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Abstract— Transparent object perception is a crucial skill for
applications such as robot manipulation in household and labo-
ratory settings. Existing methods utilize RGB-D or stereo inputs
to handle a subset of perception tasks including depth and pose
estimation. However, transparent object perception remains to
be an open problem. In this paper, we forgo the unreliable
depth map from RGB-D sensors and extend the stereo based
method. Our proposed method, MVTrans, is an end-to-end
multi-view architecture with multiple perception capabilities,
including depth estimation, segmentation, and pose estimation.
Additionally, we establish a novel procedural photo-realistic
dataset generation pipeline and create a large-scale transparent
object detection dataset, Syn-TODD, which is suitable for
training networks with all three modalities, RGB-D, stereo and
multi-view RGB. https://ac-rad.github.io/MVTrans/

I. INTRODUCTION

Transparent objects are prevalent in our daily lives, and
their use spans household, laboratory, and industrial settings.
However, the unique specular properties of transparent objects
cause perception challenges, particularly in areas of depth
estimation, segmentation, and pose estimation. Specifically,
transparent objects differ from common objects in their ability
to inherit visual properties of the background, as well as
distort light rays and hence the depth modality of commodity
RGB-D sensors, which operate on the assumption that objects
have opaque lambertian surfaces [1].

Existing methods have addressed transparent object percep-
tion challenges in two ways. RGB-D based depth completion
methods [2–4] recover estimated transparent object depth from
raw sensor depth and RGB features, and use the predicted
depth for pose estimation tasks. Another stream of works
[1, 5] skip the unreliable sensor depth and directly work on
transparent object pose estimation using stereoscopic imagery.
Bypassing the depth completion problem brings advantages
over RGB-D based methods. Namely, it unifies models from
multi-step pipelines into a single end-to-end model. These
stereo-based models have higher capacity than build-in depth
sensor algorithms to handle non-lambertian surface objects.

Multi-view estimation extends stereo vision by providing
richer information for a given scene especially in complex
settings with occlusion. Multi-view methods [8–10] demon-
strate superior performance in 3D vision tasks and have the
potential to surpass stereo vision methods when handling
transparency by enabling fusion of diverse viewing angles.
This is especially convenient for autonomous settings, where
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Fig. 1: Given a set of multi-view images of the scene, the proposed
method (MVTrans) predicts segmentation mask, depth map, pose,
and 3D bounding box for both opaque and transparent objects using
an end-to-end multi-task perception network.

an eye-in-hand camera can capture varying views to perceive
and manipulate transparent objects [1, 3], shown in Figure 1.

To train such multi-view networks, large-scale transparent
object datasets are needed, yet existing ones are not suitable.
Some works [2, 7] focus on single view tasks and lack multi-
view annotations. Other datasets collected using robots or
SLAM [1, 3, 6] provide the multi-view images necessary for
training. However, these real-world datasets are limited in
object diversity and scene complexity.

In this work, we introduce an end-to-end multi-view archi-
tecture for perception of transparent objects, including depth
estimation, segmentation, and scene understanding (pose and
3D bounding box prediction). Our method outperforms state-
of-the-art RGB-D and stereo models on both real-world
and synthetic datasets for all transparent object perception
tasks. To ensure model generalizability, we present a novel
pipeline for procedural photo-realistic dataset generation, and
a large-scale transparent object dataset (Syn-TODD). The
dataset generation pipeline enables procedural generation of
transparent objects, paired with domain randomized scene
setup. In total, our dataset includes 1996 photo-realistic
tabletop scenes with transparent and opaque objects, and
57 fully annotated views for each scene. In summary, our
contributions are twofold:
1) A novel end-to-end multi-view architecture, MVTrans, for

multi-task perception of transparent objects. It can perform
depth estimation, segmentation, and scene understanding
including pose and 3D bound box prediction for every
object in a given scene. Its performance exceeds current
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Fig. 2: Sample images of transparent object datasets. (a) Top row: existing methods including ClearGrasp [2], TODD [3], ClearPose [6],
KeyPose [1] and Trans10K [7]. (b) Bottom row: Ours (Syn-TODD). Syn-TODD’s scene complexity and object diversity are superior when
compared with existing datasets.

