
Toward Fine Contact Interactions: Learning to Control Normal Contact
Force with Limited Information

Jinda Cui†, Jiawei Xu‡, David Saldana‡, and Jeff Trinkle‡

Abstract— Dexterous manipulation of objects through fine
control of physical contacts is essential for many important
tasks of daily living. A fundamental ability underlying fine
contact control is compliant control, i.e., controlling the contact
forces while moving. For robots, the most widely explored
approaches heavily depend on models of manipulated objects
and expensive sensors to gather contact location and force
information needed for real-time control. The models are
difficult to obtain, and the sensors are costly, hindering personal
robots’ adoption in our homes and businesses. This study
performs model-free reinforcement learning of a normal contact
force controller on a robotic manipulation system built with a
low-cost, information-poor tactile sensor. Despite the limited
sensing capability, our force controller can be combined with
a motion controller to enable fine contact interactions during
object manipulation. Promising results are demonstrated in
non-prehensile, dexterous manipulation experiments.

I. INTRODUCTION

Deep learning has advanced robot manipulation in unstruc-
tured human environments dramatically over the past few
years [1]. The adaptability of learning robots in the face of
ubiquitous variations is a major step toward capable personal
robots [2]. Most research in robot learning for manipula-
tion [1] focuses on stable static grasps that maintain fixed
contacts with the object. However, learning robots are still in
their infancy when it comes to performing manipulation tasks
requiring contact interactions including transitions between
sticking, slipping, and rolling [3]. Such contact interactions
may have occurred in dexterous manipulation tasks [4], but
the robots are clumsy in comparison to humans. In fact,
one can consider the learned dexterous manipulation skills
in [4] as active caging [5]. In other words, the cage moves
and changes shape over time to force the object to move
to its goal configuration. By contrast, a robot able to control
contact interactions could leverage those skills to achieve the
same goal in ways similar to what a human would do.

We call the act of controlling contact interactions fine
contact interactions. Achieving and breaking contacts inten-
tionally and choosing to maintain sticking, slipping, or rolling
contact at one or more contacts and transitioning among them
are examples of fine contact interaction. Robust execution of
fine contact interactions in uncertain environments requires
the simultaneous control of position and force [6], such as

*This work was partially supported by the National Science Foundation
through EFRI C3 SoRo (award 1832795)

‡Autonomous and Intelligent Robotics Laboratory (AIRLab) and the
Department of Computer Science and Engineering, Lehigh University,
Bethleham, PA, USA. <jix519,das819,jct519>@lehigh.edu

†Honda Research Institute USA, San Jose, CA, USA. (Work was done
during the Ph.D. study at Lehigh AIRLab). jinda.cui@gmail.com

Fig. 1: Environment for hardware experiments: A Kinova
GEN3 robot, a low-cost tactile sensor, and different types of
objects.

combined force and position control [7] and combined force
and motion control [8].

When the force control regulates the normal contact force,
and the motion control focuses on the movements tangential
to the contact, the robot can actively control and change
the transition of contact interactions - realizing fine contact
interactions. Such a controller is essentially a hybrid force
and velocity controller [8], which requires the identification
of orthogonal force and motion directions. The identifi-
cation of these directions usually requires precise models
and advanced contact sensing capabilities. For example,
Hou and Mason enabled contact-maintaining non-prehensile
manipulation by solving an optimization problem at each
time-step [8]. Object models were used to produce force-
and motion-controlled directions hence the robot actions.
Hogan et al., also using optimization, developed contact
mode-constrained “manipulation primitives” such as object
sliding, pushing, and tilting. Their method relies on real-time
availability of object and contact models [9]. In addition, the
sensor requirements are high: Hou and Mason used a force-
torque sensor combined with a customized end-effector and
the measurement is tied to the model of the end-effector [8].
Hogan et al. used an optical-based tactile sensor which is not
readily available to the general public [9]. The BioTac sensor
used by Sutanto et al. is expensive and delicate [10]. The
limitation on model availability and sensing capacity prevent
model-based analytical methods from performing well in
unstructured environments on low-cost personal robots.

In this paper, we present a model-free deep reinforcement

ar
X

iv
:2

30
5.

17
84

3v
1

 [
cs

.R
O

]
 2

9
M

ay
 2

02
3

<jix519, das819, jct519>@lehigh.edu
jinda.cui@gmail.com

learning (DRL) approach to learn a normal contact force
controller which can be combined with an independent mo-
tion controller (similar to parallel force and position control
[11]) to perform fine contact interactions for a single contact
point. The novelty of our research is that we focus on force
control on robots equipped with low-cost, information-poor
sensors with limited model assets which cannot be addressed
using traditional analytical approaches. An example system is
shown in Fig. 1. The robot is a collaborative robot popular
among research labs, and the low-cost sensor on the end-
effector only measures the magnitude of the normal contact
force. We emphasize that despite the manipulator and the
joint used in training, the learned force control skill may
generalize to a different joint or a different manipulator
without retraining due to the nature of model-free learning.

