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ABSTRACT

Anomaly segmentation on the urban landscape scene is an important task in autonomous driving. This process exploits

a pre-trained semantic segmentation network to estimate anomalous regions. The anomaly segmentation approaches

implemented with extra requirements such as out-of-domain data, extra network, or network retraining might increase

computational cost or degradation of segmentation performance. In this research, to exploit information from the segmentation

network for more robust anomaly segmentation, we propose the use of pixel-wise logit variance, which tends to be small for

anomalies as network outputs even logits without confidence. Additionally, to detect anomalous objects on the background

robustly, iterative background highlighting is also proposed, which is implemented by feeding the logits back into the linear

classifier of the network. We achieved state-of-the-art performance among anomaly segmentation approaches without

extra requirements, reaching relative average precision improvements of 21.7% on Fishyscapes Lost&Found and 17.4% on

Fishyscapes Static compared to the state-of-the-art method.

Figure 1. Examples of our anomaly segmentation method. Yellow circle indicates location of anomalous object. When an
image with anomalous object is used as input, there exist incorrectly classified pixels after semantic segmentation. Except for
conventional standardized max logits, our approach also adopts pixel-wise logit variance, resulting in a better detection of
anomalies.

Introduction

Anomaly detection is an important task in image processing for identifying abnormal data or unseen defects that do not fit the
normal data distribution. Previous studies on deep anomaly detection have been conducted in various domains, such as video
analysis1–3. Anomaly segmentation, which is an advanced type of anomaly detection that specifies the anomaly region in the
given image, is introduced for more sophisticated and safety-critical applications such as autonomous driving. A self-driving
car that does not recognize an anomalous object may result in critical consequences such as roadkill or vehicle damage. Recent
studies on anomaly segmentation of urban landscapes4–9 show moderate performance on seen images. However, those models
are easily confused by images containing unseen objects while real anomalies are more likely to be unseen in a practical
situation.

To resolve this problem, pixel-wise anomaly segmentation has been proposed to detect anomalous regions by exploiting



semantic segmentation networks.10, 11 use laborious human intervention such as extra data with anomaly labels or out-of-domain
(OoD) data for pixel-wise anomaly detection. However, it is difficult to collect sufficient anomalous data. Besides, these
approaches are strongly dependent on human intuition.12–16 adopt extra network or retrain segmentation network for pixel-wise
anomaly segmentation, which costs more computational resources.

For effective anomaly segmentation without any extra requirements such as extra data, network retraining or additional
network, maximum softmax probability (MSP) and max logits are adopted with a simple assumption that MSP or max logits of
anomaly regions are lower than those of normal regions17, 18. Among those methods, standardized max logits (SML)19 which
standardizes max logits for robustness on out-of-domain objects and outperformed other logit-based anomaly segmentation
methods.

However, SML has two limitations. The first limiatation is that the performance of SML is highly dependent on the
hyperparameters, which are the sample mean and variance of the logits of each class19. The second limitation is that the
assumption of anomaly regions having low max logits is not always correct, because the segmentation model confused by
anomalous objects may output high logits for all classes simultaneously.

For better utilizing the information included in the output of the segmentation network, we propose to use pixel-wise logit
variance together instead of only using the max logits. For normal regions, segmentation network tends to output high logits for
a specific class confidently, leading to a high pixel-wise logit variance; for anomaly regions, segmentation network is confused
so that it may output relatively uniform logits for all classes, resulting in a small pixel-wise logit variance. Compared to SML,
pixel-wise logit variance is more robust against the case that the segmentation network outputs uniformly high logits for all
classes. Moreover, adopting pixel-wise logit variance may help reduce the degree of dependency on the hyperparameters of
SML, as computing variance does not need any hyperparameters.

Figure 2. Box plot of anomaly score comparison between SML (left) and our method (right) on Fishyscapes Lost&Found
validation dataset. We took up to 100,000 samples from each class. X-axis represents training classes sorted by the appearance
frequency in training data. Y-axis represents the anomaly score (higher for anomaly). Red and blue represent anomalous pixels
and in-distribution pixels, respectively. Gray region denotes false positive range at 95% true positive threshold (FPR95). The
upper and lower bounds of each box refer to Q1 and Q3, respectively, and the upper and lower whiskers in the box plot are
drawn in the 1.5 interquartile range. Samples out of whisker bounds and classes with zero pixels are omitted.

