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Abstract— 3D lane detection is an integral part of au-
tonomous driving systems. Previous CNN and Transformer-
based methods usually first generate a bird’s-eye-view (BEV)
feature map from the front view image, and then use a
sub-network with BEV feature map as input to predict 3D
lanes. Such approaches require an explicit view transformation
between BEV and front view, which itself is still a challenging
problem. In this paper, we propose CurveFormer, a single-stage
Transformer-based method that directly calculates 3D lane pa-
rameters and can circumvent the difficult view transformation
step. Specifically, we formulate 3D lane detection as a curve
propagation problem by using curve queries. A 3D lane query is
represented by a dynamic and ordered anchor point set. In this
way, queries with curve representation in Transformer decoder
iteratively refine the 3D lane detection results. Moreover, a curve
cross-attention module is introduced to compute the similarities
between curve queries and image features. Additionally, a
context sampling module that can capture more relative image
features of a curve query is provided to further boost the 3D
lane detection performance. We evaluate our method for 3D
lane detection on both synthetic and real-world datasets, and the
experimental results show that our method achieves promising
performance compared with the state-of-the-art approaches.
The effectiveness of each component is validated via ablation
studies as well.

I. INTRODUCTION
Lane detection is a critical component of an autonomous

driving system, and it plays an important role in lane keeping
assist, lane departure warning, etc. Most of the current lane
detection approaches are developed with 2D images using
semantic segmentation [1]–[4] or line regression [5]–[12].
However, downstream tasks like planning and control prefer
lanes that are represented by the curve parameters in 3D
space. Subject to the lack of depth information and accurate
real-time camera extrinsic parameters, the projection from
the image plane to the BEV perspective is prone to the error
propagation problem (as shown in Fig. 1 (a)). Additionally,
these methods suffer from complex and time-consuming
post-processing steps, such as cluster and curve fitting.

In order to mitigate the drawbacks of post-processing
in two-stage methods, CNN-based approaches have been
proposed for end-to-end 3D lane detection task [13]–[16].
As shown in Fig. 1 (b), 3D-LaneNet [13] proposes an
anchor-based 3D lane representation and predicts camera
pose to project 2D features with Inverse Projective Mapping
(IPM). 3D-LaneNet+ [14] reformulates 3D lane as an anchor-
free representation to consider the restriction of the lane
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(a) Image prediction & post-processing.

(b) CNN-based dense BEV & prediction.

(c) Transformer-based dense BEV & prediction.

(d) Transformer-based sparse 3D lane detection by curve query.

Fig. 1: Comparisons of different 3D lane detection pipelines.
(a) 2D image prediction and post-processing; (b) 3D lane
detection with camera extrinsic prediction; (c) Transformer-
based dense BEV map construction and 3D lane prediction;
(d) Our proposed CurveFormer, directly provides 3D lane
parameters by sparse curve queries with curve cross-attention
mechanism in Transformer decoder.

direction, and learns lane curve clustering in the network.
Gen-LaneNet [15] proposes a virtual top view to align
the BEV features projected by IPM and lanes in the real-
world. Although these methods make end-to-end 3D lane
detection possible, the loss of lane height and the accuracy of
camera pose estimation would affect the robustness of these
methods. On the contrary, ONCE [16] performs 2D lane
semantic segmentation and depth estimation, and integrates
these information to obtain 3D lanes. A problem of ONCE
is that depth estimation might bring about errors at the far
end of the lane.

