reinforcement learning [35, 36]. A more
common use of transformers in robotics has been as feature

extraction modules for one or more modalities simultaneously
that leverage large-scale pre-trained models [1, 6]-[9].

Particularly close to this paper is the work of [9]. It uses
pre-trained LLMs to create a semantic cost map that guides a
optimization-based motion planner to produce trajectories that
satisfy motion constraints provided by a user in free-form text.
Similarly, our method also uses LLMs for textual and visual
feature extraction, however we use a transformer encoder-
decoder pair to align semantic information with geometric
cues to recast trajectories. Our first paper presented in [1]
validated our approach for 2D scenarios, and showed its
effectiveness compared to other interfaces for human-robot
interaction. As described at the end of section I this paper
extends these ideas to higher dimensions and more realistic
experimental settings.

III. APPROACH

Our overall goal is to provide a flexible interface for human-
robot interaction within the context of trajectory reshaping that
is agnostic to robotic platforms. The user provides a natural
language command, and the robot’s body or end-effector
behavior, which is expressed with a 3D trajectory over time, is
expected to be modified accordingly. Our trajectory generation
system uses a sequential waypoint prediction model that takes
into account multiple data modalities from scene geometry,
environment images and the language input, all of which are
fed into a transformer encoder-decoder pair.

Beyond the user’s semantic intent, we expect the final
trajectory to also respect safety and dynamics space-state
constraints, which can be achieved by post-processing the
model’s output into a continuous state space. This last stage
allows our same model to be employed by different robot
form factors by using the proper inverse kinematics modules.

A. Problem Definition

Let &, [-1,1] — R* be the original normal-
ized robot trajectory which is composed by a collec-
tion of N waypoints and associated velocities &, =
{(33‘1, Y1, 21, Ul), vy (.1?]\[, YN, ZN, UN))}, where TiyYiy 24 and
v; are the waypoint coordinates and the velocity at time

step ¢, respectively. We assume that the original trajectory
obeys the system constraints and can be pre-calculated using
any desired motion planning algorithm, but falls short of
the full task specifications. Let L;, be the user’s natural
language input sent to correct the original trajectory, such as
Li, = “Go slower when next to the fragile glasses”.

Let O = {0, ...,On} be a collection of M objects in the
environment, each with a corresponding position P(O;) € R3
and image I(O;). Our goal is to learn a function f that maps
the original trajectory, user command and obstacles towards
a modified trajectory &,,,4, Which obeys the user’s semantic
objectives and is contained in the system feasible domain K:

fmod = f(goa Linv O) (D

B. Proposed Network Architecture

We approximate function f from (1) by a parametrized
model fy, learned directly in a data-driven manner. This
mapping is non-trivial since it combines data from multiple
distinct modalities, and also contains ambiguities in solution
space since there are multiple trajectories that satisfy the
user’s semantic objective.

Our model architecture is divided into 3 main modules and
one constraint satisfaction step. Fig. 2 shows the connection
between this modules. First, a language and image encoder
makes use of distinct pre-trained feature encoders (BERT and
CLIP) to generate a embedded representation of the natural
language input and to identify the possible objects referred
to in the text. Next, a geometry encoder uses object poses
and trajectory waypoints as inputs and uses a transformer
to learn geometric relations between the original trajectory,
speed profiles and the objects in the scene. Finally, a multi-
modal transformer decoder combines the embedded outputs
of the two prior modules to generate the modified trajectory
autoregressively. We discuss each module in detail below:

Language and image encoder: The use of a large lan-
guage model creates more flexibility in the natural language
interface, allowing the use of synonyms (shown in Section V-
B) and less training data, given that the encoder has already
been trained with a massive corpus. We use a pre-trained
BERT encoder [3], to produce semantic feature gpgrr(2|Lin)
from the user’s input. In addition, we use the pre-trained
text and image encoders from CLIP [25] to extract latent
embeddings from both the user’s text g¢; p(2|Lin) and the
M object images ¢ p(2|I1(0O)). We compute the cosine
similarity vector s between the visual and textual embeddings
in order to identify a possible target object for the user’s
command. In section IV-B we show that using the object’s
images for target identification brings equivalent results as
our previous work [1] with object textual descriptions, since
CLIP maps both modalities to a joint latent space. Finally, we
concatenate the similarity vector s and the semantic features
geert (2| Lin) forming what we call semantic embedding gs.

