
SACPlanner: Real-World Collision Avoidance with a Soft Actor Critic
Local Planner and Polar State Representations

Khaled Nakhleh Minahil Raza Mack Tang Matthew Andrews Rinu Boney Ilija Hadžić
Jeongran Lee Atefeh Mohajeri Karina Palyutina

Nokia Bell Labs - Murray Hill NJ, Espoo Finland & Cambridge UK

Abstract— We study the training performance of ROS local
planners based on Reinforcement Learning (RL), and the
trajectories they produce on real-world robots. We show that
recent enhancements to the Soft Actor Critic (SAC) algorithm
such as RAD and DrQ achieve almost perfect training after
only 10000 episodes. We also observe that on real-world robots
the resulting SACPlanner is more reactive to obstacles than
traditional ROS local planners such as DWA.

I. INTRODUCTION

We study the efficacy of Reinforcement Learning (RL)
algorithms for obstacle avoidance and local planning in
ROS-based robotics systems. RL algorithms are able to
learn optimal actions based on a current state and a reward
function. The purpose of the ROS local planner is to adhere
to a global path to the current robot goal while avoiding
local obstacles (which may be dynamic). The RL paradigm
is attractive for such a problem since the behavior of an RL
agent does not have to be explicitly programmed for every
possible scenario. In the RL framework, we specify the re-
ward function, state space, and permissible actions the robot
can take. The goal is to obtain a near-optimal planning policy
given sufficient training samples. RL agents can potentially
exhibit more complex (and hence more responsive) behavior
than traditional local planners such as the Dynamic Window
Approach (DWA) to Collision Avoidance [1].

RL has recently seen many advances due to the emer-
gence of Deep RL, where the actions are chosen from a
policy parametrized by a Deep Neural Network (DNN).
One notable success of Deep RL is in learning policies for
game environments (e.g. Atari games) modeled as Markov
Decision Processes (MDPs) and standardized as OpenAI
Gym environments [2]. As a result of this success, multiple
authors have examined how Deep RL can be applied to robot
control [3], [4], [5], [6].

However, these works raise a number of questions that we
address in our study. First, they typically measure perfor-
mance via an episodic success criterion, e.g. does the robot
reach the goal, does it suffer any collisions etc? We are also
interested in the quality of the trajectory. Is it smooth? How
does it back off from an obstacle? Second, many of these
papers address challenging environments where success rates
are significantly below 90%. We believe such performance

Work performed while K. Nakhleh, M. Raza and M. Tang were summer
interns from Texas A&M, Åbo Akademi University and U. Maryland
respectively.

is unacceptable for practical deployments. Therefore, we are
interested in how to achieve near 100% success rates even
in complex scenarios. Third, there are alternative obstacle-
avoidance algorithms that do not use RL and we would like
to quantify the benefits and drawbacks of using an RL-based
approach. Lastly, we would like to know which specific RL
techniques produce the best performance.

We follow [7], [3] and use ROS together with a waypoint
generator that specifies a next waypoint based on the current
robot location and a global plan to the goal. The task of
the RL local planner is to reach this next waypoint without
hitting any static or dynamic obstacles. Our RL state is an
image representation of the obstacles and the next waypoint
in polar coordinates. It mimics the image states used in the
OpenAI gym environments for Atari games. We train our
agents in a simulator with sample maps, and then upload the
trained agents onto the robot for testing in the real world.
With this setup, we list our contributions as follows:
• We show that modern variants of the Soft Actor-
Critic (SAC) RL algorithm such as Reinforcement Learning
with Augmented Data (RAD) [8] and Data-regularized Q
(DrQ) [9] give significantly improved performance compared
to earlier RL algorithms and implementations, and achieve
success rates close to 100% after only 10,000 episodes. We
refer to the resulting local planner as SACPlanner.
• We demonstrate that polar image state representations
outperform natural alternatives.
• We analyze the trajectories produced by SACPlanner
on real-world robots. (Prior work mostly limited trajectory
analysis to simulations with perfect localization etc.) We
compare with trajectories produced by DWA and a shortest-
path based local planner. In all cases with an unexpected
or dynamic obstacle, SACPlanner is much more reactive
and hence performs better. The trade-off is a less smooth
trajectory when the local planner simply has to follow the
global plan.