Our contributions are: 1) We provide a novel formulation
of the control policy; 2) We propose and implement an
effective method to stabilize the training performance; and
3) We perform training in a simple virtual environment,
and show that the trained policy can directly deploy on a
practical robot arm, demonstrating force control and fine
contact interactions in the real world.

II. PROBLEM STATEMENT

We use an 𝑛-DOF robotic arm as the manipulator which
has multiple links connected by revolute joints. Considering
a world fixed frame denoted by {𝑊 }, the first link of the
manipulator is rigidly attached to a base that is static in
{𝑊 }, and the last link is attached to an end-effector 𝐸 to
manipulate objects. The joint position 𝐪 ∈ ℝ𝑛 determines
the arm configuration, which determines the pose of 𝐸.
The robot takes joint velocity commands �̇� as input. Fig. 2
illustrates a planar robot manipulating an object 𝑂 through
contact with its circular end-effector 𝐸.

Suppose a combined force/motion controller sends a mo-
tion command �̇�𝑑 to the robot to execute a desired end-
effector motion. The normal force controller’s task is to alter
�̇�𝑑 in the normal contact direction �̂� to maintain the desired
normal contact force 𝑓 𝑑

𝑛 . It does this by adjusting the nominal
velocity as follows: �̇�′ = �̇�𝑑 + �̇�𝑓𝑐 (see Fig.4).

It is challenging to generate �̇�𝑓𝑐 analytically. The relation-
ship between �̇�𝑓𝑐 and the normal force response depends on
five critical pieces of information that may not be available
to the low-cost personal robots. First, the magnitude of the
normal contact force 𝑓𝑛. Second, the position of the contact
point 𝐩. Third, the contact normal direction �̂�. Fourth, the
system compliance, represented as the lumped spring in
Fig. 2. The lumped spring summarizes the robot compliance
and the contact compliance at 𝐩 in the normal direction with
a spring deformed by 𝑑𝑛, while assuming everything else
matches the rigid model [12]. Fifth, the motion at the contact
in the normal direction caused by the motion controller or
the object motion resulted from external forces.

In this paper, we study normal force control for scenarios
under which the environment is unknown and the manipula-
tor’s sensors are unable to provide the necessary information
to implement force control analytically. Instead of using an

Fig. 2: The end-effector 𝐸 contacts an object 𝑂 at point 𝐩
generating normal force 𝑓𝑛 in contact normal direction �̂�. If
the robot joints were rigid and the object were not present, its
configuration would be that shown in black. The blue dashed
configuration shows (and exagerates) the fact that the robot
deflects due to the contact force.

Fig. 3: The effect of joint velocity on the normal force is
strongly affected by contact location and normal direction.

expensive tactile sensor, we propose to use a low-cost tactile
sensor that covers the entire end-effector, which is only able
to measure the magnitude of the contact force, but not its
position or its normal direction.

Problem 1 (Marginally-informed Normal Force Control).
Find the control output �̇�𝑓𝑐 to control 𝑓𝑛 to track a desired
normal force 𝑓 𝑑

𝑛 during object manipulation under the
following assumptions. i) There is a single contact point
between the sensor and the object. ii) The manipulator is
executing an arbitrary velocity command �̇�𝑑 . iii) The mag-
nitude of the normal force 𝑓𝑛 is observable. iv) The direction
of the normal force and the location of the contact point are
unknown. v) The models of the object, the environment, and
the robot are unknown.

Doing force control with all joints of the manipulator
would require the DRL agent to explore the robot’s 𝑛-
dimensional configuration space, which would significantly
increase the search space of the learning problem. Therefore,
in this paper, we focus on a Reduced Problem 1 - achieving
the marginally-informed normal force control by adjusting
the velocity output of a single joint.

Learning this reduced force control problem is still chal-
lenging. Fig. 3 illustrates two scenarios where a box is in
contact with the sensor (light blue) at various locations. The
joint shown in green is controlled by the control policy to
regulate the normal contact force.