Geometry encoder: The original trajectory &, is composed
of points that are low-dimensional tuples (x;, y;, z;, v;) € R%.
In order to extract more meaningful information from each
waypoint, we follow the example of [34] and apply a linear

transform with learnable weights Wy, that projects each of
these points into a higher dimensional feature space. The
poses P(O;) of each object are also processed with the same
linear transform, and padded with zeros for the velocity
component.

We then concatenate the sequences of high-dimensional
feature vectors from waypoints and objects and use a
transformer-based feature encoder Tep to extract geometrical
features for each element. The use of a Transformer model
is preferred for sequences over recurrent networks because
its architecture can intrinsically attend to multiple time steps
simultaneously. Conversely, recurrent networks suffer from
vanishing gradient issues [34], which negatively affect feature
extraction and training stability.

Multi-modal transformer decoder: Feature embeddings
from both language and geometry are combined as input to a
multi-modal transformer decoder block Tg... This block gen-
erates the reshaped trajectory &,,,4 sequentially, feeding the
last token prediction as input to the next waypoint prediction.
This procedure is analogous to common transformer-based
approaches for language translation [4, 33], but in this case
we can image that our model translates trajectories from
the original feature space towards a new space that obeys
the user’s semantic constraints. We use imitation learning to
train the model, and employ the Huber loss [37] between the
predicted and ground-truth waypoints.

C. Post-processing and execution

Once a trajectory is generated by our model it needs to
be post-processed to allow for the robot’s execution. The
modules described here allow our method to be agnostic to
specific robotics platforms.

Constraint satisfaction: Constraint satisfaction is a com-
plex and open field of study in robotics. In this work we
establish two simplifying assumptions regarding our deploy-
ment objectives. First, the base motion planner outputs a set of
hard constraints K defined in the Cartesian space that define
an admissible region for the trajectories. Second, we assume
that the original trajectory is already within in the allowable
constraint set. We post-process our model’s output trajectory
by taking steps starting at the original waypoint towards the
direction of new one: £(t) = &,(t) + a(&moa(t) — &o(t)),
where 0 < a < 1. If at any step we find that one waypoint
reaches an inadmissible region then its position is not further
updated. We note that more complex constraint satisfaction
algorithms can be developed here, but the simple approached
described worked well with our scenarios.

Inverse kinematics: Once the final trajectory is obtained,
the user may plug in any inverse kinematics algorithm to
obtain final trajectories for higher-dimensional degree of
freedom robots. In this work we evaluate our system with
manipulators, aerial and legged robots.

D. Synthetic Data Generation

Data collection in the robotics domain can be challenging
and expensive, specially when we require alignment between
multiple modalities such as language, vision, and geometry.

drive a bit further away from the
anemone fish

go much slower in the proximity of the electric fan

pass much closer to the water tower go to the upper part

We find different strategies in the robotics literature to deal
with these issues, ranging from costly large-scale online
user studies for language labeling [38, 39] all the way to
procedural data generation using heuristics [17]. Our work
relies on purely procedural generation of trajectory-language
pairs. We make a key hypothesis that the use of large-scale
language models for feature encoding (gggrT, gcLip) reduces
the data requirements in terms of vocabulary diversity. We
assume that if we are able to procedurally generate a small
but meaningful set of examples with semantically-driven
trajectory modifications we can train an effective transformer
decoder, given that the BERT and CLIP encoders have already
been trained with large corpuses and are able to handle
vocabulary and sentence variations. These assumptions are
validated experimentally in Section IV-D.

Each data sample is composed of a base trajectory &g, a
natural language input L;,,, a modified trajectory &4, and a
set of object O = {01, ...,Oxs } represented as central poses
P(0) and images I1(O). & is generated by fitting a spline
in the Cartesian space through points generated in a random
walk. Objects poses are then randomly generated in space,
and we sample object names from the Imagenet dataset [40]
as their labels, and obtain various images for each one using
a crawler over Bing Images using the object name as the
web query.