II. TRAINING AND VALIDATION FRAMEWORK

We use a standard ROS stack in which the robot knows
its position up to the accuracy of the localization system.
The robot has a 2D map for fixed, known obstacles and
it detects dynamic and unknown static obstacles using a
LiDAR sensor. From the raw obstacle information the robot
constructs a costmap in the form of an Occupancy Grid using

ar
X

iv
:2

30
3.

11
80

1v
1

 [
cs

.R
O

]
 2

1
M

ar
 2

02
3

the approach of Lu et al. [10]. The costmap window size for
the local planner is 8m× 8m.

We integrate RL into the robot navigation stack using the
framework pioneered by Güldenring et al. [7], [3]. When a
new goal is specified the global planner creates a path from
the current position to the goal (Fig.1). In this work we use
without change the standard ROS NavFn planner based on
the Dijkstra search algorithm. The path is found based on
the obstacles in the map together with any obstacles seen by
the LiDAR at the time of path creation.

Whenever a path is created by the global planner, a way-
point generator breaks it up into a sequence of waypoints.
At all times the local planner maintains a list of 8 waypoints,
starting with the one after the waypoint that is closest to the
robot. (The method of [7] sometimes starts the list with the
closest waypoint to the robot, but we found that could create
excessive “pingponging” in the eventual choice of waypoint).
From this list of 8, the local planner chooses the first on the
list that is not too close to an obstacle. The aim of the RL
agent is to move towards the selected waypoint while not
hitting any obstacles, including obstacles that appeared after
the global plan was computed.

A. RL Environment

The RL environment is defined by a state space S, an
action space A, and a reward function R(·, ·). When the
RL agent takes action a ∈ A in state s ∈ S, it gains
reward R(s, a) and moves to a new state s′ according to
some state-transition distribution s′ ∼ p(·|s, a). The actions
are linear/angular velocity pairs (v, ω). The state space is
defined by the positions of the next waypoint and the local
obstacles relative to the current robot position. We represent
the state with an image since this allows us to utilize the
convolutional deep RL architectures that have worked well
for visually-rich environments such as Atari video games and
some robot control tasks. In addition, using such game-like
image states is a convenient way to merge the information
from the waypoint position, the static objects from the map,
and the dynamic obstacles sensed by the LiDAR.

Specifically, our RL state is an image that we refer to as
the polar costmap. (See Fig. 1.) It is generated by converting
the Occupancy Grid representation of the ROS costmap
and the next waypoint to polar coordinates. The horizontal
axis represents distance from the robot and the vertical axis
represents angle. Obstacles are presented in red and the next
waypoint is a white square. The motivation for using a polar
representation is that it matches the linear/angular velocities
that form the action. The state transition naturally follows
from the robot movement after an action is taken.

It remains to define the reward function R(s, a) for taking
action a in state s. We employ a mix of both dense and sparse
rewards. For a given state s, let (dold, θold) be the distance
and bearing to the next waypoint in state s, let s′ be the
new state after taking action a, and let (dnew, θnew) be the
distance and bearing in state s′. Here the bearing is defined
to be the difference between the angle to the waypoint and

Fig. 1. ROS framework with global map, and polar costmap. The black
square represents an obstacle that appeared after the global plan was
computed.

the current yaw. We define:

R(s, a) = (dold − dnew) · (1 if dold − dnew ≥ 0, else 2)
+ (|θold| − |θnew|) · (1 if |θold| − |θnew| ≥ 0, else 2)
−Rmax · (1 if collision, else 0)
+Rmax · (1 if dnew = 0, else 0)
−G(s′),

where Rmax is a fixed reward/penalty for reaching the
waypoint and colliding with an obstacle, respectively, and
G(s′) is the product of a truncated Gaussian kernel centered
at the robot location and the Occupancy Grid in state s′.

