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Slice Transformer and Self-supervised Learning for 6DoF Localization
in 3D Point Cloud Maps
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Class 1 : Quadrants order (1,2,3,4)
Fig. 1: The proposed self-supervised pretext task shuffles 3D point cloud quadrants to create pseudo-labels. Quadrant permutations result in 24 labels. 36
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slices are generated from a single raw frame, covering 30° rotation that includes a 20° overlap with the neighboring slices - overlap not shown.

Abstract— Precise localization is critical for autonomous
vehicles. We present a self-supervised learning method that
employs transformers for the first time for the task of outdoor
localization using LiDAR data. We propose a pre-text task that
reorganizes the slices of a 360° LiDAR scan to leverage its
axial properties. Our model, called Slice Transformer, employs
multi-head attention while systematically processing the slices.
To the best of our knowledge, this is the first instance of
leveraging multi-head attention for outdoor point clouds. We
additionally introduce the Perth-WA dataset, which provides
a large-scale LiDAR map of Perth city in Western Australia,
covering ~4km? area. Localization annotations are provided
for Perth-WA. The proposed localization method is thoroughly
evaluated on Perth-WA and Appollo-SouthBay datasets. We also
establish the efficacy of our self-supervised learning approach
for the common downstream task of object classification using
ModelNet40 and ScanNN datasets. The code and Perth-WA
data will be publicly released.

[. INTRODUCTION

Six degrees of freedom (6DoF) localization of vehicles is a
key task for autonomous driving. Satellite-based localization
lacks the required precision and does not work inside cities
with tall structures, bridges and tunnels. To achieve the
required level of precision in the mentioned scenarios, 3D
LiDAR-based localization is an optimal choice.

A general approach towards LiDAR-based localization is
to construct an offline 3D map and query the map with
LiDAR frames during online navigation. Conventional tech-
niques under this paradigm [1], [2] leverage frame registra-
tion. However, due to their large computational requirements,
they are unable to provide a practical solution. More recently,
deep learning based techniques have shown promising re-
sults. Among these methods, matching deep learning features
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of an input frame with the deep features of a pre-computed
map is a viable solution [3], [4]. Nevertheless, such methods
also require post-processing with registration to achieve the
desired precision level [5].

To contain the prediction latency within practical limits,
the state-of-the-art methods compress the map into a neural
model, and directly localize vehicles by regressing its 6DoF
pose over the map [6]. For 3D point clouds, this demands
high-fidelity representation learning by the model because
of the unstructured nature of the data. Though effective,
conventional deep learning methods based on multi-layer
perceptrons [7] and convolutional networks [8] still fall
short on the accuracy required for the critical task of 6DoF
localization with LiDAR frames.

Transformers [9] have recently surpassed conventional
deep learning methods in performance. However, their exten-
sion to point cloud data is not straight-forward. In fact, cur-
rently, there is no widely known technique that can leverage
the key strength of transformers, i.e., multi-head attention,
for outdoor point cloud data. An additional challenge is that
due to their low inductive bias, transformers also require an
even larger amount of data than convolutional networks.

In this work, we make three major contributions to achieve
highly precise 6DoF localization in 3D point clouds. First, we
propose a pre-text task for self-supervised learning on point
clouds, see Fig. 1. Our task exploits the intrinsic axial nature
of the LiDAR data by systematic slicing of each frame.
The slices are shuffled to allow pre-training on a very large
mount of data in a self-supervised way, which is especially
conducive for learning effective Transformer models. Sec-
ond, we propose a first-of-its-kind based Transformer model
that enables leveraging multi-head attention for outdoor point
clouds. Specifically suited to our pre-text task, the model
processes a LiDAR frame by slicing it, hence termed Slice
Transformer. Third, we introduce a 3D LiDAR map of the
Perth city in Western Australia that covers ~ 4 km? of
the Central Business District (CBD), providing annotations
for 6DoF localization as well as additional frames for self-
supervised learning.
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We establish the baseline results for 6DoF localization
on our dataset with the proposed method and PointLoc [6].
We also provide benchmarking of our technique on an
existing Appolo-Southbay dataset [10]. Moreover, leveraging
the backbone of our model, we demonstrate the effectiveness
of our model for point cloud object classification task with
ModelNet40 [11] and ScanObjectNN [12] datasets.