As for the language input L;,, we focus on three main
trajectory modifications: i) changes in the absolute Cartesian
trajectory space (e.g. “stay on the left”, “go more to the
right”), ii) changes in speed (e.g. “go faster”, “go slower
when next to x”), and iii) positional changes relative to
objects (e.g. “walk closer to x”, “drive further away from x).
We pick a sample from a vocabulary bank associate each
modification type, and calculate a force vector field over the
enviornment using a handcrafted function F'(L;y,, P(O)). The
field strength may vary depending on additional intensifier
words that can be added to the sentences such as “very”, “a
bit”, etc. In the section IV-B we also explore augmenting
these language inputs using BART [41], which is a pre-trained
paraphrasing model. Finally, we generate the ground-truth
trajectory modification by iteratively optimizing the original
trajectory along the vector field.

We introduce one additional hyper-parameter in the dataset
generation and model training which we name locality factor.

E E

Fig. 3: Procedural dataset examples showing the original trajectory (red), ground-truth modifications, and model predictions (blue). Images
representing objects are crawled from the web (bottom left), and the speed profile can also be modified (bottom right).

For the same language prompt, some robotics contexts might
require small localized trajectory changes while others might
expect long-range modifications. After training, the locality
factor allows the user to define their desired range of model
influence.

IV. EXPERIMENTS

We conducted several simulated and real-world experiments
to validate our methods. Our main goals were to: i) measure
the effectiveness of our trajectory modification algorithm
in 3D and velocity space, ii) understand the influence of
the different architectural components towards the model’s
success, and iii) validate the applicability of the model to
multiple robotic platforms.

A. Model training details

We trained and evaluated the model described in Section I1I
over a dataset containing 100k examples of procedurally
generated trajectory modification. Among these, we used 70k
samples for training, 10k for validation and 20k for testing.
We kept both BERT and CLIP encoder weights frozen in
other to avoid biasing the models towards our vocabulary,
with QBERT(Z|Lin> € R™8 and quIP(Zu(O)) € R2. We
upscale the dimensionality of each scene object pose from
4 — 400 (depth) using a learned linear matrix, and apply the
same procedure to 40 waypoints from the original trajectory
&y. Tene is a 1-block transformer encoder, and Tge. is a 5-
block transformer. Each transformer has 3 hidden layers with
512 fully-connected neurons with Relu activations,one Layer
Normalization, 8 attention heads. We use the AdamW [43]
optimizer with an initial learning rate v = le — 4, a linear
warm-up period of 15 epochs and a learning rate decay of
10% after a plateau of 10 epochs on the validation loss. We
use a Nvidia Tesla V100 GPU with batch size of 16, and
train the model for 500 epochs in approximately 2 hours.

B. Simulation Experiments

We apply our method to several simulated scenarios. First,
we show the basic workings of our trajectory adaptation
method through qualitative results which can be visualized
in Figure 3. In this scenario, we use sample objects that
were randomly chosen from crawling the web and their corre-
sponding images. Assuming there is an initial trajectory that

“keep a bigger distance from the actor" ‘ | “fly slower when next to the table"

N \

S A““:;L * ‘\«\:\ j%
* R * \

I

E
vaypoints vaypoints

@

Fig. 4: Model deployed with different robot form factors (drone
and legged hexapod) for obstacle avoidance, speed refinement
and absolute cartesian changes. Original trajectory shown in red,
modification in blue, and corresponding speed profiles below each
scenario.

traverses around these objects, and given language commands
indicating how to modify the trajectory (farther/closer to the
object, faster/slower in the vicinity of an object), our model
predicts trajectories that account for user intent. We show
both spatial modifications as well as changes in speed profile
in the trajectories output by our model.

Multi-platform evaluation: To validate our framework’s
ability to adapt to different robot dynamics and environments
we designed simulated environments using the CoppeliaSim
simulator with Bullet physical engine [44]. While our original
training dataset presents itself in a format amenable to end-
effector positions within a manipulation context, this new
simulator allows us to test our system on distinct robotic
platforms, dynamics and base motion controllers.