Additionally, we propose iterative background highlighting for further enhancement of the anomaly objects on the
background, because meaningful anomalies are more likely to occur on background areas such as roads in the autonomous
driving scenario. In order to briefly show this performance difference, we visualized the performance difference using
100,000 pixel samples per class using a boxplot as Figure 2. It is shown in the figure that our method shows a much higher
anomaly segmentation performance on Fishyscapes validation dataset than the previous state-of-the-art. Additionally, we have
significantly reduced false-positive pixels for the realistic scene input. Figure 1 compares our approach to SML with two
examples, showing that our approach detects anomalous objects better than SML.

The main contributions of our work are summarized as follows:

• We propose to use pixel-wise logit variance and standardized maximum logits together for anomaly segmentation to
reduce the dependency on the hyperparameters.

• Iterative background highlighting for better segmentation of anomalies on the background is proposed, which is important
for practical use.

• We achieve a new state-of-the-art performance on Fishyscapes Lost&Found task among anomaly segmentation methods
without any extra requirements with a large gap of average precision improvement of 21.7% on Fishyscapes

Lost&Found and 17.4% on Fishyscapes Static (publicly available on Fishyscapes leaderboard website - https:
//fishyscapes.com/results).

The remainder of this paper is organized as follows. In Related Work section, the relevant background and related studies
on anomaly segmentation described, Proposed Method introduces our novel anomaly segmentation method Pixel-wise Logit
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Variance and Iterative Background Highlighting. Results and Discussions section presents detailed experimental design and
results with discussions. Finally, In Conclusion section, concluding remarks and future applications are summarized.

Related Work

This section describes the necessary background knowledge to understand the proposed method. We first introduce current
research trends in anomaly detection and localization are discussed alongside their limitations regarding their core generation
architecture. An overview of research on anomaly segmentation in urban landscape scene follows, along with a brief introduction
to state-of-the-art logit-based anomaly detection, SML.

Deep anomaly segmentation
Generally, supervised deep anomaly detection in image processing uses a set of deep neural networks that are trained on
task-dependent datasets carefully created by a human expert for an intended task, such as anomaly classification20 and novelty
detection21. However, there are usually insufficient abnormal data in the real-world dataset for training a deep neural network
in a supervised manner.

Unsupervised anomaly detection
In order to overcome such data-insufficiency problem, unsupervised anomaly detection are developed. In unsupervised anomaly
detection, neural model should automatically understanding the distribution of data based solely on the given normal data in
the absence of any user-tagged input. The collection of a normal image dataset is relatively inexpensive. Its primary tasks are
generative anomaly detection22, 23, time series modeling24, 25, anomaly classification26, 27, novelty detection28, and anomaly
segmentation29–33. However, previous approaches requires a considerable amount of anomaly data is required. It becomes
more difficult to apply the unsupervised manner to anomaly segmentation where the model should distinguish abnormal region
from the local image without supervision which is more complex than a two-class classification task.

Anomaly Segmentation in Urban Landscape Scene
One of the most popular applications of anomaly segmentation is autonomous driving, where anomaly segmentation is
conducted on urban landscape scene.10, 11, 13, 14, 16, 34, 35 leverage the existing segmentation network to improve the performance
of recognizing anomalous objects on urban landscape scene. Among those methods,10, 14, 35–37 require extra training of
the segmentation network and additional networks. Adopting additional network or retraining of segmentation network
increases the time complexity while autonomous driving requires real-time abnormal segmentation as it is a safety-critical task,
Meanwhile,11, 16, 34, 36, 37 utilize OoD data. However, using OoD data is impractical as out-of-domain cases rarely occur in a
practical environment.

Standardized Maximum Logits

Standardized maximum logits (SML)19 focuses on fast and effective anomaly segmentation without using additional data,
segmentation network retraining, or extra network architecture. As the distributions of the logits of classes are different from
each other, SML tries to project all distributions to the same scale by standardizing logits so that the logits of different classes
can be fairly compared. The mean and variance of each class for standardizing logit distribution are computed using the logits
of pixels of training data. The standardization step of SML may be described as follows:

µc =
∑i ∑h,w✶(Ŷ

(i)
h,w = c) ·L

(i)
h,w

∑i ∑h,w✶(Ŷ
(i)
h,w = c)

, (1)

σ
2
c =

∑i ∑h,w✶(Ŷ
(i)
h,w = c) · (L

(i)
h,w−µc)

2

∑i ∑h,w✶(Ŷ
(i)
h,w = c)

, (2)

Sh,w =
Lh,w−µŶh,w

σŶh,w

, (3)

where µc and σ
2
c are the mean and variance of class c respectively, i is the index of the training data, (h,w) represents the

coordinate of a pixel, Ŷh,w is the predicted class, Lh,w is the logit, ✶ is the indicator function, and Sh,w denotes SML. In19, SML
is used to differentiate normal and abnormal pixels. Pixels with large SML are classified as normal pixels and other pixels are
classified as anomaly pixels.