The first two terms of R(s, a) incentivize getting closer
to the waypoint both in terms of distance and bearing. Note
that the penalty for moving away from the waypoint (both
in distance and bearing) is double the reward for moving
towards it. Hence there is a net penalty for moving away
from the waypoint and then back towards it. We have found
that this “doubling the penalty for negative progress” has a
significant effect on encouraging the agent to move directly
to the waypoint if there are no obstacles in the way. The final
Gaussian term penalizes movement towards an obstacle.

Fig. 2. Dummy training environment (left) with polar costmap (right).

We find that it is more efficient to train our RL agents on a
“dummy” training environment that does not require the full
complexity of ROS or a detailed physics simulation. For this
dummy training environment we place a robot start position
and a single waypoint in an environment with obstacles as
shown in Fig.2. The robot is the blue square, the waypoint is
the red square, and the larger green square around the robot
is the support of the truncated Gaussian kernel. For each
episode in the RL training, we pick an obstacle configuration
and then use the above reward to encourage the RL agent
to move towards the waypoint without hitting obstacles.
Once the agent is trained we can run it directly in our ROS
environment (either a Gazebo simulation or on real robots)
since the state definition is the same in all cases. We remark,
however, that the specific obstacle configurations on which

we do the training are not the same as the configurations on
which we do our eventual experiments, since we want trained
agents that generalize to any unseen obstacle configuration.

III. PREVIOUS WORK AND COMPARISON ALGORITHMS

The canonical local planner algorithm for ROS is the
Dynamic Window Approach [1]. At each instant, DWA
calculates a set of achievable (v, ω) pairs based on the current
velocities and achievable acceleration characteristics of the
robot. For each velocity pair DWA calculates a score based
on how closely the arc follows the global plan, and on how
far the arc is from any obstacle. It then chooses the best
velocity pair based on this score.

Multiple recent papers have investigated how well local
planner behavior can be learned via RL. Güldenring et al. [7]
developed a framework that has been followed by many
subsequent papers in which the global plan is partitioned
into waypoints and the task of the RL agent is to get to the
next waypoint.

Patel et al. [4] combines the DWA and RL approaches.
The resulting DWA-RL algorithm calculates a cost for each
potential velocity pair, but then uses RL to select the best pair
based on the full spectrum of costs, rather than just picking
the lowest cost pair. The work of Kästner et al. [5] distin-
guishes between humans, robots and static objects and uses
an RL state that is a combination of the raw LiDAR input,
the distance/angle to the goal, the position of nearby humans
and the position of nearby robots. A follow-up paper [11]
looks at different methods for choosing the next waypoint,
and compares the fixed partition of Güldenring et al. [7],
[3], with alternative methods that choose the waypoint more
dynamically. The work of Liu et al. [6] uses a similar RL
state. The main difference is that they represent pedestrian
and robot movement using the CrowdNav algorithm of [12],
and they represent the LiDAR information via both the raw
LiDAR values and an Occupancy Grid.

In many of these papers the success rate of the trained
agent is significantly under 100%. For example, the agent
of [7] converges to a rate less than 70%. Moreover, this
prior work typically provides trajectory plots from a Gazebo
simulation. Our goal is to train an agent with close to 100%
success, and then analyze trajectories from a real-world
deployment (with the associated imperfections in sensing and
localization). We also observe that if the goal is to get to the
next waypoint, then an alternative is to repeatedly calculate
a shortest path in the Occupancy Grid. We have found that
modern python implementations of Dijkstra’s algorithm can
do this sufficiently fast, and so we also compare against a
local planner that uses the next segment of the shortest path
to define the robot velocities. Note however that the shortest
path will change over time as the robot and obstacles move.

IV. SOFT ACTOR CRITIC ALGORITHM

The objective in RL is to maximize the expected sum
of rewards that the agent will receive in the future: G =
E[
∑∞
t=0 γ

tR(st, at)], where the expectation is taken over the
agent policy at ∼ π(·|st) and the state transition function

st+1 ∼ p(·|st, at). The parameter γ ∈ (0, 1] is a discount
factor used to reduce the weight given to future rewards.