Recently, inspired by the successes of Transformer in var-
ious vision and robotic tasks [17]–[20], several Transformer-
based lane detection algorithms [21]–[23] have been pro-
posed. LSTR [21] introduces Transformer to the lane de-
tection task and predicts 2D lane parameters directly. But it
encounters difficulties in representing sharp curves or lanes
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Fig. 2: Illustration of the curve query representation with
dynamic anchor point set (a) and iterative curve propagation
the image view (b).

with complex topology. STSU [24] follows the sparse query-
based framework [19] to produce topologically accurate
lane graphs. Similar to the above CNN-based 3D methods,
CLGo [22] applies Transformer to enhance images features
and predicts 3D lanes from distance-invariant top-view image
in the second stage. PersFormer [23] builds a dense BEV
query and uses Transformer to interact queries from BEV
with image features (as shown in Fig. 1 (c)). Although these
methods try to utilize Transformer to the 3D lane detection
task, the lack of image depth or BEV map height restricts
their performance as they can not obtain the features that
exactly correspond to the query.

To address the above challenges, we propose Curve-
Former, a Transformer-based method for 3D lane detection
(Fig. 1 (d)). Lanes are defined as sparse curve queries
consisting of lane confidence, two polynomials and start
and end points (Fig. 2 (a)). Inspired by DAB-DETR [25],
we propose a set of 3D dynamic anchor points to interact
curve queries with image features. Since the 3D anchor point
(x, y, z) has height information, we can use camera extrinsic
parameters to obtain accurate image features corresponding
to the point. Dynamic anchor point set is iteratively refined
within the sequence of Transformer decoders. We introduce
a novel curve cross-attention module in the decoder part to
investigate the effect of curve queries and dynamic anchor
point set. Different from standard Deformable-DETR [26]
that directly predicts sampling offsets from the query, we
introduce a context sampling unit to predict offsets from the
combination of reference features and queries to guide sam-
pling offsets learning. In addition, an auxiliary segmentation
branch is adopted to enhance the shared CNN backbone. In
this way, our design of CurveFormer lends itself to 3D lane
detection.

To verify the performance of the proposed algorithm,
we evaluate our CurveFormer on the Apollo Synthetic
dataset [15] and OpenLane dataset [23]. Our proposed Curve-
Former sets a new state-of-the-art performances for 3D lane

detection on the Apollo Synthetic test set. It also achieves
promising performance on the OpenLane dataset compared
with recently proposed Transformer-based 3D lane detection
approaches. The effectiveness of each component is validated
as well.

In general, our main contributions are three-fold:

• We propose CurveFormer, a novel Transformer-based
3D lane detection algorithm, by formulating queries in
decoder layers as dynamic anchor point set, and a curve
cross-attention module is applied to compute the query-
to-image similarity.

• We introduce a context sampling unit to predict offsets
from the combination of reference features and queries
to guide sampling offsets learning.

• Experimental results show that our method achieves
promising performance compared with both CNN-based
and Transformer-based state-of-the-art approaches.

II. RELATED WORK

2D Lane Detection. It detects lanes in the image plane and
projects them to 3D space with camera pose. In general, ad-
vanced monocular lane detectors can be categorized into seg-
mentation approaches [1]–[4] and regression approaches [5]–
[12], [27].

SCNN [1] is proposed to propagate context by slice-by-
slice convolutions within feature maps. LaneNet [2] intro-
duces an instance segmentation approach for lane detection
which combines a binary segmentation branch and an em-
bedding branch. SAD [3] allows a lane detection network to
reinforce representation learning of itself without the need
of additional labels and external supervisions. RESA [4]
aggregates information in vertical and horizontal directions
by shifting sliced feature maps recurrently.

Lane regression algorithms can be grouped into key points
estimation [5], [6], anchor-based regression [7]–[11] and
row-wise regression [12], [27]. PINet [5] combines key
points estimation and instance segmentation, and GANet [6]
represents lanes as a set of key points which are only
related to the start point. PointLaneNet [7] and CurveLane-
NAS [8] separate images into non-overlapping grids and
regress lanes based on vertical anchors. Line-CNN [9] and
LaneATT [10] regress lanes on the pre-defined ray-anchors,
while CLRNet [11] dynamically refines the start point and
angle of ray-anchors through pyramidal features. Ultra-
Fast [12] introduces a novel row-wise classification method
with remarkable speed. Laneformer [27] applies row-column
self-attentions to accommodate the conventional Transformer
to capture the shape characteristics and semantic contexts of
lanes.