3/12



Proposed Method

Figure 3. Overview of the proposed approach. The logits are generated with the segmentation network. LOV and SML are
obtained from the given logits. Base anomaly score is obtained with the summation of LOV and SML to complement each
other. Subsequently, IBH highlights background pixels. The final anomaly score is computed by combining the base anomaly
score and the highlighted background via the Hadamard product.

The conventional SML-based anomaly segmentation has two limitations. The first limitation is that SML uses sample mean
µc in Equation 1 and sample variance σ

2
c in Equation 2 as hyper-parameters in the inference stage. We have found out that

the performance of final anomaly segmentation is highly related to these hyper-parameters, implying that the performance
might be poor if the hyper-parameters does not fit the realistic data. Besides, if alternative segmentation network is used instead
of the segmentation network in19, the hyper-parameters computed via Equations 1 and 2 does not always guarantee the best
performance. The second limitation is that classifying pixels with small SML as anomaly class does not always stand. The
confused segmentation network would likely to emit uniformly distributed logits, but it does not guarantee that the max logit is
small because logits for all classes may evenly be large.

In order to overcome above-mentioned problems, we propose to use pixel-wise logit variance. Variance has several
advantages compared to SML: computing variance does not require any hyper-parameter because variance might be computed
only using the logits emitted by the segmentation network during the inference; variance is better criterion for finding out
whether the logits are uniformly distributed compared to SML, where smaller variance implies more uniform distribution.

Instead of using variance or SML independently, we propose to ensemble variance and SML together in order to further
improve the anomaly segmentation performance. Besides, we also propose iterative background highlighting in order to find
out anomalies on background more accurately because in practical situation anomalies are more likely to occur on background.
The overview of the proposed method is shown in Figure 3. Detailed information of each module is explained in following
subsections.

Pixel-wise Logit Variance

Pixel-wise logit variance (LOV) is the variance calculated using the logits of a pixel output by the segmentation network, which
might be described by the following equation:

Varw,h =
∑c(Lw,h(c)−µw,h)

2

C
, (4)

where Varw,h is the logit varianc of pixel (w,h), µw,h is the mean of the logits of the pixel, Lw,h(c) is the logit of class c, and C is
the number of classes, respectively. As shown in the equation, the pixel-wise logit variance does not need any hyper-parameters.
We adopt the logit variance for anomaly segmentation with an assumption that the variance should be small for anomaly pixels
compared to that of normal pixels because segmentation network tends to emit more uniformly distributed logits for an anomaly
pixel.

In our proposed method, we use an ensemble of SML and logit variance to achieve better performance. Among various
ensemble methods, we discovered that simply using the summation of SML and logit variance shows the best performance.
Additionally, we used iterative boundary suppression and dilated smoothing, the post-processing algorithms used in19 with the
same hyper-parameters for fair comparison. Thus, the base anomaly score may be computed with following equation:

Ah,w = P(Varw,h +Sw,h), (5)
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Figure 4. Histogram of pixel-wise logit variance, standardized max logit and summation of standardized logits and class-wise
variance (without iterative background highlighting) in Fishyscapes Lost&Found. X-axis denotes pixel-wise anomaly score.
Red (anomaly) and blue (normal) are obtained from 400,000 (200,000 each) randomly chosen pixels from 100 images.
Summation of max logits and pixel-wise logit variance clearly reduces the FPR95 and boosts AP score.

where Aw,h is the base anomaly score, P is post-processing function of iterative boundary suppression and dilated smoothing,
and Varw,h and Sh,w denote LOV and SML, respectively. The performance variation according to the ensemble methods is
further illustrated in Figure 4.

Iterative Background Highlighting

In the autonomous driving scenario, detecting anomaly objects in the background such as road is more important, because the
background is the most frequent type of class to meet and anomaly objects on the background usually endanger safety. To
enhance the performance of anomaly segmentation on background, we propose iterative background highlighting (IBH). The
main idea of this approach is to exploit the last fully connected layer of the segmentation network for background highlighting.