Continuous control problems, such as the local naviga-
tion task considered in this paper, are often approached
using actor-critic algorithms that learn two functions called
the actor and the critic. The actor is a policy function
a ∼ πθ(·|s) with parameters θ. The critic Qφ(s, a) with
parameters φ estimates the action-value function Qπ(s, a) =
E[
∑∞
t=0 γ

tR(st, at)|s0 = s, a0 = a] of policy π, which is
the expected cumulative reward after taking action a in state
s and following policy π after that.

In this work, we use a state-of-the-art off-policy actor-
critic algorithm called Soft Actor-Critic (SAC) [13], [14]. It
is based on the maximum entropy RL framework which aug-
ments the standard RL objective with an entropy maximiza-
tion objective: G = E[

∑∞
t=0 γ

t(R(st, at) + αH(π(·|st)))],
where α is a learnable temperature parameter that balances
the importance of both objectives. The entropy maximization
motivates the agent to succeed at the task while acting as
randomly as possible, aiding exploration.

In SAC, the actor and critic functions are parameterized as
deep neural networks. The actor is a Gaussian policy with the
mean and diagonal covariance parameters produced by the
neural network. The actor and critic networks are updated by
sampling minibatches of (st, at, rt, st+1, dt) transitions from
a replay buffer D, where dt is a terminal signal denoting the
end of the episode. The parameters for the critic network Qφ
are trained to minimize the soft Bellman residual:

JQ(φ) = E(st,at,rt,st+1,dt)∼D [Qφ(st, at)− yt]2 ,

where the learning target yt is

yt = rt + γ(1− dt)V (st+1) ,

and the soft value function

V (st) = Eat∼π(·|st)
[
Qφ̄(st, at)− α log π(at|st)

]
(1)

is approximated using a Monte Carlo estimate of the policy
πθ and a target Q network Qφ̄(st, at) whose parameters φ̄
is maintained as the exponentially moving average of the
Q network parameters φ. SAC also makes use of clipped
double Q-learning [15], where the Q estimates are computed
as the minimum value of an ensemble of two critic networks
with different initializations trained on the same data. This
helps prevent overestimation bias in Q-learning with non-
linear function approximators.

The parameters of the actor/policy network πθ are updated
to maximize the maximum entropy RL objective:

Jπ(θ) = E
st∼D

[
E

at∼πθ(·|st)
[α log πθ(at|st)−Qφ(st, at)]

]
.

The learnable temperature parameter α can be automati-
cally updated such that the policy network satisfies a mini-
mum expected entropy constraint. See [14] for more details.

While SAC often performs well on continuous control
tasks with low-dimensional observations, learning a mapping
from high-dimensional states (images) to continuous actions
(linear and angular velocities) typically requires massive

amounts of robot-environment interactions. This is because
the agent must learn to extract the right information from the
images to successfully perform the task at hand. SAC with a
convolutional encoder can be used to learn low-dimensional
representations of image observations, which are then pro-
vided to the actor and critic networks. However, this often
fails. Sample-efficient learning of SAC agents from image
observations requires additional supervision such as input
reconstruction [16], contrastive representation learning [17],
or image augmentations [8], [9].

In this work, we consider the recently proposed RAD [8]
and DrQ [9] methods that apply image augmentations for
sample-efficient learning of continuous control policies from
image observations. In RAD and DrQ, the image obser-
vations are transformed with a random shift before each
forward pass on the convolutional encoder. DrQ further
proposes to average the Q-learning targets in Eq. 1 over
K image transformations. This reduces the variance in the
learning targets of the critic, improving the stability and
efficiency of learning.

We apply random shift image augmentation (by ±4 pixels)
to the costmap observations. The augmented images are
passed to a convolutional encoder consisting of four 3 × 3
convolutional layers with 32 filters and a stride of 1 followed
by ReLU activation. The output of the final convolutional
layer is flattened and passed to a fully connected layer,
followed by layer normalization and tanh activation to yield
a 50-dimensional state representation. The actor and critic
networks use the same MLP architecture with 4 fully con-
nected layers of 1024 hidden units. The actor predicts the
mean and diagonal covariance of the Gaussian policy based
on the encoded state vector. The critic networks predict the
scalar state-action values based on the encoded state vector
and an action vector. Following previous works [16], [17],
[8], [9], we train the convolutional encoder network using
only the critic loss and then detach the network parameters
from the actor loss for improved training stability.