RGB-D and stereo-based methods.
2) A large-scale transparent object dataset, Syn-TODD. It

has wide compatibility with RGB, RGB-D, stereo and
multi-view based methods and superior scene complexity,
object diversity and annotation richness. To create it,
a rendering pipeline with domain randomization and
procedural generation are employed.

II. RELATED WORK

A. Transparent Object Perception
Transparent objects pose additional problems for both 2D

and 3D perception tasks, mainly due to its non-opaque, non-
lambertian surface which breaks traditional methods’ assump-
tion of opaqueness [1]. Similar to opaque object perception,
transparent object perception tasks include segmentation,
depth estimation, 3D bounding box and pose prediction.

For segmentation, [11–15] aim to improve the perfor-
mance of general object recognition and segmentation on
particular transparent objects. [13, 15–17] segment transparent
and reflective surfaces for visual navigation and scene
understanding. Several monocular RGB methods leverage
the unique difference in appearance and texture along the
edge of transparent vessels by incorporating boundary cues
[13–15].

Depth completion is particularly important for RGB-D
based networks when handling transparent objects, whose
depth appears distorted when captured raw. Some works
demonstrate the effectiveness of a global optimization ap-
proach, which leverages the combination of predicted surface
normal, occlusion boundary and original depth for depth
estimation guidance [2, 18]. Other methods use encoder-
decoder or Generative Adversarial Networks (GANs) to
generate the completed depth map by regression [19, 20].

3D BBox and pose prediction methods concern either
axis-aligned bounding box or oriented bounding box. Some
existing works use CNNs to train from RGB-D input [21–
23], where the depth is generated from aforementioned
depth completion modules. Stereo vision methods avoid the
distorted depth and directly take stereo image pairs as input.
KeyPose [1] is a stereo RGB and keypoint based method, and
SimNet [5] is a stereo and oriented 3D BBox based method.
Our proposed MVTrans architecture is capable of preforming
all three perception tasks: segmentation, depth completion
and scene understanding which includes pose and 3D BBox

for every object in the scene.

B. Multi-view Perception
Single-view perception refers to estimation of scene param-

eters and properties using a single monocular image input.
Multi-view perception refers to the broad category of using
more than one view to infer 3D information from the captured
scene. Some works impose the epipolar constraint, which
leverages a pair of stereo images to learn the associated
disparity and depth [1, 5]. Other works use supervisory signals
for depth estimation guidance [9], or enforce constraints re-
garding the spatio-temporal consistency between consecutive
frames [8]. Recent works also demonstrate the advantage
of plane sweeping volume algorithm for in multi-view 3D
feature fusion [5, 10]. Our work is within the broad multi-
view perception category, in which we leverage multiple
overlapping views for multi-task learning.

C. Transparent Object Dataset
Transparent objects lack an ideal benchmark dataset for

3D perception tasks. Existing transparent datasets come with
different limitations. Trans10K [7] is a 2D segmentation
dataset that consists of real images of transparent objects
created by manual annotation. ClearGrasp [2] proposed a
synthetic 3D dataset with 9 unique objects. KeyPose [1]
collects a 3D real-world dataset of 15 unique objects using
an eye-in-hand robot with only single object scenes. TODD
[3] automates the collection and annotation process using eye-
in-hand camera and AprilTags, its dataset includes 8 unique
objects and complex scenes with cluttered and filled glassware.
Recently, ClearPose [6] proposed to use SLAM and manual
CAD model alignment for large-scale real world transparent
object dataset creation. To improve these limitations, we create
Syn-TODD, a large-scale transparent dataset with superior
scene complexity, object diversity, and annotation richness
which supports model training with RGB-D, stereo and multi-
view modalities, a sample of which is shown in Figure 2.