On the left illustration, we can see that the relationship
between the joint action and the normal force (the red arrow)
changes as the contact point on the sensor changes. If the
contact point is on the right side, as shown on the right
illustration, the action-force relationship flips the sign. The
two points on the end-effector intersected by the orange
dashed line are affected by the boundary singularity on
which the force control ability is lost. Despite this limitation,
the force control policy must adapt to the variations in
contact location and, therefore, the variations in the action-
force relationship, even if contact location and normal force
direction are not measured, the models are unknown, and the
motion controller may disturb the force control. Nonetheless,
the action-force relationship may be inferred through the
interactions between the robot and the object. Therefore,
we take advantage of the robot’s interaction capabilities and
tackle this problem using model-free deep reinforcement
learning.

III. REINFORCEMENT LEARNING APPROACH

We aim at a sample-efficient learning without complicated
reward engineering. Therefore, we base our approach on a
mainstream continuous action space DRL method - Deep
Deterministic Policy Gradient (DDPG) [13]. DDPG is an off-
policy learning method known to be more sample-efficient
than on-policy methods such as PPO [14]. We use Hindsight
Experience Replay (HER) with DDPG to further enhance the
sample efficiency, which has proven track records in learning
robot manipulation tasks [15]. On top of DDPG and HER,
we propose the following structure and constraints to learn
the Marginally-informed Normal Force Controller:

∙ Interaction-conditioned policy observation, which al-
lows information-probing actions to emerge in training.

∙ Joint velocity offset instead of joint velocity as the
policy’s action to simplify the learning problem.

∙ A simple virtual training environment with effective
domain randomization designs to avoid simulating the
more complex real-world robot.

∙ Task-Balanced Network Update to stabilize the training
process and improve learning performance.

The overall system diagram is shown in Fig. 4. The actor and
critic blocks are the neural networks being trained, where the
actor is our control policy, and the critic is used to update the
actor. The force controller takes the target normal force and
measurement features as input, and its output is summed with
motion commands (from a motion controller) for the robot
to execute. We explain the details of the policy next.

A. Observation and Action
Generally speaking, a controller may adapt to changes that
are not directly observed by inferring information from the
responses of its control actions. However, when a system is
severely limited in observability (such as our system), the
control actions may not gather enough information. Instead,
as pointed out in [16], a controller may execute “probing
actions” that do not directly drive the system to the control
target, but instead, probe for more information. We aim to

enable our marginally-informed force controller to gather
information actively through probing actions while seeking
to achieve the desired normal force.

A prerequisite for probing actions to emerge during rein-
forcement learning is that the agent can observe the interac-
tions. Therefore, we let the actor and critic observe the most
recent force interaction history of length 𝑁 , denoted by =
{(𝑎𝑐−𝑖, 𝑐−𝑖)|𝑖 ∈ [1, 𝑁]}, where 𝑎 is the action, is a feature
vector of the force response, and 𝑐 is the index of the current
time-step. The feature vector is 𝑐−𝑖 = (𝑓𝑛,Δ𝑓𝑛,Δ2𝑓𝑛)𝑐−𝑖.
The tactile sensor measures the normal force magnitude 𝑓𝑛
at each time-step. The discrete-time derivatives of 𝑓𝑛, Δ𝑓𝑛
and Δ2𝑓𝑛 can provide information about the changes at the
contact. The desired normal contact force 𝑓 𝑑

𝑛 is observable
for the policy. Thus, the full observation as the input to the
policy network is = (, 𝑓𝑑

𝑛).
We set the policy’s action to be 𝑎 = Δ�̇�𝑓𝑐𝑗 , which is a

joint velocity offset at joint 𝑗. The velocity offset is added to
the previous joint velocity command before being combined
with the motion command. We made this design choice to
simplify the learning problem: first, we combine Δ�̇�𝑓𝑐𝑗 with
�̇�𝑓𝑐𝑗,𝑝𝑟𝑒𝑣 instead of the previous �̇�′𝑗 to decouple the force and
motion controllers since �̇�′𝑗 is partially contributed by �̇�𝑑𝑗 .
Second, by making the policy’s direct action a joint velocity
offset instead of a joint velocity, we avoid a more com-
plex learning formulation conditioned on joint velocity: the
normal contact force control can be viewed as deformation
control facilitated by relative motions between the robot and
the object at the contact (recall the lumped spring example).
Such relative motions are not fully determined by the joint
velocity due to other sources of motion, such as the object
and the motion controller. Since the policy’s past actions
appear in its observation, using joint velocity as the action
adds distracting information to the observation instead of
revealing the status of the relative motion.
B. Training Environment and Domain Randomization
The success of deep reinforcement learning for robot manip-
ulation has been achieved largely through training in simu-
lation. In general, training in simulation offers safety, speed
(time-stepping can be faster than real-time), and flexibility
(easier to set up and modify). Since learning force control is
potentially dangerous to the hardware, training in simulation
is a natural choice. In fact, we can easily set up a simple
environment in simulation without the need to simulate the
actual robot to learn the force control skill.