V. PERFORMANCE OF RL TRAINING

We now evaluate the training performance of RAD, DrQ
and other baseline RL methods in our dummy training
environment. We train the RL agents on our polar costmap
environment from Section II-A, and compare against Carte-
sian costmap environments (similar to [7]) where we do not
convert to polar coordinates before generating the image. We
train for 10,000 episodes with the hyper-parameter values
listed in Table I, The trained agents are evaluated over 1000
episodes in the training environment. We define the success
rate as the percentage of episodes in which the agent reached
the goal. The collision rate is defined as the percentage of
episodes where the agent collides with the obstacles. An
episode can be neither a success nor a collision if the robot
stops and the episode times out.

In Table II, we compare the polar and Cartesian costmaps
using the RAD version of SAC. While the information
regarding the robot’s orientation is implicit in the po-
lar costmap, this information is missing in the Cartesian

TABLE I
HYPER-PARAMETER VALUES FOR SAC AGENT TRAINING.

Hyper-parameter Value

Training episodes 10000
Random exploration episodes 10
Mini-batch size 128
Replay buffer capacity 106

Discount factor γ 0.99
Optimizer Adam
Learning rate 0.001
Critic target update frequency 2
Critic target update rate τ 0.01
Actor update frequency 2

TABLE II
COMPARISON OF CARTESIAN AND POLAR COSTMAPS USING RAD

AGENT IN THE DUMMY ENVIRONMENT.

Costmap Orientation Success Collision
Information Rate Rate

Polar Implicit 98.7% 0.08%

Cartesian
Rotation 42.0% 37.7%
Arrow 45.5% 36.0%
Channel 65.3% 25.9%

costmap. We explored three ways to represent this: (i)
rotating the Cartesian costmap by the robot orientation angle,
(ii) drawing an arrow at the center of the costmap to denote
the robot orientation, or (iii) appending an extra channel to
the costmap with the robot orientation angle. The agent with
polar costmap observations significantly outperforms those
with Cartesian costmap observations. We hypothesize that
this is because the polar costmaps better match the action
space of the robot and also implicitly represent the robot ori-
entation information, which allows for better generalization.
We use the better performing polar costmap environment in
the rest of our experiments.

We next compare the performance of RAD, DrQ (with
K=2), and the following RL baselines in Table III:
• DQN. To evaluate if discrete control is easier to learn,
we discretize the action space of the robot with six possible
linear/angular velocity pair combinations and train a standard
DQN agent from the stable baselines library [18].
• PPO. To evaluate if the SAC agents perform better than
other actor-critic algorithms, we also compare against the
popular PPO agent from the stable baselines library [18].
• SAC from raw LiDAR observations. To evaluate the
importance of image-based game-like states, we compare
against a SAC agent trained on raw LiDAR observations
(similar to [5], [6]). For this agent, the actor and critic
networks receive state vectors consisting of the raw LiDAR
readings and the coordinates of the next waypoint.
• DWA-RL with SAC. To evaluate if it is beneficial to
combine the standard DWA planner with RL, we implement
the observation space and reward function of the DWA-RL
method [4] and train our SAC agent on this hybrid setup.

The DrQ method achieves the highest success rate (>
99%) with the fewest collisions. We also experimented with

TABLE III
COMPARISON OF RL AGENTS IN THE DUMMY ENVIRONMENT.

Method Success Rate Collision Rate

DQN 33.9% 51.2%
PPO 83.6% 7.5%
SAC from LiDAR 34.2% 47.5%
DWA-RL with SAC 7.3% 70.3%
RAD 98.7% 0.08%
DrQ 99.4% 0.02%

Fig. 3. Robot experiment test cases.

stacking four consecutive frames as observations to the DrQ
method but observed that these agents tend to have trouble
navigating around obstacles, reducing the success rate to
94.9%. We note that the success rates we obtain with the
baseline algorithms are lower than those observed in the
literature [7], [4], [5], [6]. We believe this is partly because
we only run for 10,000 episodes (which corresponds to
< 500000 steps). However, this is sufficient for training the
DrQ agent and demonstrates the sample-efficiency of this
variant of SAC. Another potential reason is that our training
environment contains challenging scenarios requiring tight
turns (see Fig. 2), but this is necessary to obtain agents that
will work for the real-world cases described below.