Except for point regression, polynomial regression is also
a method for 2D lane detection task. PolyLaneNet [28] uses a
fully connected layer to directly predict the polynomial coef-
ficients of lanes in the image plane. PRNet [29] decomposes
lane detection into three parts: polynomial regression, initial
classification and height regression. Method in [30] applies
IPM and least square fitting to predict parabolic equations



Fig. 3: Overview of our proposed CurveFormer.

in BEV perspective. LSTR [21] introduces a Transformer-
based network to predict lane parameters which reflect road
structures and the camera pose.
3D Lane Detection. 3D lane detection has attracted more
attention than its 2D counterpart recently, and a reason is that
the results of the latter lack depth information and spatial
transformations have the error propagation problem. 3D-
LaneNet [13] is a dual-pathway architecture based on intra-
network inverse-perspective mapping and anchor-based lane
representation. 3D-LaneNet+ [14] divides the BEV features
into non-overlapping cells and detects lanes by regressing the
lateral offset distance relative to the cell center, line angle
and height offset. Method in [31] introduces uncertainty
estimation in order to enhance the capabilities of the network.
Gen-LaneNet [15] first introduces a new geometry-guided
lane anchor representation in virtual top-view coordinate
frame rather than the ego-vehicle coordinate frame, and
applies a specific geometric transformation to calculate 3D
lane points from the network output directly. CLGo [22]
replaces the CNN backbone with Transformer to predict
camera pose and polynomial parameters. PersFormer [23]
builds a dense BEV query with known camera pose, and
unifies 2D and 3D lane detection under one framework.

III. METHOD

A. Overview

Fig. 3 shows the overview of our CurveFormer. It consists
of three major components: (1) a Shared CNN Backbone
takes a single front-view image as input and outputs multi-
scale feature maps; (2) a Transformer Encoder to enhance
the multi-scale feature maps subsequently and (3) a curve
Transformer Decoder to propagates curve queries by curve
cross-attention and iteratively refine anchor point sets. Fi-
nally, a prediction head is applied to output 3D lane pa-
rameters. The i-th output can be represented as Predi =
(pi, y

start
i , yendi , {ai, bi}Rr=0), where pi is the foreground

confidence, ystarti and yendi are start and end point in the
Y direction. Two polynomials of 3D lane are denoted by ai

and bi with order R to model a traffic lane in X-O-Y and
Y-O-Z plane, respectively.

B. Shared Backbone and Transformer Encoder

The backbone takes an input image and outputs multi-scale
feature maps. We add an auxiliary segmentation branch in
the training stage to enhance the shared CNN backbone.

Similar to [26], in the decoder part, we apply multi-scale
deformable self-attention module for each scale feature map
to exchange information among different scales. The multi-
scale feature maps are written as X =

{
xl
}L
l=1

.

C. Representing Sparse Curve Query with Dynamic Anchor
Point Set

DAB-DETR [25] provides a deep analysis of the role of
queries for rectangle object detection which models queries
as anchor boxes, i.e. 4D coordinates (x,y,w,h). Therefore, in
the cross-attention module, it can leverage both the position
and size information of each anchor box. Inspired by DAB-
DETR, we represent queries in Transformer-based 3D lane
detection with dynamic anchor point sets. As shown in Fig. 2
(a), these points are sampled at a set of fixed Y locations.
Typically, we denote Ci = {p1 = (x1, y1, z1), · · · , pN =
(xN , yN , zN )} as the i-th anchor curve. Its corresponding
content part and positional part are Zi ∈ RD and Pi ∈ RD,
respectively. The positional query Pi is calculated by:

Pi = MLP(PE(Ci)) (1)

PE(Ci) = Concat(PE({xi}N1 ),PE({yi}N1 ),PE({zi}N1 )),
(2)

where positional encoding (PE) generates embeddings from
floating numbers, and the parameters of the MLP are shared
among all layers.