The simulated environment is illustrated in Fig. 5. The
robot has two velocity-controlled revolute joints and one
cylindrical end-effector. The virtual end-effector and the
sensor match the hardware in dimension and functionality.
The force control policy controls one robot joint, referred
to as the “policy joint,” to regulate the normal force, and
the other joint, referred to as the “motion joint,” to simulate
the disturbances from a motion controller. The policy joint’s
velocity-force relationship is approximately matched to the
hardware robot (with joint 6 being the policy joint) for a
single time-step.

Fig. 4: System Diagram: the learned force controller’s task is to track the target normal force during object manipulation.
When desired joint velocities present, the force controller adjusts the velocity at one robot joint, which modifies the motion
at the contact to achieve the target normal force.

Fig. 5: Illustration of the training environment.

During training, the policy interacts with the environment
during policy roll-outs (i.e., simulations of 𝑇 time-steps). At
each time-step, the agent makes observation and computes
an action for the “policy joint” to execute. A reward is
given at each time-step. We use the two simple rewards in
training: the negated absolute difference between measured
and target forces: 𝑟𝑓 = −|𝑓𝑛 − 𝑓 𝑑

𝑛 |, and a break contact
penalty: 𝑟𝑐 = −𝑀 , where 𝑀 ∈ ℝ+ is a large positive
number that emphasizes on the importance of maintaining
the contact. The latter reward replaces the prior when the
contact is broken.

Environment reset is performed at the beginning of each
policy roll-out, during which initial contact is made between
the robot and the box’s surface. We perform domain ran-
domization (DR) during the reset. The parameters being
randomized (within predefined ranges) are the initial contact
normal angle (thus the contact location on the sensor), initial
normal contact force, and the joint velocity of the disturbance
joint. The object is fixed on the table once the DR is finished.

Through DR, we enhance the adaptability of the policy
to variations in the action-force relationship. For example,
instead of controlling the policy joint, the policy may gener-
alize to control another joint of the manipulator, as this is a
change to relative pose between the end-effector and the joint,
which results in a variation in the action-force relationship.
It may also generalize to objects with different stiffnesses, as
those are also variations in action-force transition.

C. Task-Balanced Network Updates (TBNU)
Although the contact locations are randomly sampled during
training and have an equal probability of being on the two
contact regions with mirrored action-force relationships, the
mini-batches used to update the neural networks contain a
small amount of data that may have a sampling imbalance.
In experiments conducted without our balancing mechanism,
we observed the learned policy with bias toward controlling
one region instead of discovering a strategy to control both.

Our approach for learning a balanced control policy is
inspired by Model Agnostic Meta Learning (MAML) [17]
and class-balanced supervised learning [18]. Specifically, we
treat the control of each contact region as a different task
and create two replay buffers instead of one. We sample a
fixed length of transitions from each buffer and update the
networks in sequence. Although it may not provide the few-
shot retraining performance seen in MAML, we see TBNU
as a stronger way than DR to keep our policies out of local
minima that perform well for only one region.

IV. EXPERIMENTS

A. Learning Performance
We trained the policy in simulation (MuJoCo [19]) on a
desktop computer with Ubuntu 18.04, an Intel i9-9900 CPU,
and 32GB memory. A single agent was used to collect
data for the policy. There were 400 training epochs, and
in each epoch, we performed 100 policy rollouts each for
60 time-steps (2.4 million time-steps in total). Both actor
(the policy) and critic networks have four hidden layers, with
64 neurons for the first three and 32 for the last layer. The
activation function is ReLU [20] for the hidden layers, and
linear for the output layer. A joint speed limit is specified
for the force controller to prevent simulation instability and
hardware damage. Under this setup, training using PyTorch
took about 4 hours (1.5 hours is enough for high scores).

For comparison purpose, we trained multiple policies with
different design choices. All six policies listed below were
trained using DDPG, HER, and DR, on top of which we

varied the interaction history length, feature selection, and
the use of TBNU:

∙ 1obs: “1obs” means 𝑁 = 1 for the interaction history
 in the observation. The policy observes all features
𝑓𝑛, Δ𝑓𝑛, and Δ2𝑓𝑛 and is trained with no TBNU. The
same naming pattern applies to the rest of the policies.

∙ 1obs_noddf : 𝑁 = 1, trained with no TBNU, Δ2𝑓𝑛 is
not observed.