III. MVTRANS: MULTI-TASK MODEL ARCHITECTURE

Our proposed method, MVTrans, as shown in Figure 3, is
an end-to-end multi-view architecture with multiple percep-
tion capabilities, namely depth estimation, segmentation, and
scene understanding (pose and 3D bounding box prediction
for every opaque and transparent object in a given scene).
MVTrans takes a set of multi-view images as input, whose



Fig. 3: MVTrans Architecture. Images from different viewing angles are used as input, in which one frame is selected as the reference
frame for predictions. For each image, a shared spatial pyramid pooling (SPP) module extracts its features. Subsequent plane-sweeping
warps are applied to non-reference frames to build the matching volume, which is then regularized by a 3D CNN. In parallel, the reference
frame’s 2D context features is extracted by ResNet-50. Concatenated 3D matching volume and 2D context features are used to generate a
low-res depth prediction. Both RGB and depth features are fed to a ResNet-FPN backbone as well as downstream output heads, which
predicts instance segmentation, 3D OBB and full resolution depth map.

2D features are back-projected into a 3D matching volume.
The matching volume and reference image’s 2D features
are used to predict a low resolution depth map. Both the
RGB features and low-res depth feature then passed through
a backbone feature extractor before reaching the multi-task
prediction heads for segmentation, 3D bounding box and pose
estimation, and depth prediction.

A. Local and Global Context Fusion for Multi-view Input
Given a collection of RGB input {I1, ..., IN}, where N ≥ 2

is the number of multi-view images, we refer to the first image
as the reference image, and the others as support images
whose captured view partially overlaps with the reference
image scene. Each image has dimensions H×W ×3. Similar
to the feature extraction process in [24], expert networks are
used to produce a Matching Volume (3D) and a Context
Volume, which are jointly fused into a cost volume that
encapsulates the local and global features.

Matching volume. Each multi-view image is passed
through a spatial pyramid pooling (SPP) module [25] to
encapsulate and aggregate context across different scales and
locations to form feature maps. The feature maps of the
support images are back-projected into the coordinate system
of the reference image, at a stack of parallel planes with
depths sampled based on ranges observed in the dataset. The
goal of the back-projection is to capture and incorporate the
photo-consistency of the warped images on the pixel level. At
each sampled depth zd, where d ∈ [1, D] is the plane index,
a planar homography transformation is applied to obtain the
coordinate mapping from the support to the reference image:

u′i ∼ K[Rr|tr]

[
(K−1u)zi

1

]
(1)

where u denotes the coordinate of a pixel in the support
image frame, K denotes the camera intrinsic matrix, {R, t}
denotes the rotation and translation of the support image
coordinates to the coordinates of the reference image.

The transformed coordinate mapping is used to construct
the warped feature volume, with dimensions of C×D×H ′×

W ′, where C denotes the number of channels, and H ′ and W ′

denotes the scaled down height and width. When the reference
and support feature volumes are concatenated together, we
obtain a raw matching volume of 2C×D×H ′×W ′ dimension.
For N −1 support images, we will have N −1 raw matching
volumes. 3D convolution layers process the raw matching
volumes and reduce the dimension to C × D × H ′ ×W ′.
Information across the N −1 raw matching volumes are then
aggregated through a view average pooling operation. We
then apply a series of 3D convolutions to further regularize
the aggregated volume to produce the regularized matching
volume, which encapsulates the local features for matching.

Context volume. To learn the global 2D context, we apply
a ResNet-50 [26] architecture and obtain a feature volume
with dimensions of D × H ′ ×W ′. Notice the number of
channels is equivalent to the number of sampled depths D in
matching volume. This 2D context volume is then fused with
the 3D matching volume through expanding the dimensions
to 1×D ×H ′ ×W ′. After concatenation of the regularized
matching volume and the 2D context volume, we obtain a
final cost volume of size (C + 1) × D × H ′ ×W ′ which
encapsulates the local and global context.