By representing a curve query as an ordered anchor point
set {p1 . . . pN}, we can refine the curve query layer-by-layer
in the Transformer decoder. Specifically, each Transformer
decoder estimates relative positions ({∆x}N1 , {∆z}N1 ) by
a shared parameters linear layer. In this way, the curve



(a)

(b)

Fig. 4: Illustration of the Context Sampling Module. (a)
Deformable DETR [26] predicts the reference points and
sampling offsets by position embedding and query separately.
(b) Our context sampling module learns sampling offset by
leveraging both query and image features.

query representation is suitable for 3D lane detection and
is able to accelerate the learning convergence via layer-by-
layer refinement scheme. Fig. 2 (b) shows the iterative refine
process in the image plane.

D. Curve Transformer Decoder

Our curve Transformer decoder contains a multi-head self-
attention module, a context sampling module and a curve
cross-attention module. We apply deformable attention [26]
in the self-attention module which focuses on a small set of
key sampling points around the reference point, regardless
of the spatial size of the feature map.
Context Sampling Module In deformable DETR [26],
a learnable linear layer is used to predict offsets of the
sampling locations corresponding to the reference points by
queries, which are irrelevant to the image features. Different
from it, we introduce a context sampling module to predict
sampling offsets by incorporating more relative image fea-
tures. Fig. 4 illustrates the difference between the standard
sample offset module (a) and our context sampling module
(b).

First, a dynamic anchor point set Ci is projected to
the image view with camera parameters. We apply bilinear
interpolation to extract features from these projected points
C2D

i = {p2D1 = (ui1, v
i
1), · · · , p2DN = (uiN , v

i
N )} on multi-

scale feature maps X. The final feature fCi is computed by

fCi
=

1∑L
l=1

∑N
n=1 σln + ε

L∑
l=1

N∑
n=1

Xl(p
2D
n )σln, (3)

where σln is used to determine whether a projected point
p2Dn is outside l-th feature map. And ε is a small number to
avoid division by zero.

We then use a learnable linear layer to predict K sampling
offsets. Typically, for a curve query Zq with anchor point set
Ci, the context sampling module denotes as:

CS({∆uink,∆vink}) = MLP(Concat(fCi
,Zq)), (4)

where n = 1, · · · , N and k = 1, · · · ,K.
Curve Cross Attention. We adapt deformable attention
module in Deformable DETR [26] to our curve cross-
attention module. Mathematically, let q be a query element
in Zq , and its anchor point set Ci, our curve cross-attention
is calculated as:

CCA :
(
Zq, Ci,

{
xl
}L
l=1

)
=

M∑
m=1

Wm[
L∑

l=1

N∑
n=1

Amln ·W′
mxl (φc(pn) + ∆pmln)

]
, (5)

where (m, l, n) index the attention head, feature level and the
sampling point. ∆pmln and Amln denote sampling offsets
and attention weights of the n-th sampling point in the l-th
feature level and the m-th attention head. The scalar attention
weight Amln is normalized to sum as 1. φc(·) re-scales the
normalized coordinates to input feature maps.

E. Curve Training Supervision

In addition to the refined anchor point set P = {pn}Nn=1,
the prediction head of our CurveFormer outputs curve param-
eters of L 3D lanes, where L is larger than the maximum
number of labeled lanes across the training set. Similar
to [22], we first associate the predicted curves Predi =
(pi, y

start
i , yendi , {ai, bi}Rr=0) and ground truth lanes GTi =

(p̂i, ŷ
start
i , ŷendi , L̂i = {p̂n}N1 ) by solving a bipartite match-

ing problem, where c ∈ {0, 1} (0: background, 1: lane). We
sample a set of 3D point Li = {pn}N1 ) using the predicted
curve parameters to compute the matching and training loss.
The lane boundary (starting and ending points) is denoted
by Lb