II. RELATED WORK

6DoF localization is an important task for self-driving ve-
hicles [13], [14]. Whereas conventional methods for match-
ing point cloud frames for such a task have used registration
techniques [1], [15], more recent works focus on exploiting
deep learning to relate an input frame to a 3D map [6], [10],
[16], [17]. Among these methods, there are contributions that
compress the map into a neural model and use that model
as a 6DoF pose predictor for the vehicle [6], [10]. Using
raw LiDAR frames, this prediction is particularly challenging
due to the unstructured nature of the data, which conflicts
with the high precision requirements of the task. Hence, it
is imperative to continuously improve the neural models for
this task along with the progress of deep learning.

Recent literature has seen Vision Transformer [9] and its
variants, e.g., [18], [19], [20], [21], [22], [23], to outperform
their convolutional and multi-layer perceptron based coun-
terparts on a variety of tasks. Consequently, Transformer
architectures have also started to emerge for point cloud
processing. For instance, [24] and [25] employ transformers
for 3D object detection, whereas [26] developed a method
for point cloud segmentation. However, due to the complex
nature of outdoor LiDAR data, Transformer models are yet
to establish themselves on outdoor benchmarks.

In general, Transformer architectures require a huge
amount of training data to learn effective models. In the
domain of point clouds, this need is partially filled with self-
supervised learning [27], [28], [29]. However, the pre-text
tasks are designed keeping in mind the downstream tasks
of object classification and segmentation. Representative
examples of pre-text tasks in point cloud domain include
self-shape correction of 3D CAD models [30], self-domain
adaptation [31] and point cloud rotation [32]. In general,
the issue with the self-supervised methods for point cloud
processing is that the pre-training is performed either on
images [29], 3D synthetic data [28], [31] or indoor point
clouds [27], which is not particularly helpful for outdoor
downstream applications like localization.

Contemporary self and un-supervised deep learning based
point cloud techniques employ CNNs and MLPs. Nubert et
al. [16] proposed a self-supervised method to predict poses
from input LiDAR frames. Similarly, an un-supervised pro-
jection method was proposed by Cho et al. [33] to predict the
poses from input. Both methods exploit structured 2D CNNs
to process 3D point clouds indirectly. SelfVoxeLO [34]
exploits 3D CNNs to process the raw point cloud directly
for pose estimation. Similarly, UnPWC-SVDLO [35] utilizes
scene flow estimation network PointPWC [36] as a backbone
for its un-supervised LiDAR odometry.

Leveraging the representation prowess of transformers
for point cloud analysis is still under-explored. Along
this nascent direction, encouraging results have started to
emerge [37], [38]. However, the complexity of data, espe-
cially in the outdoor domain, has still not allowed researchers
to exploit the key strength of transformers, i.e., multi-head
attention, in their techniques. Current methods are limited to
simple indoor scenes and synthetic objects. Our work fills
this gap by enabling multi-head attention for outdoor tasks
on challenging LiDAR scans. Moreover, we introduce a pre-
text learning task especially suited to outdoor LiDAR data
and present the first instance of outdoor localization with
transformers in the domain of point clouds.

IT1I. SELF-SUPERVISED LEARNING
A. Pre-text Task
Due to the complex nature of outdoor LiDAR data, it is

imperative to induce models with a large amount of training
samples. However, annotating a large number of LiDAR
frames for any downstream task can become prohibitive. To
side-step the issue, we propose a pre-text task to automate
the labeling process with pseudo-labels. The central idea of
the proposed pre-text task is illustrated in Fig. 1.

We first divide a LIDAR frame axially into 36 slices. These
slices are split into four quadrants of 9 slices each. We gen-
erate a new class label by shuffling the quadrants, resulting
in 24 pseudo-labels. Each slice contains 10° of new region
and a 20° overlap with its neighboring slices. Our treatment
of a frame in slices is governed by the tokenization of input
required by the Transformer architecture. The slices naturally
result in well-defined tokens. We provide the architectural
details of our network in Section III-B. Using the pre-text
task, we used 250K raw LiDAR frames to pre-train our
model using the standard cross-entropy loss. These frames
are taken from the proposed Perth-WA dataset (see Sec. V).
The model is trained for 100 epochs on 240K raw frames
and 10K frames are used for validation. Our model achieved
around 95% classification accuracy on the validation set.