Specifically, we employ an aerial vehicle and a legged
hexapod platform. The drone operates within a 3D global
frame of reference and uses PID motion controller for
trajectory tracking. In contrast, the hexapod is constrained to
2D movements and uses an open-loop motion controller. As
figure 4 shows, our approach can successfully modify the base
trajectories (red) for different types of natural language inputs.
Additional experiments can be seen in the video attachment.

Baseline architectures: We compare our proposed multi-
modal transformer against architecture variations. Table I
shows the result of a grid search over the number of layers
and encoding dimension (depth) of the transformer encoder

and decoders. The model with one encode layer, 5 decoder
layer and an depth of 400 was chosen to be the reference
model for our architecture and further baseline comparisons.
We measure performance in terms the similarity between our
model’s output and the ground-truth trajectory modification
in the dataset. Our metrics are MSE (mean squared error),
MAE (mean absolute error), DTW (dynamic time warping),
and DFD (discrete Frechet distance).

n.enc |n.dec |n.depth| param. MSE| MAE| | DTW| | DFDJ
2 3 256 | 4.95M 0.00306 | 0.0314 | 3.1085 | 0.1346
2 3 400 | 9.28M 0.00235 | 0.0273 | 2.6966 | 0.1198
2 5 256 | 6.53M 0.00280 | 0.0284 | 2.8455 | 0.1265
2 5 400 12.7M 0.00238 | 0.0231 | 2.4900 | 0.1152
1 3 256 | 4.42M 0.00274 | 0.0272 | 2.8122 | 0.1245
1 3 400 8.22M 0.00224 | 0.0229 | 2.4445 | 0.1130
1 5 256 | 6.00M 0.00277 | 0.0264 | 2.7527 | 0.1238
1 5 400 11.2M 0.00234 | 0.0227 | 2.4699 | 0.1138

TABLE I: Architecture variations

Table I provides valuable findings regarding the model
architecture. For instance, increasing the number of encoder
blocks caused no improvement on the model’s performance.
Furthermore the model with 3 decoder blocks presented
slightly better results than the assumed baseline of 5 decoder
block.

In addition to model size, in table Il we compare different
architecture structures. The Naive approach simply copies
the original trajectory. The No NL input baseline represents
a universal prior of the dataset, with an empty language
command. Ours light is a more compact version of our model
with 1 enc., 3 dec. and depth of 256.

Approach | Param. || MSE| | MAE| | DTW| | DFD|
Naive 0.00437 | 0.02709 | 3.568 | 0.1387
No NL input | 112M || 0.04193 | 0.1663 | 15.097 | 0.5674
Ours light 442M || 000274 | 00272 | 28122 | 0,1245
Ours 11.2M || 0,00234 | 002273 | 24699 | 0,138

TABLE II: Baseline architecture comparisons

Locality factor: Fig. 5
shows the response of our
model for different values
of the locality factor (LF).
This hyper-parameter pro-
vides useful information
on the range of the desired
change change over the
trajectory, which can serve
as a finer user control be-
sides the language input
itself.

Dataset size and augmentations: Table III shows the
effect of increasing the training dataset size in model
performance, as well as the effect of applying augmentations
in the training data. An increase in the dataset size from 1k
to 10k samples significantly improves the validation metrics
with minimal challenges besides a longer training time, given
that data can be generated procedurally without expensive
human annotations. The geometrical augmentation (randomly

"Stay further away from the lamp"

If=09

1f= 0.1+
yarP

gu

1
pute
Foa

Fig. 5: Locality factor influence

shifting and scaling operations) shows a modest increase in
performance.

Without geometrical augmentation
Dataset size MSE| MAE] DTWJ DFDJ
1k 0.02608 | 0.11063 | 8.20700 | 0.46488
10k 0.00243 | 0.02347 | 2.47016 | 0.11683
100k 0.00229 | 0.02201 | 2.39301 | 0.11175
With geometrical augmentation
Dataset size MSE| MAE| DTW] DFDJ
1k 0.01420 | 0.07590 | 5.35290 | 0.35737
10k 0.00248 | 0.02324 | 2.50841 | 0.11593
100k 0.00234 | 0.02273 | 2.46992 | 0.11383

TABLE III: Effect of dataset size and geometrical augmentation.