Algorithm 1 Iterative Background Highlighting

1: Initialize M
(0)
w,h← Aw,h

2: Initialize F
(0)
w,h with the input of linear classifier

3: Set i = 0
4: while i < I do

5: Blending: F
(i+1)
w,h ← (1−M

(i)
w,h) ·F

(i)
w,h +M

(i)
w,h ·maxF

(i)
w,h

6: Forward of linear classifier: L
(i+1)
w,h ←WlastF

(i+1)
w,h

7: Mask generation: M
(i+1)
w,h ←

L
(i+1)
w,h
−minL

(i+1)
w,h

maxL
(i+1)
w,h
−minL

(i+1)
w,h

8: end while

9: Final anomaly score: Âw,h← Ah,w · (1−M
(I)
w,h)

As background class frequently appears in training data, segmentation network has high prior for background class during
the training process, resulting in emitting relatively high logits on average during the inference stage, which is shown in Figure
5-(a) and Figure 5-(b). Thus, an average of the weights for the background class is likely to be larger than those of other classes,
as shown in Figure 5-(c), implying that a larger input to a linear classifier will probably result in larger logit for background
classes. We adopted an adequately large value, which is the maximum of all input of linear classifier, to target pixels that would
result in enhancement of the logits of the targets.
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Figure 5. Illustration for showing the correlation between logit and weight of linear classifier. The classes are sorted by
appearance frequency in the training dataset. Each figure indicates: (a) Total number of appearances for each class, (b) Mean of
the weight values of each linear classifier, and (c) Mean of the logit values for each class.

Table 1. Effect of each blending method. There was no difference between adding and averaging because the post-processing
algorithm works regardless of scaling, and both Max and Min were inferior to the summation operation.

Method
FS Lost&Found FS Static

AP↑ FPR95↓ AP↑ FPR95↓

Min 0.81 28.37 4.47 27.56

Max 47.74 16.50 45.91 51.42
Average/Add 50.75 8.01 54.06 39.07

With such phenomenon, we design background highlighting algorithm as Algorithm 1. We use anomaly score for initial
blending mask because we want to include the confident anomalies into the background highlighting target. During the iterative
steps, the blending mask gets larger because of the blending step, where pixels with large blending mask, which belong to
background, obtains larger input for linear classifier. Such iteration is executed for I times, for which we adopted 3 in our
approach. Finally, the blending mask is multiplied with the base anomaly score to obtain the final anomaly score. The variations
of the performance according to blending method and I are further provided in Table 1 and Table 2, respectively.

Table 2. Quantitative results according to to number of iterations I. We report performance over 100 images on Fishyscapes
Lost&Found validation dataset. The highest AP score was observed when I = 3.

Method AP ↑ FPR95↓ AUROC ↑

I = 0 45.49 12.47 97.34
I = 1 48.94 7.87 98.36
I = 2 50.44 7.57 98.49

I = 3 50.75 8.01 98.45
I = 4 49.71 8.90 98.31
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Table 3. Anomaly segmentation performance reported on Fishyscapes leaderboard. The best performances are highlighted in
bold. Our method achieved the new state-of-the-art performance among approaches without any extra requirements in
Fishyscapes leaderboard.

Method Requirements FS Lost&Found FS Static
Method Seg. Net. Extra OoD

AP↑ FPR95↓ AP↑ FPR95↓
mIoU

Retrain Net. Data
Density - Single-layer NLL13 ✗ ✓ ✗ 3.01 32.90 40.86 21.29 80.30
Density - Minimum NLL13 ✗ ✓ ✗ 4.25 47.15 62.14 17.43 80.30

Density - Logistic Regression13 ✗ ✓ ✓ 4.65 24.36 57.16 13.39 80.30
Image Resynthesis14 ✗ ✓ ✗ 5.70 48.05 29.60 27.13 81.40
Bayesian Deeplab35 ✓ ✗ ✗ 9.81 38.46 48.70 15.50 73.80

OoD Training - Void Class13 ✓ ✗ ✓ 10.29 22.11 45.00 19.40 70.40
Discriminative Outlier Detection Head37 ✓ ✓ ✓ 31.31 19.02 96.76 0.29 79.57

Dirichlet Deeplab36 ✓ ✗ ✓ 34.28 47.43 31.3 84.60 70.50
PEBAL34 ✗ ✗ ✓ 44.17 7.58 92.38 1.73 -

SynBoost16 ✗ ✗ ✓ 44.47 18.7 71.00 17.17 81.4
MSP18 ✗ ✗ ✗ 1.77 44.85 12.88 39.83 80.30