VI. DESIGN OF ROBOT EXPERIMENTS

We now describe our experiments for testing the local
planners on a physical robot. We use a ClearPath Robotics
Jackal robot [19] equipped with LiDAR, set to a scanning fre-
quency of 5Hz. The experiments cover a range of scenarios
that an autonomous robot would encounter in the physical
world. A failed traversal translates into a robot’s collision
with a static obstacle (e.g. wall), or a dynamic obstacle (e.g.
pedestrian). Moreover, if the planner fails to complete the
global plan, then the robot fails that scenario. In addition to
simply measuring success/failure, we are also interested in
the nature of the trajectory produced by each approach. Is it
smooth? How does the robot react to an obstacle?

Test cases. The experiments were conducted in a facility
that includes an open room and a maze component with tight
corners and narrow doorways shown in Fig.3. We refer to the
maze shown in the first two images of Fig.3 as the UNIX
maze room (named after letters that make up obstacles in
four separate rooms). We describe four test cases:
• (C1) Room I to room N through doorway: shown in
Fig.3 (left). Here the robot’s task is to travel through a narrow
doorway while making a 180-degree turn. In this case, all
the obstacles are fixed and included in the global map, and

so the only job of the local planner is to follow the global
plan (which will be a collision-free path from start to goal)
as closely as possible. However, in order to make the turn
smoothly the planner must maintain a small turn radius (the
ratio between linear and angular velocity).
• (C2) Room I to room X with “unexpected” static
obstacle: shown in Fig.3 (mid). In this experiment, the robot
goal is selected before the obstacle is in place. After the
goal is selected and the global plan is computed, a static
obstacle (a cardboard cutout of a person) is placed in the
robot’s global plan. As the robot nears the obstacle, the next
eligible waypoint will be beyond the obstacle and the local
planner will need to navigate round the obstacle.
• (C3) Avoiding a walking pedestrian on a straight path:
shown in Fig.3 (right). Here the robot must traverse a straight
path while a pedestrian is walking towards the robot. This
case tests the local planner’s ability to detect and navigate
around a moving object. For this experiment it would always
be possible to generate an “unavoidable collision” by having
the pedestrian walk quickly at high speed into the robot. To
avoid this we ask the pedestrian to stop when they are right
in front of the robot. The desired behavior is then for the
robot to back up or turn round the pedestrian. The undesired
behavior is to keep on moving forward into the pedestrian.
• (C4) Pedestrian crossing the robot path: We extend
the previous test case (C3) by asking the pedestrian to
perpendicularly cross the robot’s global path. The desired
behavior is for the robot to wait and then continue after the
pedestrian has crossed.
Local planners. We test with the DrQ variant of SAC
since it had the best training performance of all the RL
algorithms in Section V. We log the trajectories for the
resulting SACPlanner and compare against the Dynamic
Window Approach (DWA), as well as the Shortest Path (SP)
planner discussed in Section III that always tries to get to the
next waypoint using a shortest path in the Occupancy Grid.

VII. EXPERIMENTAL RESULTS

The robot trajectories for each of (C1)-(C4) are shown
in Fig.4. We denote the start and goal along with the
collision points. For (C1)&(C2) we swap the direction of
travel for half the runs. The color of the trajectory represents
linear velocity. We also show the Occupancy Grid values in
gray (taken from the map and the LiDAR). For (C3)&(C4)
with a dynamic obstacle the gray shading captures all the
positions of the obstacle over time. The 3 local planners
have qualitatively different behavior which we now describe
in detail for each case.
• (C1): DWA (which generates circular arcs) has the
smoothest trajectory through the door. However, when start-
ing at the top it miscalculated the best turning radius and
aborted next to the ‘N’ obstacle each time. The SP planner
never collided with an obstacle and (not surprisingly since it
was running shortest paths on a grid) it traveled in a series of
straight lines (whose endpoints are denoted with green dots).
SACPlanner was also successful in all cases. However, it had

Fig. 4. Trajectory comparison between DWA, Shortest Path (SP) vs. SAC agent for each test case.