B. Proposed Slice Transformer Network

We propose a Transformer architecture that leverages
multi-head attention to process outdoor LiDAR frames. II-
lustrated in Fig. 2, our network consumes slices of a frame,
which is inline with the pre-text task discussed in III-A. We
describe the major processes of the network below.

1) Slice Extraction: A point cloud frame of size RV*3 is
transformed to RS*P*3 where N, S and D are the number
of input points, number of slices and dimension of each slice
respectively. For slice extraction, we first transform X, Y, Z
values of in Cartesian coordinated to Azimuth, Elevation, and
Radius. Along the Azimuth, points falling in 30° slices are
extracted. Then, a 10° rotation is applied to the point cloud
to extract a new slice. This allows slice extraction with a 20°
overlap. In our implementation, we filter out the less dense
regions beyond 70m radius in a slice.

2) Input Embeddings Generation: We transform 3D slices
of size RS*P*3 into input emdeddings in RS*P. To that
end, we employ three 2D CNN layers with the input channel
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Schematics of the proposed method. A 3D point cloud frame of N points is divided into 36 slices with overlap. Embedding for each slice is

created for tokenization and positional encoding is added. Local Feature Block (LFB) is proposed to enable multi-headed attention (MHA) over multi-layer
perceptron (MLP) embeddings of input features. This process forms the core of Slice Transformer. Processing the features with multiple Slice Transformer
blocks, MLPs and skip connections, the output is processed with a softmax layer for the pre-text classification task. The + sign stands for addition.

sizes 36, 64 and 128. These layers are followed by four 1D
CNN layers, with output channel sizes 128, 128, 64, and
36. These layers are packed into a block, which is called an
Input MLP block in Fig. 2 due to the dominant use of 1D
CNN layers for projection purpose.

3) Positional Embedding: The positional information to
the input embeddings in transformers is known to boost
the network performance. Unlike the conventional ‘cosine’
and ‘sine’ positional encoding, we add learnable slice-wise
positional encodings for improved performance. This learned
positional encoding is added to the input data.

4) Local Features Block (LFB): Local features play a key
role in neural representation. We exploit both multi-headed
attention (MHA) and CNNs to extract powerful features
from the input point cloud. Local Feature Block (LFB) is
the central component of our network that extracts local
features of a raw point cloud frame. It incorporates pairs
of the proposed Slice Transformer and an MLP in series as
shown in Fig 2. Between the pairs, skip-connections are used.
We empirically selected three pairs of slice transformers and
MLP in our network.

Slice Transformer: This module processes a point cloud as a
sequence of slices, hence called Slice Transformer. As shown
in Fig. 2, it comprises four Multi-head Attentions (MHAS)
and three MLPs. The input and output of this block are in
RS*P An MHA is based on a Scaled Dot-Product Attention

defined as q-kT

Atten(q, k, v) vsoftmax(m), (D)
where Atten is the attention function of a single head; g, k,
v are query, key and value; dk is key’s dimension.

In the case of MHA, keys, queries and values are projected
multiple times to different learned linear transformations.
The attention function is computed in parallel over all
projections separately. The outputs of these computations
are concatenated. For efficiency, we use 16 heads with
128 dimensions each. Thus, the input to a single head
attention function is R%*128, MHA permits the network
to attend useful features from different representation
subspaces at various positions. In Slice Transformer, we
place MLPs before MHA modules at various locations
to extract useful and diverse local features of the input
data. Each MLP consists of six 1D CNNs with Batch

Normalization layers and ReLU activation functions.
The input and output channel size for the CNNs are
(36,64), (64,64), (64,128), (128,128), (128, 128), (128, 36).
Mathematically, a single head performs the computation
as shown in Eq. (1) while MHA performs concatenation
operation over all heads computations, which can be
expressed as

MHA (g, k,v) = concat(hl, h2, h3...hi)WC, (2

where h; denote attention heads and W© e R%x2048 g

the projection parameter matrix.