C. Real Robot Experiments with Manipulation

We deployed our model in real-world experiments using
a 7-DOF PANDA Arm robot equipped with a claw gripper.
An off-the-shelf CPU/GPU setup computes the arm’s low-
level controller and our model. A camera mounted on the
workbench captures images of the obstacle setting, and a
YOLOV3[?] object detector extracts bounding boxes of the
five most likely objects to be sent to the CLIP encoder.
Snapshots of the setup and results can be found in figures 1
and 6. Additional experiments shown in the video attachment.

nr oo |
Reduce a lot the speed when close to me.

0 5 10 15 Zb 25 30 35 40
waypoints

Fig. 6: Real life setup and sample interaction. It depicts the speed
modification through online language instructions. An approximated
representation of the original trajectory is shown in red, while the
modified one in blue. Full videos in the supplementary material.

D. User study experiments

We evaluated the model’s performance against baseline
architectures in a user study, collecting in total 300 data-
points from 10 participants. Each user was asked to evaluate
within a 1-5 Likert scale the trajectory changes generated from
5 different approaches considering a given NL interaction.
Figure 7 summarizes the distribution of answers for each
baseline. "Ground Truth” represents the procedural dataset
used for training. As the chart shows, most users considered
that our trajectory modifications in the dataset correctly
represented the language commands. A similar pattern
emerged from our trained model (”Ours”), which yielded
high-quality ratings. The ”"Ground Fake” approach shows
samples of the dataset with intentionally wrong modifications,
opposite to the ground truth, for the means of comparison.
Non surprisingly it is rated with the lowest score. The “No

language” baseline was also badly evaluated, showing that
the model’s performance is highly dependent on the language
input, and that the model does not memorizes bias purely
based on the scene context. Finally, the ”Projected 2D”
distribution shows a direct comparison with our previous
work [1], which produces pure 2D trajectory modifications.
Its bad performance motivates the importance of the additions
of 3D and velocity space that we incorporate in this paper.

B yes, much better
B yes, a bit better
[same

B No, a bit wrong
W No, totally wrong

x i

40 4

percentage of answers [%]

<)

Ground Truth Ours

Ground Fake No language Projected 2D model

Fig. 7: Userstudy distributions of answer for each baseline.

After the initial evaluations, each user was asked to freely
interact with 5 trajectories using a text box, and next judge the
quality of the generated modifications. 48% of the user inputs
presented words never seen by the model during the training
process (out of distribution). Even under these challenging
conditions the model only failed on 24% of the cases. Table
IV compares our model’s performance for in and out of
distribution settings.

Textual interaction | Better [%] | Same [%] | Worse [%]
In-dataset vocabulary ‘ 66.0 ‘ 26.0 ‘ 8.0

Free user input 46.0 30.0 24.0

TABLE IV: Evaluation of out of distribution NL interactions

V. CONCLUSION AND DISCUSSION

This work develops a flexible language-based human-
robot interface that allows a user to modify existing robotic
trajectories. Our method leverages pre-trained large language
and image models (BERT and CLIP) to encode the user’s
intent and target objects directly from a free- form text input
and scene images, fuses geometrical features generated by a
transformer encoder network, and outputs trajectories using
a transformer decoder.

Our model can operate manipulate robot trajectories in
3D and velocity spaces. The output trajectory can be post-
processed and applied towards diverse different platforms
such as manipulation, aerial vehicles and legged robots. We
provide a comprehensive set of simulated and real-world
experiments demonstrating the effectiveness of our model
and highlighting insights into what the model is learning.

In future iterations of this work we seek to explore
additional modalities such as force inputs, as well as the
ability of the model to interact with the user over longer
time horizons and multiple instruction inputs. We hope that
our framework can serve as a building block for a novel
paradigms in human-robot collaboration that employ large
language models.

[1]

[3

—

[4

=

[5

[ty

[6]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

A. Bucker, L. Figueredo, S. Haddadin, A. Kapoor, S. Ma, and R. Bonatti,
“Reshaping robot trajectories using natural language commands: A
study of multi-modal data alignment using transformers,” International
Conference on Intelligent Robots and Systems (IROS), 2022.