Fig. 5. Trajectory comparison between DWA and SACPlanner based on logs from the test case (C3).

to “back off” multiple times (denoted by the blue parts of
the trajectory) before aligning correctly with the doorway.
• (C2): In this case a static obstacle appears on the global
plan. Although DWA tried to deviate from the global plan,
it did not do so enough, and therefore collided with the
obstacle every time. The SP planner was succesful when
starting from the bottom. When starting from the top, the
shortest path around the obstacle alternated between “going
left” and “going right”. This indecision led to some col-
lisions. SACPlanner often backed off multiple times when
confronted with the obstacle. However, it eventually made it
round the obstacle every time.
• (C3): Both DWA and SP were unable to deal with the
fact that the pedestrian obstacle was approaching and hence
the “correct” trajectory kept changing. Even though the
pedestrian stopped right in front of the robot, both DWA
and SP kept going and caused a collision. SACPlanner went
backwards when the pedestrian got close and then directed
the robot to take a wide berth in the available open space.
Quantitative metrics: In Table IV we show the mean travel
time (s), mean travel distance (m), mean speed (m/s), and
collision rate for the 3 local planners on (C1)-(C3) across
all runs. For DWA on (C1) we only consider the non-
aborted runs. For (C2)-(C3) we remove the obstacle after
each collision and so the robot will still reach the goal. We
note that the “backing off” behavior of SACPlanner leads to
greater distances/times than DWA and SP, but this how it is
able to achieve a much lower collision rate.

TABLE IV
SUMMARY STATISTICS OF TRAJECTORIES FROM TEST CASES.

(C1) (C2) (C3)
DWA SP SAC DWA SP SAC DWA SP SAC

Time 21.80 30.10 37.20 30.70 20.90 28.50 27.50 22.30 33.10
Distance 7.13 8.93 10.70 5.47 6.26 8.57 8.77 8.01 10.80

Speed 0.33 0.30 0.29 0.18 0.30 0.30 0.32 0.36 0.33
Collision 0.5 0 0 1.0 0.3 0 1.0 0.9 0

• (C4) When the pedestrian switches to walking across the
robot’s path rather than walking towards it, the results are
similar to (C3). Both DWA and SP are not reactive enough
and collide every time. However, SACPlanner backs off when
the pedestrian is close, and then resumes traveling towards
the goal after the pedestrian has passed through.

A. Trajectory Analysis

In order to understand more deeply the difference in
behavior of DWA and SACPlanner, Fig.5 depicts a single run
from test case (C3). Fig.5(a) shows the trajectory, Fig.5(b)
plots the linear velocity, Fig.5(c) shows the distance to the
nearest ‘front obstacle’ (within ±π4 rad range from the current
yaw), and Fig.5(d) plots the angular velocity.

The key feature of these plots is that when the pedestrian is
close, DWA slows down and turns a little, whereas SACPlan-
ner goes into reverse (note the blue color in Fig.5(b)&(c))
and turns a lot so as to go around the pedestrian. This
“reactiveness” to obstacles also manifests in more turning
even when the robot can go in a straight line.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we have examined how training for RL-based
local planners can be improved by using polar costmaps and
regularization on top of the SAC algorithm to achieve success
rates close to 100% after only 10,000 episodes. In addition,
we have done a detailed trajectory analysis to show how the
resulting SACPlanner is more robust and more responsive to
dynamic obstacles than non-RL algorithms. For future work,
we would like to improve the smoothness of SACPlanner
when there are no unexpected obstacles, and we plan to
develop a cooperative version of SACPlanner for when two
or more robots are in close proximity.