5) Output Classification: Within the context of pre-text
learning, this process is responsible for the final prediction.
It is implemented with 5 1D CNNs with kernel size (1,1), a
maxpooling layer, and two linear layers. The 1D CNNs map
the input features RS> P to R1924%2048 4nd then maxpooling
is employed channel-wise. Finally, linear layers and softmax
is applied to generate the final output. Using the conventional
cross-entropy loss, the network is trained to predict pseudo-
labels for the pre-text task or the true labels for classification-
see Sec. VI-B.

IV. LOCALIZATION

Self localization is a critical autonomous navigation task.
We present a method for localization in 3D point cloud
map with LiDAR input by building on the self-supervised
model presented in the preceding section. Our technique is
illustrated in Fig. 3. It divides a query frame into slices
following the method of Sec. III-A, and extracts features
for slices using a pre-trained backbone obtained using the
technique in Sec. III. The output of this module is further
processed using the components described below.

A. Features Filtering

Features extracted by the backbone network may also
contain unwanted and noisy features. Inspired by [39], [40],
we devise a neural modeling based filter to cleanse the
unwanted features. To that end, we first estimate a mask of
size R for the input slice features in R%*? with an MLP
employing sigmoid activation. The mask is then broadcasted
to the features by applying dot product between the mask
and input features followed by normalization. This enables
extraction of similar features from the input features map.
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Fig. 3. Proposed end-to-end 6DoF localization method that leverages the self-supervised pre-trained backbone followed by a regression stage that employs
two-headed fully-connected sub-network to predict translation and rotation parameters for the query point cloud frame.
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Fig. 4.
shown binary annotations of roads and other objects.

Constructed 3D point cloud map of Perth CBD, WA. The map

B. Max-pooling and Average Pooling

The main responsibility of these layers is to identify slice-
wise maximum and average features. The max-pooling and
average pooling generate outputs with size RP*!, expecting
inputs of size RP*S, Outputs from these layers are concate-
nated for further processing.

C. Regression Module

The pre-trained model from Sec. III is a classifier whereas
6DoF prediction is better formulated as a regression prob-
lem. Therefore, we replace classification related modules
with a Regression Module, while keeping the pre-trained
backbone. The employed Regression Module consists of
a common fully-connected (FC) layer at the initial stage,
followed by two branches of four FC layers - see Fig. 3.
The output channel sizes in each branch of the FC lay-
ers are 1024,512,256,3. The layers are initialized with
Xavier_uniform distribution, and use ReLLU activations. We
also normalize the rotations branch of the sub-network to
account for the relatively smaller variations.

D. Training Loss Function

Unlike other localization methods which are predom-
inantly restricted to a single loss for both rotation and
translation, we use Li-loss for translation vector and Co-
sine Similarity Embedding loss for the rotation vector. We
combine these losses with learnable balancing factors v and
B, as the net batch loss in Eq. (3).

3)

where (',77), (¢,7) are the ground-truth and predicted poses
i.e., translations ¢ (along X, Y, Z directions) and rotations r
(in yaw, roll, pitch).

L=|t—t]e*+a+ (1 —cos(r—1))e’+8,

V. PERTH-WA DATASET
Another major contribution of this work is Perth-WA
dataset that provides 6DoF annotations for localization. The

data comprises a LiDAR map of 4km? region of Perth
Central Business District (CBD) in Western Australia as
shown in Fig. 4. The scenes contain commercial structures,
residential areas, food streets, complex routes, and hospital
building etc. The data was collected in three different two-
hour sessions under day/night conditions with sunny and
cloudy weather. Unlike the existing related dataset, Apollo-
SouthBay [10] and Oxford Radar RobotCar Dataset [41],
Perth-WA dataset annotations do not rely on Inertial Mea-
surement Unit (IMU). Instead, the labeling comes directly
from the LiDAR frames themselves, as explained shortly.

In constructing a large 3D point cloud map, accumulation
of registration errors is a major problem. This causes a drift
in the map. To overcome that, we collected the data in
closed loops. It is known that registration of closed loop
LiDAR frames reduces error accumulation drastically [42].
Our map is constructed in an offline process, which involves
extraction of loops from the scanned data, filtering out
non-static objects, registration and merging the consecutive
frames in a loop, followed by merging all the sub-maps
into a single map. We further post-process the map to
remove redundant points. In map construction, we leverage
3D normal-distribution transform (3D-NDT) algorithm [43]
for registering the LiDAR frames. There are total nineteen
sub-maps created from raw LiDAR frames which are merged
to create a single 3D point cloud map. We allow two types
of regions with dense and sparse point clouds in the map, the
latter to create a more challenging scenario for localization.
For the sparse region of the map, we skip three consecutive
frames in the collected data.