Rough depth map. The cost volume is fed through
consecutive convolution layers to obtain volumes with size
D × H ′ × W ′. A softmax operator is applied on the D
dimension to create a probability volume P , from which the
expected depth is extracted using the soft argmax operation.
B. Perception Predictions

Extraction of high-level perception predictions begins with
the concatenation between the low resolution depth map and
extracted features of the reference image Ireference, which
enable learning with combined depth, colour, and textual cues,
similar to [5, 27]. The output passes through a ResNet-18-
FPN feature backbone before reaching the perception heads.

Pose and 3D bounding box estimation. This involves
predicting the oriented bounding box of rigid objects, includ-
ing the translation t ∈ R1×3, rotation R ∈ R3×3, and size of
each object instance along three axis S ∈ R3. The procedure
used for estimating object pose involves several components,



including differentiating object instances, deriving object size,
and predicting object translation and rotation.

To differentiate object instances, we model each object as
a bivariate normal distribution around its center and conduct
peak detection. The heatmap can be computed as:

HeatMap(p) = max
i∈O

(N (p;µi, σi)) (2)

where Ireference has pixels {p}, O is the set of object
instances within image Ireference, and µi and σi denotes the
centroid and covariance of object i, respectively.

Determining object size requires prediction of the displace-
ment field, which encapsulates information about the distance
between each pixel and the eight vertices of the associated
object. The vertex offset can be calculated for an image-plane
projected vertex v, and a pixel p as:

VertexOffset(p) = v − p (3)

We operate at the H/8×W/8 resolution to reduce computa-
tion requirements, which results in a displacement field with
dimensions of H/8×W/8× 16. To combine displacement
fields for all objects within the scene, we consider probabilis-
tic values for each pixel from the heatmap, and merge based
on the object with the highest probability.

To recover the translation, the objects’ centroid distances
from the camera are regressed as a H/8×W/8 tensor, which
can be used in combination with the camera pose to derive
the object translations in world space. Note that the centroid
distance field contains information for all objects in the image,
the partitioning of which is based on the heatmaps and the
object with the highest probability at each pixel, similar to
the combined displacement field. Rotation estimation is based
on covariance matrix prediction. Computation of the ground-
truth covariance of the object begins with sampling points on
the object mesh surface in simulation, in the object’s local
space. The points are then converted to camera space and
used to compute the covariance:

Covariance(cC) = Covariance(RC
W ·RW

L · cL) (4)

where C denotes camera frame, W denotes world frame,
and L denotes local frame. c refers to the coordinates of
points on the object surface. We then compute covariance
on cC . The ground truth covariance matrix of each object is
combined in a similar manner as the displacement field and
the centroid distance field, and is used as a supervision signal
to enable covariance prediction, which is regressed as a tensor
of H/8×W/8× 6, consisting of the elements of the upper
triangular matrix of the standard covariance matrix for 3D
point clouds. Rotation is then recovered through the Singular
Value Decomposition (SVD) of the covariance matrix.

Segmentation. Instance segmentation differentiates the
table surface, background, and objects on the table. Training
is done using the up-scaling branch approach introduced
in [28] with multiple up-sampling layers, where each layer
consists of 3 × 3 convolution, group norm, ReLU and 2×
bilinear up-sampling. We use cross entropy loss for training.

Depth. To predict the full resolution depth map, we apply

TABLE I: Transparent Dataset Comparison. Comparison of Syn-
TODD (ours) with ClearGrasp [2], Trans10K [7], Keypose [1],
TODD [3], ClearPose [6]. Our 3D transparent object dataset has
significant advantage over others in terms of sample size, scene
complexity, object diversity and annotation richness.