Entropy18 ✗ ✗ ✗ 2.93 44.83 15.41 39.75 80.30
kNN Embedding - Density13 ✗ ✗ ✗ 3.55 30.02 44.03 20.25 80.30
Standardized Max Logits19 ✗ ✗ ✗ 31.05 21.52 53.11 19.64 80.33

Ours ✗ ✗ ✗ 37.81 18.58 62.39 45.65 80.33

Results and Discussions

Experimental Setting

Dataset

We used two popular benchmark datasets for anomaly detection on the urban landscape scene, which are Fishyscapes
Lost&Found (FS Lost&Found) and Fishyscapes Static (FS Static)13. FS Lost&Found is a real-world dataset of road images
with anomalous objects visible in the front sight of the vehicle. It contains 100 validation images and 275 undisclosed test
images. FS Static is a synthetic dataset with blended anomalous objects on The PASCAL Visual Object Classes (PASCAL
VOC) images. It has 50 validation images and 1000 undisclosed test images.

Implementation Details

For a more direct comparison with SML, which is previous state-of-the-art method, we mainly adopted pre-trained model
of DeepLabv3+/ResNet101 architecture of official SML implementation19 as the segmentation network. Besides, we also
implemented our method on various segmentation networks from the mmsegmentation toolbox1 to show the general superiority
of our method.

Evaluation Metric

For performance evaluation, metrics provided by the Fishyscapes benchmark are adopted, which are average precision (AP)
and false positive rate at 95% true positive rate (FPR95). Fishyscapes benchmark suggests AP as the primary metric, as it is
invariant under data imbalance and threshold. FPR95 is also a meaningful metric because anomaly segmentation is generally
used for safety-critical applications.

Results

Comparison on Fishyscapes Leaderboard

To show the superiority of our proposed method, we compared the performance of ours with the performances of anomaly
segmentation methods on the Fishyscapes benchmark leaderboard until July 9th 2022. Those methods which have neither
papers with detailed explanations nor publicly available source codes are not included in our comparison. The performance
comparison result is shown in Table 3, which includes both AP and FPR95 for benchmark datasets FS Lost&Found and FS
Static. Moreover, this table includes the brief information for requirements of compared methods–whether to use retraining,
extra network, or OoD data. As our method avoids extra requirements, MSP, entropy, kNN embedding and standardized max
logits are main comparison targets. It is shown in Table 3 that ours outperforms any of the main comparison targets in AP score

1https://github.com/open-mmlab/mmsegmentation
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which is primary comparison metric. Besides, our method also outperforms in FPR95 for FS Lost&Found dataset. Compared
with SML, which is the baseline study for us, performance significantly improved by 6.76 AP (21.7%) for FS Lost&Found
and by 9.28 AP (17.4%) for FS Static. Additionally, we also compared our method to the methods with extra requirements,
who certainly outperform our method because of extra benefits. However, our methods show competitive generalization ability
across multiple datasets, ranking 3rd for FS Lost&Found and 4th for FS Static in AP score, and our method does not require
any retraining, which helps preserve segmentation accuracy.

Figure 6. Anomaly detected with T PR95 on Fishyscapes Lost&Found validation dataset. White region indicates anomaly.

Qualitative Analysis

We compare the results of SML and our approach on the validation dataset in Figure 6 for a qualitative comparison. As shown in
the figure, our method usually yields a much smaller false positive area on real data. Our method generally showed significantly
fewer false positives region on real-world dataset compared to SML. However, occasionally our method did not work properly
when the road surface has an exceptional pattern such as a sidewalk block or dirty surface.

Table 4. Comparison of inference time. We used NVIDIA GeForce A100 for evaluation. We report mean inference time over
1000 trials on Fishyscapes Lost&Found validation dataset. When only the LOV was used, the performance degradation was
negligible.

Method Infer. Time (s)
Full Framework 2.90

w/o IBH 1.97
w/o LOV 2.88

w/o Max logits 2.88
w/o IBH

1.95
& Max logits

SML 1.93

Inference Time Analysis

Our method has the advantage of fast inference compared to methods requiring extra segmentation network. An analysis of the
inference time of our method is additionally described in Table 4. Moreover, our approach can be applied to domains without
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OoD data.

Table 5. Ablation study of SML, LOV and IBH. While LOV is inferior to SML, there is a clear performance improvement
with ensemble of LOV and SML. IBH results in a performance improvement only for LOV-included methods.