A. Jain, S. Sharma, T. Joachims, and A. Saxena, “Learning preferences
for manipulation tasks from online coactive feedback,” Int. J. Robotics
Res., vol. 34, no. 10, pp. 1296-1313, 2015. [Online]. Available:
https://doi.org/10.1177/0278364915581193

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877-1901, 2020.

S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari,
J. Casper, Z. Liu, S. Prabhumoye, G. Zerveas, V. Korthikanti et al., “Us-
ing deepspeed and megatron to train megatron-turing nlg 530b, a large-
scale generative language model,” arXiv preprint arXiv:2201.11990,
2022.

S. Y. Gadre, M. Wortsman, G. Ilharco, L. Schmidt, and S. Song,
“Clip on wheels: Zero-shot object navigation as object localization and
exploration,” arXiv preprint arXiv:2203.10421, 2022.

M. Shridhar, L. Manuelli, and D. Fox, “Cliport: What and where
pathways for robotic manipulation,” in Conference on Robot Learning.
PMLR, 2022, pp. 894-906.

M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, K. Gopalakrishnan, K. Hausman, A. Herzog et al., “Do as i
can, not as i say: Grounding language in robotic affordances,” arXiv
preprint arXiv:2204.01691, 2022.

P. Sharma, B. Sundaralingam, V. Blukis, C. Paxton, T. Hermans,
A. Torralba, J. Andreas, and D. Fox, “Correcting robot plans with
natural language feedback,” arXiv preprint arXiv:2204.05186, 2022.
S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control:
Theory and practice—a survey,” Automatica, vol. 25, no. 3, pp. 335—
348, 1989.

S. Tellex, N. Gopalan, H. Kress-Gazit, and C. Matuszek, “Robots that
use language,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 3, pp. 25-55, 2020.

J. Arkin, D. Park, S. Roy, M. R. Walter, N. Roy, T. M. Howard, and
R. Paul, “Multimodal estimation and communication of latent semantic
knowledge for robust execution of robot instructions,” The International
Journal of Robotics Research, vol. 39, no. 10-11, pp. 1279-1304, 2020.
M. R. Walter, S. Patki, A. F. Daniele, E. Fahnestock, F. Duvallet,
S. Hemachandra, J. Oh, A. Stentz, N. Roy, and T. M. Howard,
“Language understanding for field and service robots in a priori unknown
environments,” arXiv preprint arXiv:2105.10396, 2021.

J. Fu, A. Korattikara, S. Levine, and S. Guadarrama, “From language
to goals: Inverse reinforcement learning for vision-based instruction
following,” arXiv preprint arXiv:1902.07742, 2019.

Y. Hong, Q. Wu, Y. Qi, C. Rodriguez-Opazo, and S. Gould, “A recurrent
vision-and-language bert for navigation. arxiv 2021,” arXiv preprint
arXiv:2011.13922.

S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and
H. Ben Amor, “Language-conditioned imitation learning for robot
manipulation tasks,” Advances in Neural Information Processing
Systems, vol. 33, pp. 13 139-13 150, 2020.

P. Goyal, R. J. Mooney, and S. Niekum, “Zero-shot task adaptation
using natural language,” arXiv preprint arXiv:2106.02972, 2021.

W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents,” arXiv preprint arXiv:2201.07207, 2022.

L. Shao, T. Migimatsu, Q. Zhang, K. Yang, and J. Bohg, “Con-
cept2robot: Learning manipulation concepts from instructions and
human demonstrations,” The International Journal of Robotics Re-
search, vol. 40, no. 12-14, pp. 1419-1434, 2021.

W. Goodwin, S. Vaze, I. Havoutis, and I. Posner, “Semantically
grounded object matching for robust robotic scene rearrangement,”
arXiv preprint arXiv:2111.07975, 2021.

R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von
Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill ez al., “On

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

the opportunities and risks of foundation models,” arXiv preprint
arXiv:2108.07258, 2021.

A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner,
N. Maestre, M. Mukadam, D. S. Chaplot, O. Maksymets et al., “Habitat
2.0: Training home assistants to rearrange their habitat,” Advances in
Neural Information Processing Systems, vol. 34, 2021.