To extract the ground-truth poses for Perth-WA dataset,
we exploit the map creation process itself. Within a loop, a
moving LiDAR frame is registered with a static point cloud,
which generates a transformation matrix for the moving
frame. To compute the transformation matrix of a frame, we
multiply the previous frame’s transformation to the transfor-
mation matrix of that frame. For instance, when the frames in
aloop are f1, fo, f3,... fn, and their corresponding transfor-
mation matrices are 77,75, T3,...T,, then the ground truth
transformation matrices for each frame can be computed as
(To Tl) = Tg17 (Tgl Tg) = ng, .o (Tgn—l Tn) = Tgn- The
Ty is a 4 x 4 identity matrix for the first loop, however, it is
the ground-truth transformation matrix of the last frame in
a previous loop for any other loop. To compute the ground-
truth transformation matrices for the next loop, we initialise
the registration process from 7j to compute the ground-truth
of the first frame in that loop. After merging two loops, we



TABLE I
CLASSIFICATION RESULTS (ACC %) ON MODELNET40 AND
SCANOBJECTNN. PC = POINT CLOUD, N = NORMAL.

Method Input ModelNet40 ~ ScanNN
PointNet++[44] PC 90.7 77.9
DGCNN [45] PC 89.0 78.4
SpiderCNN (4-layer) [46] PC+N 924 73.7
PointNet[7] PC 89.2 68.2
PointCNN[47] PC+N 92.2 78.5
3DmFV [48] PC 91.4 63.0
Transformer [27] PC 914 77.2
Transformer+OcCo [49] PC 92.1 80.4
NPCT [50] PC 91.0 -
POS-BERT [28] PC 92.1 83.2
Ours PC 924 84.5

refined the values of T, with rotation and translation values
to ensure that the frames align perfectly with the map. We
use this strategy for all the loops to generate the ground-
truth annotations with high precision. Finally, we convert
the ground-truth transformation metrics to rotation angles
(degrees) and translation vectors (meters) for all the frames
to provide annotations for training and testing the model. The
Perth-WA dataset contains 30K frames with 6DoFs poses.

VI. EXPERIMENTS
We evaluate the proposed method for localization and

object classification tasks on benchmark datasets and com-
pare with the state-of-the-art methods. Moreover, we also
establish baseline results on the proposed Perth-WA dataset.
For comparison, we choose existing localization and classifi-
cation methods based on their popularity and availability of
the author-provided code for a fair evaluation.

A. Setup
All experiments are performed on Ubuntu 18.04 operating

system with PyTorch version 1.9 and using a single GeForce
RTX 3090 GPU with 24GB memory. For the proposed
method, each point cloud frame is divided into 36 slices,
30° each with 2048 points per slice and 20° overlap with
the neighboring slices.

B. Classification Task

For classification, we directly fine-tune our self-supervised
pre-trained model for the task. We present results on the
popular ModelNet40 [11] and ScanObjectNNN [12] datasets.

1) Datasets: ModelNet40 [11] contains 3D CAD models
of 40 object classes. We use the standard training and test set
in our experiments, comprising 9,843 and 2,468 samples, re-
spectively. The ScanObjectNN dataset [12] comprises nearly
15K real-world object scans with occlusions and background.
It is a challenging point cloud dataset for classification task.
It has 15 categories with 2,902 distinct object instances. Each
object in the dataset is defined by a list of 3D points (z, y, 2
values), normal vector and color at each point, and class
label. We perform experiments on the perturbed (PB-T50-
RS) variant of the dataset.

2) Implementation Details: In classification, we set the
same training parameters for both datasets. We employ batch
sizes of 16 and 4 for training and testing, respectively; and
use Adam optimizer with learning rate 0.001 and weight

decay 0.00001. We use the standard Cross Entropy loss and
train the model for 60 epochs each on both datasets.