Method
FS Lost&Found FS Static
AP↑ FPR95↓ AP↑ FPR95↓

Full Framework 50.75 8.01 54.06 39.07
w/o IBH 45.49 12.47 52.05 19.17
w/o LOV 0.81 28.37 4.47 27.56
w/o Max logits 47.74 16.50 45.92 51.42
w/o IBH

36.09 31.40 43.07 48.68
& Max logits

w/o IBH
36.42 14.58 48.60 16.79& LOV

(SML; baseline)

Figure 7. Histogram of mask value for each iteration in Fishyscapes Lost&Found. X-axis denotes mask value M
(i+1)
w,h . Red

(anomaly) and blue (normal) are obtained from 400,000 (200,000 each) randomly chosen pixels from 100 images. The
histogram shows how anomaly score of normal pixels outside of the highlighted background area are separated from the
anomaly pixels

Ablation Study

We have also conducted the ablation study to find out how much each part of our method contributes to the anomaly segmentation
performance, whose result is shown in Table 5. It is shown in the table that applying LOV to SML does help improve the
performance. Besides, combined with IBH, LOV shows superior performance even without SML. The best performance is
achieved when SML, LOV and IBH are used together. IBH separates the values of the pixel region with a large prior over
iterations from the values in the other region. The change in mask value with each iteration is further illustrated in Figure 7.

Framework Generalization

In order to show the superiority of our proposed method on various segmentation networks, we have conducted anomaly
segmentation experiments on other segmentation networks from mmsegmentation toolbox instead of DeepLabv3+ with
ResNet101 backbone network that provided by19, whose results are shown in Table 6. Although our proposed method does not
show significant improvement for FPR95 for FS Static dataset, the proposed method generally shows better AP for both dataset
and better FPR95 for FS Lost&Found dataset, implying that the proposed method works robustly along with various types of
segmentation networks. In particular, for the two networks that has highest IoU score, ISANet39 and OCRNet38 our methods
showed the superior performance than SML.
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Table 6. Anomaly segmentation results with various segmentation networks on Fishyscapes validation dataset.

Segmentation Architecture Method
FS Lost&Found FS Static

mIoU
AP↑ FPR95↓ AP↑ FPR95↓

OCRNet38

SML 39.96 18.28 47.90 15.07

81.35

LOV 48.40 16.61 47.67 21.67
Sum 51.89 12.65 53.55 12.05

SML + IBH 0.76 23.20 3.87 23.61
LOV + IBH 51.48 9.96 46.23 22.71
Sum + IBH 44.11 7.82 53.54 10.30

ISANet39

SML 18.67 28.76 32.15 14.86

80.81

LOV 35.41 47.47 29.60 37.97
Sum 32.21 32.08 36.18 16.60

SML + IBH 0.94 28.02 5.74 18.62
LOV + IBH 40.18 38.35 26.31 28.83
Sum + IBH 30.40 14.42 36.46 11.76

DeepLabV3+40

SML 7.11 28.62 30.53 18.21

80.52

LOV 24.97 71.72 45.96 58.04
Sum 16.76 35.18 45.00 18.07

SML + IBH 1.16 27.35 7.66 20.53
LOV + IBH 28.54 50.79 46.78 64.54
Sum + IBH 13.23 34.68 22.89 49.08

DeepLabV341

SML 24.58 31.45 39.05 15.63

80.10

LOV 24.55 59.14 30.31 67.71
Sum 30.57 37.09 39.82 22.91

SML + IBH 0.66 31.34 4.04 30.99
LOV + IBH 27.15 38.85 29.86 63.84
Sum + IBH 25.87 30.28 38.23 33.54

Conclusion

We proposed a simple method called pixel-wise logit variance (LOV) and iterative background highlighting (IBH) to aid in the
unexpected behavior of segmentation networks triggered by anomalous objects on the road. This approach does not require
external datasets, additional training, or external network. We strengthened our method of recognizing pixel-wise logit output
variance and iterative background highlighting based on two intuitions: that the network’s latent uncertainty is expressed
through the variance value of the output value, and high logit implies more prior information. The experiment result shows that
our approach achieves a new state-of-the-art performance in the Fishyscapes Lost&Found and Fishyscapes Static benchmark.
Additionally, extensive experiments on various segmentation networks also demonstrate the superiority of our method over the
previous state-of-the-art method. In future work, we will try to improve performance on detecting small anomalous objects
which is difficult for logit-based methods.
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