Trans10K ClearGrasp TODD ClearPose KeyPose Syn-TODD (Ours)

Samples 10K 50K 15K 360K 15K 113K
Objects 10K 10 8 63 10 16K
Scenes 10K 33 22 63 10 1996

Objs/scene 1-20 1-5 1-3 1-25 1 3-15
RGB mono mono mono mono stereo multi-view

Segment semantic semantic instance instance instance instance
Depth 8 4 4 4 4 4

Pose 8 8 4 4 4 4

3D Bbox 8 8 8 8 8 4

Normal 8 4 8 8 8 4

Keypoints 8 8 8 8 4 4

the up-scaling branch similar to our segmentation head, which
enables aggregation of several features across different scales.
Training is achieved using the Huber loss to minimize:

Ldepth = Huber(fdepth(I1:N ), Dreference) (5)

where Dreference denotes the ground truth depth map of the
reference frame.

IV. SYNTHETIC TRANSPARENT OBJECT DATASET

Despite recent improvements of real-world data collection,
synthetic datasets still lead in terms of throughput, annotation
accuracy, object diversity, and scene complexity [29–35].
Given the promising performance of stereo vision models [1]
and sim-to-real training [2, 4] for transparent object detection,
a photo-realistic and large-scale transparent object dataset is
needed. We present Syn-TODD, which has wide compatibility
with RGB, RGB-D, stereo, and multi-view based methods.
For a given scene, we render stereo image pairs from a grid of
viewing angles. Additionally, procedural generation of objects
and domain randomization of scenes enhance the dataset’s
complexity and aids model generalization.

Scene Setup. We use Blender [36] for high-fidelity, photo-
realistic synthetic data generation [37]. Each scene consists
of three parts: background, tabletop, and objects. To diversify
scene appearances, we apply domain randomization to select
the background from 1000+ High Dynamic Range Image
(HDRI) for environments and illumination variances, and
the tabletop surface from 1400+ Physics Based Rendering
(PBR) materials with varying textures and visual appearances.
Multiple light sources are also introduced at random locations.

Procedural Generation. Transparent objects are proce-
durally generated. We employ a method that creates the
vessel curvatures using 2D function combinations of linear,
polynomial, and sinusoidal functions, with coefficients and
parameters differing across vessel. For each generated vessel,
we apply a transparent material with randomized properties,
including color, index of refraction, transparency, reflection,
and roughness, among others. Each scene contains up to
seven random transparent objects, with possible occlusion.

Object Selection. As shown in Figure 2, up to seven
generated transparent objects are placed in each scene.
Additionally, we randomly place up to eight different objects
from a subset of ShapeNet [38] with 13000+ models to



Fig. 4: Samples and prediction results from Syn-TODD. (a) Multi-view RGB image (reference view and support views) (b) 3D OBB
(GT and prediction) (c) Instance Segmentation (GT and prediction) (d) Depth (GT and prediction)

TABLE II: Pose estimation results on the KeyPose [1]. We assess
the performance of DenseFusion, Keypose, SimNet and MVTrans
with the KeyPose real world dataset for RGB and RGB-D based
6-DoF pose estimation. All models are trained on the KeyPose
dataset. DenseFusion is trained twice using raw sensor depth and
ground truth depth respectively. Both 2 view and 5 view MVTrans
significantly outperform all baseline methods.

modality AUC (↑) < 2cm (↑) MAE (↓)

DenseFusion [39] RGB-D (truth depth) 71.9 37.5 35.1
DenseFusion [39] RGB-D (raw depth) 63.8 18.9 37.2
SimNet[5] stereo RGB 87.9 83.1 12.6
KeyPose [1] stereo RGB 90.0 90.1 9.9
MVTrans (Ours) 2-view RGB 92.7 93.6 7.4
MVTrans (Ours) 5-view RGB 92.9 94.0 7.2

simulate occlusion and diversity. The objects are further
diversified by randomized scale and orientation. To further
mimic a real-life setting, we provide samples in which vessels
are filled with varying colors and transparencies of liquid.

Annotations. The dataset contains a diverse set of anno-
tations and saved scene files. We provide annotations for
57 sets of viewing angles for each scene, where the views
are spaced in a grid of an upper-half sphere with random
radius. Each view consists of a stereo image pair, and the
following annotations are provided for the left image: 2D
& 3D bounding box, object pose, furthest point sampled
keypoints, instance segmentation, depth, surface normal, and
object centroid heatmap.