i = {ystarti , yendi }.
Let Ω = {wl = Predl}Ll=1 be the set of predicted 3D lanes

and Π = {π̂l = GTl}Ll=1 be the set of groundtruth. Note that
Π is padded with non-lanes to fill enough the number of
ground truth lanes to L. The matching problem is formulated
as a cost minimization problem by searching an optimal
injective function z : Π → Ω, where z(l) is the index of
a 3D lane prediction ωz(l) which is assigned to l-th ground
truth 3D lane π̂l:

ẑ = arg min
z

L∑
l=1

D
(
π̂l, ωz(l)

)
. (6)

The matching cost is calculated as:

D = −α1pz(l) (ĉl) + 1 (ĉl = 1)α2

∣∣∣L̂l − Lz(l)

∣∣∣
+1 (ĉl = 1)α3

∣∣∣L̂b
l − Lb

z(l)

∣∣∣ , (7)

where α1, α2, and α3 are coefficients which adjust the
loss effects of classification, polynomial fitting and boundary
regression, and 1 is an indicator function.

After solving Eq. 6 by Hungarian algorithms [18], the final
training loss can be written as Ltotal = Lcurve + Lquery +
Lseg , where Lcurve is the curve prediction loss, Lquery is
the deep supervision of refined anchor point set for each



TABLE I: Comparison with previous methods on Apollo 3D Lane Synthetic Dataset. CurveFormer achieves best F-Score
and AP and promising performance of X/Z error (m) on every scene set. error near and error far represents average offset
within [0m, 40m], [40m, 100m] along Y axis.

Dateset Splits Methods F-Score AP X error near X error far Z error near Z error far

Balaneced
Scenes

3D-LaneNet [13] 86.4 89.3 0.068 0.477 0.015 0.202
Gen-LaneNet [15] 88.1 90.1 0.061 0.496 0.012 0.214

CLGo [22] 91.9 94.2 0.061 0.361 0.029 0.250
PersFormer [23] 92.9 - 0.054 0.356 0.010 0.234

CurveFormer (ours) 95.8 97.3 0.078 0.326 0.018 0.219

Rarely
Observed

3D-LaneNet [13] 72.0 74.6 0.166 0.855 0.039 0.521
Gen-LaneNet [15] 78.0 79.0 0.139 0.903 0.030 0.539

CLGo [22] 86.1 88.3 0.147 0.735 0.071 0.609
PersFormer [23] 87.5 - 0.107 0.782 0.024 0.602

CurveFormer (ours) 95.6 97.1 0.182 0.737 0.039 0.561

Vivual
Variants

3D-LaneNet [13] 72.5 74.9 0.115 0.601 0.032 0.230
Gen-LaneNet [15] 85.3 87.2 0.074 0.538 0.015 0.232

CLGo [22] 87.3 89.2 0.084 0.464 0.045 0.312
PersFormer [23] 89.6 - 0.074 0.430 0.015 0.266

CurveFormer (ours) 90.8 93.0 0.125 0.410 0.028 0.254

TABLE II: Performance comparison with other state-of-the-art 3D lane methods on OpenLane benchmark. CurveFormer
outperforms previous 3D methods on five scenario sets.

Method All Up&Down Curve Extreme Weather Night Intersection Merge&Split

3D-LaneNet [13] 44.1 40.8 46.5 47.5 41.5 32.1 41.7
Gen-LaneNet [15] 32.3 25.4 33.5 28.1 18.7 21.4 31.0
PersFormer [23] 50.5 42.4 55.6 48.6 46.6 40.0 50.7

CurveFormer (ours) 50.5 45.2 56.6 49.7 49.1 42.9 45.4

TABLE III: Comprehensive 3D Lane evaluation on Open-
Lane under the same metrics as Apollo 3D Synthetic. Curver-
Former outperforms previous 3D methods on the metrics of
near error and achieves comparable results on far error.