REFERENCES

[1] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing atari with deep
reinforcement learning,” CoRR, vol. abs/1312.5602, 2013. [Online].
Available: http://arxiv.org/abs/1312.5602

[3] R. Güldenring, M. Görner, N. Hendrich, N. J. Jacobsen, and J. Zhang,
“Learning local planners for human-aware navigation in indoor
environments,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2020, Las Vegas, NV, USA, October 24,
2020 - January 24, 2021. IEEE, 2020, pp. 6053–6060. [Online].
Available: https://doi.org/10.1109/IROS45743.2020.9341783

[4] U. Patel, N. K. S. Kumar, A. J. Sathyamoorthy, and D. Manocha,
“DWA-RL: Dynamically feasible deep reinforcement learning policy
for robot navigation among mobile obstacles,” in 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2021,
pp. 6057–6063.

[5] L. Kästner, C. Marx, and J. Lambrecht, “Deep-reinforcement-
learning-based semantic navigation of mobile robots in dynamic
environments,” in 16th IEEE International Conference on Automation
Science and Engineering, CASE 2020, Hong Kong, August 20-
21, 2020. IEEE, 2020, pp. 1110–1115. [Online]. Available:
https://doi.org/10.1109/CASE48305.2020.9216798

[6] L. Liu, D. Dugas, G. Cesari, R. Siegwart, and R. Dubé, “Robot nav-
igation in crowded environments using deep reinforcement learning,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, pp. 5671–5677.

[7] R. Güldenring, “Applying deep reinforcement learning in the naviga-
tion of mobile robots in static and dynamic environments,” Master’s
thesis, University of Hamburg, 2019.

[8] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas,
“Reinforcement learning with augmented data,” Advances in neural
information processing systems, vol. 33, pp. 19 884–19 895, 2020.

[9] I. Kostrikov, D. Yarats, and R. Fergus, “Image augmentation is all you
need: Regularizing deep reinforcement learning from pixels,” arXiv
preprint arXiv:2004.13649, 2020.

[10] D. V. Lu, D. Hershberger, and W. D. Smart, “Layered costmaps
for context-sensitive navigation,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2014, pp. 709–
715.

[11] L. Kästner, X. Zhao, T. Buiyan, J. Li, Z. Shen, J. Lambrecht, and
C. Marx, “Connecting deep-reinforcement-learning-based obstacle
avoidance with conventional global planners using waypoint
generators,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2021, Prague, Czech Republic, September
27 - Oct. 1, 2021. IEEE, 2021, pp. 1213–1220. [Online]. Available:
https://doi.org/10.1109/IROS51168.2021.9636039

[12] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforce-
ment learning,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 6015–6022.

[13] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR,
2018, pp. 1861–1870.

[14] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel et al., “Soft actor-critic
algorithms and applications,” arXiv preprint arXiv:1812.05905, 2018.

[15] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International conference on
machine learning. PMLR, 2018, pp. 1587–1596.

[16] D. Yarats, A. Zhang, I. Kostrikov, B. Amos, J. Pineau, and R. Fergus,
“Improving sample efficiency in model-free reinforcement learning
from images,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 12, 2021, pp. 10 674–10 681.

[17] A. Srinivas, M. Laskin, and P. Abbeel, “Curl: Contrastive unsu-
pervised representations for reinforcement learning,” arXiv preprint
arXiv:2004.04136, 2020.

[18] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/
v22/20-1364.html

[19] “Jackal unmanned ground vehicle,” ClearPath Robotics, Product
Datasheet, available online, https://clearpathrobotics.com/jackal-small-
unmanned-ground-vehicle/.

http://arxiv.org/abs/1312.5602
https://doi.org/10.1109/IROS45743.2020.9341783
https://doi.org/10.1109/CASE48305.2020.9216798
https://doi.org/10.1109/IROS51168.2021.9636039
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

	I Introduction
	II Training and Validation Framework
	II-A RL Environment

	III Previous Work and Comparison Algorithms
	IV Soft Actor Critic Algorithm
	V Performance of RL Training
	VI Design of Robot Experiments
	VII Experimental Results
	VII-A Trajectory Analysis

	VIII Conclusions and Future Work
	References