Dataset Statistics. As shown in Table I, Syn-TODD
consists of 113,772 stereo image pairs of 1996 different
scenes containing a combination of 9012 unique opaque
objects from ShapeNet [38] and 7010 unique procedural
generated transparent objects. Syn-TODD is split into training
& validation sets, with 1575 and 421 scenes each.

V. RESULTS

In this section, we analyze the performance of the proposed
multi-task model on tasks of depth prediction, segmentation,
3D object detection, and pose estimation. We evaluate and
show the robustness of the method against strong baselines
using our proposed dataset and a real world dataset [1].

A. Implementation Details
MVTrans and SimNet are trained on four Nvidia A100

GPUs, with a batch size of 8 to 24 based on view count for
70 epochs on both KeyPose and Syn-TODD datasets. We
use the Adam optimizer with α = 0.0006, β1 = 0.9, and

β2 = 0.99, and weight decay of 1e-4.

B. Metrics
We evaluate MVTrans for all three of its prediction heads:

depth estimation, pose and 3D bounding box estimation and
instance segmentation.

For depth prediction, the standard metrics as described
in [2] are followed. The prediction and ground truth arrays
are first resized to 144× 256 resolution prior to evaluation.
Errors are computed using the following metrics, root mean
squared error (RMSE), absolute relative difference (REL),
and mean absolute error (MAE).

For 6-DoF pose, Area Under the Curve (AUC), percentage
of 3D keypoint errors < 2cm and Mean Absolute Error
(MAE). AUC percentage is calculated based on an X-axis
range from 0 to 10 cm, where the curve shows the cumulative
percentage of errors under that metric value.

For 3D bounding box, 3D intersection over union (3D IoU)
is used to measure box fit, and 3D mean average precision
(3D mAP) is calculated using 3D IoU > 0.25 as criteria,
which is correlated with grasp success rate as shown in [5].

For instance segmentation, intersection over union (IoU)
and mean average precision (mAP) are used to evaluate the
predicted mask. For mAP, IoU > 0.5 is used as the threshold.

C. Experiment 1: Multi-view and RGB-D Comparisons
For transparent objects, the raw depth captured by com-

modity RGB-D sensors is incomplete and distorted, which
naturally form the depth completion task when using RGB-
D based methods. However, stereo and multi-view based
models do not rely on depth information, thus is advantageous
for transparent object related 3D tasks. To demonstrate
the claimed advantage and our MVTrans’s pose prediction
capability, as shown in Table II, we compare the pose
predicted by RGB-D based DenseFusion [39] with MVTrans
trained on KeyPose [1] dataset. MVTrans’s two and five view
versions both outperform DenseFusion, regardless of whether
it is trained on raw distorted depth, or ground truth depth.

D. Experiment 2: Multi-view and Stereo Vision Comparisons
We conduct experiments to test MVTrans against and other

stereo RGB based methods. First, we focus on the pose
estimation task, where MVTrans is trained on the KeyPose [1]
dataset and compared with current state-of-the-art networks.
The results are listed in Table II. For the baselines, KeyPose
[1] and SimNet [5] are both stereo image based models, where



TABLE III: KeyPose Multi-task results. We train SimNet and MVTrans (2/3/5 views) on KeyPose and evaluate their performances in
3D bounding box, 6 DoF pose and segmentation predictions. MVTrans has better performance compared to SimNet on KeyPose for all
tasks, for both settings.