Method F-Score X error near X error far Z error near Z error far

3D-LaneNet [13] 44.1 0.479 0.572 0.367 0.443
Gen-LaneNet [15] 32.3 0.591 0.684 0.411 0.521

Cond-IPM 36.6 0.563 1.080 0.421 0.892
PersFormer [23] 50.5 0.485 0.553 0.364 0.431

CurveFormer (ours) 50.5 0.340 0.772 0.207 0.651

curve, and Lseg is an auxiliary segmentation loss. The curve
prediction loss is defined as:

Lcurve = −α1 log pẑ(l) (ĉl) + 1 (ĉl = 1)

α2

∣∣∣L̂l − Lẑ(l)

∣∣∣+

L∑
l=1

1 (ĉl = 1)α3

∣∣∣L̂b
l − Lb

z(l)

∣∣∣ , (8)

where α1, α2, and α3 are the same coefficients with Eq. 7,
and deep supervision of refined anchor point set is:

Lquery = 1 (ĉl = 1)α4

∣∣∣L̂l −Pẑ(l)

∣∣∣ . (9)

IV. EXPERIMENTS
A. Dataset

Apollo 3D Lane Synthetic Dataset. Apollo Synthetic
dataset [15] consists of over 10k 1080 × 1920 images which
are built using unity 3D engine, including highway, urban,
residential and downtown environments. The dataset is split
into three different scenes: balanced scenes, rarely observed
scenes and scenes with visual variations for evaluating algo-
rithms from different perspectives.

OpenLane Dataset. OpenLane Dataset [23] is the first
real world 3D lane dataset which consists of over 200K
frames at a frequency of 10 FPS based on Waymo Open
dataset [32], [33]. In total, it has a training set with 157k
images and a validation set of 39k images. The dataset
provides camera intrisics and extrinsics following the same
data format as Waymo Open Dataset.

B. Experiment Settings

Implementation Details. We use EfficientNet [34] as
backbone which gives 4 scale feature maps. The input image
is resized to size of 360 × 480. The 3D-space range is set
to [−30m, 30m] × [3m, 103m] × [−10m, 10m] along x, y
and z axis respectively. For curve representation, we use
fixed y-positions {5, 10, 15, 20, 30, 40, 50, 60, 80, 100}. We
set coefficients to α1 = 2, α2 = 5, α3 = 2, and α4 = 2. All
experiments are performed with known camera poses and
intrinsic parameters provided by two datasets. Our network
uses Adam optimizer [35], with a base learning rate of
2× 10−4 and weight decay of 10−4. All models are trained
from scratch with 100 epochs and the per-GPU batch size is
set to 4.

C. Evaluation Metrics and Results

Evaluation metrics. We follow the evaluation metrics
designed by Gen-LaneNet [15]. Point-wise Euclidean dis-
tance is calculated when a y-position is covered by both
prediction and the ground-truth. For each predicted lane, we
consider it matched when 75% of its covered y-positions
have point-wise euclidean distance less than the max-allowed



TABLE IV: Experimental results of CurveFormer with different number of decoder layers on Rarely Observed scenario of
Apollo 3D Lane Synthetic.

Dataset split #Layer F-Score AP X error near X error far Z error near Z error far

Rarely
Observed

2 93.1 95.5 0.200 0.752 0.043 0.599
4 94.1 96.4 0.181 0.729 0.038 0.557
6 93.2 95.6 0.188 0.723 0.040 0.588
8 94.0 96.2 0.184 0.769 0.039 0.563

10 93.6 95.9 0.198 0.734 0.038 0.566

TABLE V: Results with different forms of network output
on Apollo 3D Lane Synthetic Dataset. C: curve parameter
estimation; P: anchor point set prediction.