3) Results on ModelNet40 and ScanObjectNN Datasets:
We compare our method with the state-of-the-art. Among
the MLP and CNN based classification methods, we compare
with the PointNet[7], PointNet++[44], DGCNN [45], Spider-
CNN [46], PointCNN[47], and 3DmFV [48]. We also com-
pare with transformer based methods, which include Trans-
former [27], Transformer+OcCo [49], POS-BERT [28] and
NPCT [50]. Table I summarizes the results on ModelNet40
and ScanObjectNN datasets. Our approach outperforms all
methods on ScanObjectNN dataset. On the ModelNet40
(synthetic dataset), our method shares the same highest
accuracy with SpiderCNN, however, our method significantly
outperforms SpiderCNN on ScanObjectNN (real dataset).

From the results, we can draw a few conclusions. Pri-
marily, a pre-trained model on real 3D point cloud data
provides useful prior knowledge to help in the tasks of
classification and localization for self-driving vehicles. Sec-
ondly, most of the methods fail to perform well on real-
world 3D point clouds even though they have higher ac-
curacy on the synthetic datasets. Most of the methods,
except Transformer+OcCo [49] and POS-BERT [28], re-
quire fully supervised learning, without leveraging pre-
training, thereby requiring large amount of labelled data.
Transformer+OcCo [49] is an unsupervised Transformer
approach. However, it also utilizes ModelNet40 samples for
pre-training. Synthetic data for pre-training is not an opti-
mal option for outdoor downstream tasks, e.g., localization
and object detection. Similarly, POS-BERT [28] is a self-
supervised approach, however, it is pre-trained on indoor
scenes. Unlike these methods, we performed pre-training on
real-world LiDAR point clouds which proved beneficial for
both indoor and outdoor point cloud processing tasks.

C. Localization Task

We present localization results on the proposed Perth-WA
dataset and the Apollo-SouthBay dataset [10]. We did not
consider KITTI [53] dataset for experiments due to large
errors in ground-truth values.

1) Implementation Details: For fair benchmarking, we
use the same implementation setup for localization in the
Perth-WA dataset and the Apollo-SouthBay dataset [10].
We employ batch sizes 8 and 2 for training and testing,
respectively. We use Adam optimizer with learning rate 0.001
and S values (0.9,0.999). The Exponential scheduler with
v = 0.9 is used during training. The model is trained for 50
epochs on both datasets.

2) Results on Perth-WA dataset: Out of the 30K labeled
frames, we choose 20K frames for training including sparse
and dense parts of the map. For testing, an exclusive set of
10K frames is used which is not a part of the training set.
These frames were originally skipped during the construction
of the training map. The test set is challenging, in that a part
of it consists of 2,200 frames that are taken from widespread
regions of Perth CBD. We evaluate the performance of a
recent point cloud based localization approach PointLoc [6]



TABLE 11
RESULTS ON PERTH-WA DATASET. THE VALUES REPRESENT ABSOLUTE MEAN ERROR FOR ROTATION (IN DEGREES) AND ADDITIONALLY, THE
MAXIMUM ERROR (2ND VALUE) FOR TRANSLATION (IN METERS). OUR METHOD HAS THE LEAST ERROR IN ALL CASES.

S
Wxx@ Yaw Roll Pitch Rot X Y Z Trans

PointLoc [6] 0.26° 1.96° 0.153° | 0.750, 1.510 29.70, 83.48  37.49, 65.98  7.80,19.03 | 25.00,59.89
Ours (baseline) 0.32° 2.42°  0.27° 1.00°,2.30° 14.20,123.63 17.05,45.15  8.50,23.56 | 13.25,74.10
Ours (pretrained) | 0.17° 1.52° 0.096° | 0.59°, 1.48° || 6.26,21.44 6.55,18.95 2.86,16.64 | 5.23,21.36

TABLE III

RESULTS ON APOLLO-SOUTHBAY DATASET. THE VALUES REPRESENT RMSE FOR ROTATION (IN RAD) AND TRANSLATION (IN METERS). OUR

METHOD ACHIEVES THE LOWEST AVERAGE ERRORS.