3D Bbox Pose Segmentation
3D mAP (↑) 3D IoU (↑) AUC (↑) < 2cm (↑) MAE (mm) (↓) mAP (↑) IoU (↑)

Real Dataset: Training and Evaluation on KeyPose Dataset

SimNet[5] 89.40 49.80 87.89 83.14 12.55 99.10 92.40
MVTrans (2 images) 91.20 61.40 92.68 93.59 7.37 99.30 92.20
MVTrans (3 images) 90.40 58.30 92.14 92.76 8.00 99.00 90.90
MVTrans (5 images) 92.20 60.90 92.89 93.98 7.15 99.80 92.80

TABLE IV: Syn-TODD Multi-task results. We train SimNet and MVTrans (2/3/5 views) on our Syn-TODD dataset, and evaluate depth,
3D bounding box and segmentation prediction performances. MVTrans has better performance compared to SimNet on Syn-TODD dataset
for all tasks.

Depth 3D Bbox Segmentation
RMSE (↓) MAE (↓) REL (↓) 3D mAP (↑) 3D IoU (↑) mAP (↑) IoU (↑)

Synthetic Dataset: Training and Evaluation on Syn-TODD Dataset

SimNet[5] 1.229 1.020 0.975 4.65 34.92 48.21 50.52
MVTrans (2 images) 0.134 0.089 0.135 40.79 45.95 84.94 79.52
MVTrans (3 images) 0.125 0.083 0.125 42.53 46.17 87.75 81.89
MVTrans (5 images) 0.124 0.080 0.117 46.99 48.44 87.24 81.30

KeyPose predicts object pose by keypoints, and SimNet is
a multitask model with a pose estimation branch. MVTrans
takes two views of the scene as input to match the amount
of information received by RGB-D and stereo methods.
MVTrans demonstrates a significant advantage in all three
pose estimation metrics when compared to all baselines.

E. Experiment 3: Evaluating Multi-task Performance

We conduct experiments to study MVTrans’s multi-task ca-
pabilities when compared against the previous SOTA method
[5] across depth estimation, 3D orientated bounding box or
pose estimation, and segmentation tasks. Our evaluations are
done on two datasets, namely KeyPose [1], and Syn-TODD.
For each experiment, all models are trained and evaluated on
the same corresponding dataset. For simple scenes, including
single object scenes from KeyPose, as shown in Table III,
MVTrans outperforms SimNet [5] with all experimented
view counts, including two views. This shows the advantage
of multi-view over stereo vision without increasing view
count. For complex settings, including multiple objects from
Syn-TODD, as shown in Table IV, MVTrans has better
performance compared to SimNet by a significant margin.
However, 3D bounding box and pose estimation for complex
scenes and novel objects presented in Syn-TODD remains
challenging given lower results for all methods, in comparison
to experimental results on the KeyPose dataset.

F. Ablation Study

To quantitatively evaluate the performance gain from
increasing image views, MVTrans with view counts of two,
three, and five are trained. We present the evaluation of
their performances on both Keypose and Syn-TODD datasets,
in Table III and Table IV, respectively. For both datasets,
MVTrans has superior performance over the baseline stereo
SimNet method, and increasing view count generally yields
improved results, especially for harder tasks, for example,

the 3D bounding box estimation result for the complex
Syn-TODD dataset. For simpler tasks like segmentation,
we see that increasing the view count leads to marginal
improvement, the reason for this is because segmentation is a
2D task, and hence will not benefit as much from the richer
3D information that additional views provide. Overall, we
see that there is still room for improvement for all metrics,
which reveals the challenging nature of the dataset.

VI. CONCLUSION

In this work, we proposed a large-scale photo-realistic
multiview dataset, Syn-TODD, for pre-training multiview
networks, in addition to a novel end-to-end multiview-
based method for multi-task learning, MVTrans. We evaluate
the performance of MVTrans on both synthetic and real
datasets, including Syn-TODD (Ours) and KeyPose Dataset
[1], and observe that we outperform previous baselines by
a large margin in depth estimation, segmentation, and scene
understanding (3D bounding box and pose estimation). Future
directions worth exploring include sim-to-real transfer using
the large-scale photo-realistic dataset, and leveraging the
perception predictions for scene-graph and/or grasp generation
for downstream manipulation and planning tasks. We hope
this work can help accelerate future research in household
manipulation and laboratory automation.
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