Dataset Splits C P F-Score AP

Balaneced
Scenes

X 95.8 97.3
X 79.1 80.8

Rarely
Observed

X 95.6 97.1
X 78.2 80.0

Vivual
Variants

X 90.8 93.0
X 63.8 64.7

distance (1.5 meters). We report Average Precision (AP) , F-
score, and errors (near range and far range) to investigate the
performance of our model.

Results on Apollo 3D Lane Synthetic Dataset. As shown
in Table. I, we compare our CurveFormer with CNN-based
3D lane detection and Transformer-based 3D lane detection.
Experimental results verify that our method outperforms
the previous state-of-the-art approaches on Apollo 3D Lane
Synthetic dataset. CurveFormer achieves the best F-Score
and AP on every scene. Compared to PersFormer [23] on
three different scenes, CurveFormer significantly improved
F-Score by 3.1%, 9.0% and 1.3%, respectively.

Results on OpenLane Dataset. For OpenLane dataset,
we evaluate CurveFormer on entire validation set and differ-
ent scenario sets. In Table. II, our CurveFormer also gets
comparable results compared to previous methods on the
entire validation set, and achieves the highest F-Score on five
scenario sets. We present detailed comparison with previous
3D lane detection SOTAs in Table. III.

D. Ablation Study

In this section, we analyze the effects of the proposed key
components via the ablation study conducted on Apollo 3D
Lane Synthetic dataset [15].

Network Output: Curve Parameters vs Anchor Point
Set. We compare two different network outputs for 3D lane
detection, curve parameters estimation and anchor point set
prediction. The latter one is further interpolated as 3D curve
for evaluation. Table. V lists the performance comparison
on Apollo 3D Lane Synthetic dataset. It shows that curve
parameter prediction largely surpasses using anchor point
set as network output, due to that lane parameter prediction
can preserve the geometric property of 3D lane compared to
predicting separated points.

Context Sampling. We study the impact of the different
ways to produce sampling offsets corresponding to 3D lane

TABLE VI: Ablation study about the Context Sampling
module on Apollo 3D Lane Synthetic Dataset. Baseline (Exp
1) only interacts with image features using anchor point set
without sampling offsets; SO: sampling offset; CSO: context
sampling offset.

Dataset Splits Exp SO CSO F-Score AP

Balaneced
Scenes

1 95.6 97.2
2 X 95.4 97.2
3 X 95.8 97.3

Rarely
Observed

1 94.0 96.3
2 X 95.4 97.0
3 X 95.6 97.1

Vivual
Variants

1 87.1 89.2
2 X 88.2 90.1
3 X 90.8 93.0

reference points. As shown in Table. VI, using context
sampling offset (CSO) achieves best F-Score and AP com-
pared to using standard sampling offset (SO). The results
demonstrate the significance of image-query correlation for
feature aggregation in our cross-attention module.

Number of Decoder Layer. We vary the number of
decoder layers and the performance of the model is shown
in Table. IV. It shows that using 4 decoder layers in our
network achieves best performance. We can use few decoder
layers due to curve propagation scheme of our CurveFormer
method. Therefore, we set the number of decoder layers in
our CurveFormer to 4 by default in the experiments.

Auxiliary Segmentation. Lastly, we study the effect of
the auxiliary segmentation branch. Experimental results show
that the auxiliary segmentation branch can slightly improve
F-Score by 0.13, AP by 0.06 on the Balanced Scenes test
set.

V. CONCLUSIONS

In this paper, we introduce CurveFormer, a Transformer-
based 3D lane detection method. It uses dynamic anchor
point set to construct queries, and refines it layer-by-layer in
Transformer decoders. In addition, to attend to more relevant
image features, we present a curve cross-attention module
and a context sampling module to compute the key-to-image
similarity. In the experiments, we show that CurveFormer
achieves promising results compared with both CNN-based
and Transformer-based approaches. In future work, we would
like to explore video-based 3D lane detection for autonomous
driving.
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