Route Method Yaw Roll Pitch Rot X Y VA Trans

Levinson et al.[51] - - - - 0.148 0.115 0.074 0.112

BaylandsToSeafood Wan et al.[52] 0.054 - - - 0.036 0.026 0.019 | 0.027
Ours 0.066  0.016 0.05 0.133 0.011 0.033 0.020 0.021

Levinson et al.[51] - - - - 0.063 0.045 0.034 0.047

ColumbiaPark Wan et al.[52] 0.081 - - - 0.046 0.034 0.024 0.035
Ours 0.037 0.25 0.025 | 0.104 0.026 0.013 0.019 | 0.020

Levinson et al.[51] - - - - 0.161 0.138 0.061 0.120

Hightway237 Wan et al.[52] 0.069 - - - 0.049 0.038 0.022 0.036
Ours 0.048 0.23 0.118 | 0.132 0.013 0.039 0.014 | 0.022

Levinson et al.[51] - - - - 0.106 0.086 0.044 | 0.078

MathildaAVE Wan et al.[52] 0.060 - - - 0.040 0.030 0.020 | 0.030
Ours 0.033 0.034 0.190 | 0.085 0.019 0.027 0.039 0.029

Levinson et al.[51] - - - - 0.103 0.075 0.055 0.077

SanJoseDowntown Wan et al.[52] 0.052 - - - 0.058 0.039 0.034 0.044
Ours 0.061 0.088 0.147 | 0.099 0.054 0.044 0.029 | 0.043

Levinson et al.[51] - - - - 0.132 0.097 0.070 0.099

SunnyvaleBiglLoop Wan et al.[52] 0.081 - - - 0.069 0.050 0.038 | 0.052
Ours 0.084 0.0563 0.241 | 0.126 0.022 0.043 0.069 0.045

Levinson et al.[51] - - - - 0.119 0.093 0.046 0.089

Average Wan et al.[52] 0.066 - - - 0.050 0.036 0.026 | 0.037
Ours 0.055 0.117 0.128 | 0.113 0.024 0.033 0.031 0.030

for comparison. We also compute baseline results that uses
our method without self-supervised pretraining. Note that,
our method is a complete localization approach even without
the self-supervised pre-trained backbone. Following [6], we
use Mean Absolute Error and Max error values of poses for
analysing the performance. Table II summarizes the results of
our experiments. Our self-supervised localization approach
consistently outperforms the baseline model and PointLoc for
angular and translation mean error values. We can conclude
from these results that our proposed self-supervised approach
enables more effective point cloud feature learning, which
makes it suitable for localization using complex outdoor
LiDAR frames. These results also demonstrate that Perth-WA
dataset is comparatively more challenging than the Appollo-
SouthBay dataset (see Table III) for localization.

3) Results on the Apollo-SouthBay Dataset: The Apol-
loSouthBay [10] is a large scale localization dataset collected
in San Francisco, USA. An IMU based system is utilized
to collect the ground-truth poses for the LiDAR frames.
The dataset covers six routes, BaylandsToSeafood, Columbi-
aPark, Highway237, MathildaAVE, SanJoseDowntown, and
SunnyvaleBigLoop. For each route, TrainData, TestData and
MapData are provided. Results of our experiments on this
dataset are summarized in Table III. We follow [10] and
use RMSE as the evaluating metric. To establish benchmark

results, we train our model on training sets, and test our
model on all the routes as shown in Table III. We compare
our approach with the state-of-the-art localization methods,
Levinson et al. [51] and Wan et al. [52]. Our method
outperforms both by achieving the lowest average errors.
This is mainly due to the ability of our method to exploit
transformers with pre-training on large real-world data.

VII. CONCLUSIONS

This paper made three major contributions to outdoor
localization using point cloud maps. First, it introduced a
pre-text task that allows self-supervised learning, keeping
in view state-of-the-art Transformer architectures. Second, it
proposed a first-of-its-kind Transformer network that enables
the use of multi-head attention to process outdoor LiDAR
data. Third, it provided a large-scale point cloud map of
Perth (Western Australia), covering nearly 4km? area. The
dataset provides annotations for 6DoF localization problem
and is more challenging compared to the existing Apollo-
SouthBay dataset. We established the baseline on the pro-
posed dataset and benchmarked our method on an existing
Apollo-SouthBay dataset, showing highly competitive local-
ization results. We also established the effectiveness of our
pre-text task and the model by directly fine tuning the later
for classification on ModelNet40 and ScanNN datasets.
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