P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Siinderhauf,
I. Reid, S. Gould, and A. van den Hengel, “Vision-and-language
navigation: Interpreting visually-grounded navigation instructions in
real environments,” in 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2018, pp. 3674-3683.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” in International
Conference on Machine Learning. PMLR, 2021, pp. 8748-8763.

C. Sun, A. Myers, C. Vondrick, K. Murphy, and C. Schmid, “Videobert:
A joint model for video and language representation learning,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 7464-7473.

J. Lu, D. Batra, D. Parikh, and S. Lee, “Vilbert: Pretraining task-
agnostic visiolinguistic representations for vision-and-language tasks,”
Advances in neural information processing systems, vol. 32, 2019.

L. Zhou, H. Palangi, L. Zhang, H. Hu, J. Corso, and J. Gao,
“Unified vision-language pre-training for image captioning and vqa,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 07, 2020, pp. 13 041-13 049.

W. Su, X. Zhu, Y. Cao, B. Li, L. Lu, F. Wei, and J. Dai, “Vl-bert:
Pre-training of generic visual-linguistic representations,” arXiv preprint
arXiv:1908.08530, 2019.

W. Hao, C. Li, X. Li, L. Carin, and J. Gao, “Towards learning a generic
agent for vision-and-language navigation via pre-training,” in 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 13 134-13 143.

J. Thomason, M. Murray, M. Cakmak, and L. Zettlemoyer, “Vision-
and-dialog navigation,” in Conference on Robot Learning. PMLR,
2020, pp. 394-406.

K. Nguyen and I. Daumé, “Help, anna! visual navigation with natural
multimodal assistance via retrospective curiosity-encouraging imitation
learning,” 09 2019.

A. Vaswani, N. Shazeer, N. Parmar, J. UszKkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

F. Giuliari, I. Hasan, M. Cristani, and F. Galasso, “Transformer networks
for trajectory forecasting,” in 2020 25th International Conference on
Pattern Recognition (ICPR). 1EEE, 2021, pp. 10335-10342.

L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin,
P. Abbeel, A. Srinivas, and I. Mordatch, “Decision transformer:
Reinforcement learning via sequence modeling,” Advances in neural
information processing systems, vol. 34, 2021.

M. Janner, Q. Li, and S. Levine, “Offline reinforcement learning as
one big sequence modeling problem,” Advances in neural information
processing systems, vol. 34, 2021.

P. J. Huber, “Robust estimation of a location parameter,” in Break-
throughs in statistics. Springer, 1992, pp. 492-518.

R. Bonatti, A. Bucker, S. Scherer, M. Mukadam, and J. Hodgins, “Bat-
teries, camera, action! learning a semantic control space for expressive
robot cinematography,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). 1EEE, 2021, pp. 7302-7308.

A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao,
J. Emmons, A. Gupta, E. Orbay et al., “Roboturk: A crowdsourcing
platform for robotic skill learning through imitation,” in Conference
on Robot Learning. PMLR, 2018, pp. 879-893.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference
on computer vision and pattern recognition. leee, 2009, pp. 248-255.
M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-to-
sequence pre-training for natural language generation, translation, and
comprehension,” arXiv preprint arXiv:1910.13461, 2019.

J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song,
J. Demmel, K. Keutzer, and C.-J. Hsieh, “Large batch optimization
for deep learning: Training bert in 76 minutes,” arXiv preprint
arXiv:1904.00962, 2019.

https://doi.org/10.1177/0278364915581193

[44] E. Rohmer, S. P. N. Singh, and M. Freese, “Coppeliasim (formerly
v-rep): a versatile and scalable robot simulation framework,” in Proc.
of The International Conference on Intelligent Robots and Systems
(IROS), 2013, www.coppeliarobotics.com.

	I Introduction
	II Related Work
	III Approach
	III-A Problem Definition
	III-B Proposed Network Architecture
	III-C Post-processing and execution
	III-D Synthetic Data Generation

	IV Experiments
	IV-A Model training details
	IV-B Simulation Experiments
	IV-C Real Robot Experiments with Manipulation
	IV-D User study experiments

	V Conclusion and Discussion
	References