∙ 1obs_tbnu: 𝑁 = 1, TBNU is enabled.
∙ 3obs_tbnu: 𝑁 = 3, TBNU is enabled.
∙ 3obs_noddf_tbnu: 𝑁 = 3, TBNU is enabled, Δ2𝑓𝑛 is

not observed.
∙ 5obs_tbnu: 𝑁 = 5, TBNU is enabled.

Evaluation is done at the end of each training epoch. We
perform 50 policy rollouts and compute the evaluation score.
Score = 0.4 + max(reward𝑖𝑗 ,−0.4), where 𝑖 is the rollout
number and 𝑗 is the time-step. Intuitively, the score reflects
the step-wise reward with a force threshold, such that it is
only counted when the policy brings the contact force within
a 0.4𝑁 range of the target. From our experience, the 0.4𝑁
threshold offers a focused measuring window and strike a
good balance between capturing the steady-state performance
and maintaining the rising time information.

The plots in Fig. 6 shows the learning curves (10-epoch
moving-average) for all six policies. In the upper left plot,
policy 1obs_noddf scored much lower than the other two,
and 1obs_tbnu learned faster than 1obs and scored higher.
We checked the policies visually using the simulator, and
found that 1obs_noddf only worked for contacts in one
region of the sensor, while the other two worked for both
regions. This suggests that 1) the Δ2𝑓𝑛 observation is critical
when 𝑁 = 1; and 2) TBNU helps in achieving force control
for both contact regions.

When 𝑁 is increased to 3, shown in the upper right
plot, policy 3obs_tbnu can achieve similarly high scores as
1obs_tbnu but is faster and with less variations among ran-
dom seeds. On the bottom left, when the Δ2𝑓𝑛 observation
is removed, 3obs_noddf_tbnu can still achieve high scores
but the training was much less stable. This suggests that the
policy benefits from the direct observation of Δ2𝑓𝑛. Further
increasing the observation history length may encourage the
policy to overfit, which can be detrimental to the learning.
For example, policy 5obs_tbnu in the bottom right plot
reaches high scores at a slower rate.

The evaluation scores demonstrate the quantitative per-
formance of the learned policy in simulation. Fig. 7 shows
examples of a high-score policy (3obs_tbnu, scored over 0.3)
in action in simulation. The policy controls the green joint
to reach and maintain the desired normal force at a single
contact (90𝑜, −90𝑜, or −30𝑜). The initial contact force is set at
3𝑁 , and we manually increase the target contact force, 0.4𝑁
per step, until it reaches 5𝑁 . The plots show the target force
in red color and the measured force in blue. The x-axis is
the time-step, and the y-axis is the force (same apply to the
rest of the plots in the paper). The policy was able to keep
up with the target for all three contact angles, and there is

Fig. 6: Learning curves (5 random seeds, mean and standard
deviation are shown).

Fig. 7: The policy can reach and maintain the normal contact
force at various contact locations.

no obvious performance difference in force-tracking.

B. Hardware Experiments
We designed two real-world experiments to show how our

force controller, in combination with robot motions, enables
fine contact interactions. The hardware system (Fig. 1) con-
sists of a Kinova GEN3 7-DOF robot arm and a cylindrical
end-effector with a low-cost, flexible tactile sensor wrapped
around its lateral surface. The sensor is a single-zone force-
sensing resistor strip, not a tactile array, which only measures
the magnitude of the normal force for a single contact. It
cannot measure the location of the contact, the direction of
the contact normal, or the friction force. We assume there
is a single contact between the robot’s end-effector and the
object. The robot is posed close to the configuration shown
in Fig. 1 in the experiments, and the force control frequency
is 5Hz due to actuation latency. Experimental results are
reported below:

1) Experiment 1 - sticking and slipping contacts: As
shown in Fig. 8, initial contact is made between the end-
effector and the cardboard box. The robot is commanded to
move to the right by a velocity controller [21], facilitated by
all seven joints. Our force controller is used to modify the
joint velocity of the sixth joint to track the desired normal
contact force 𝑓 𝑑

𝑛 . When 𝑓 𝑑
𝑛 is low (Fig. 8, left), the motion

results in a slipping contact. The force controller ensures
a robust slipping interaction, allowing the robot to explore

Fig. 8: Left: Slipping contact, the end-effector slides to the
left without moving the object while maintaining contact.
Right: Sticking contact, the end-effector slides the box to
the left. The plot below each photo shows the recorded force
measurements, in which the green arrows indicate the current
time-step.

the box’s top surface. When 𝑓 𝑑
𝑛 is high (Fig. 8, right), the

slipping contact transitions into a sticking contact, and the
box moves with the robot. More experiments with various
motion directions and contour following of a curved surface
can be found in the accompanying video.

2) Experiment 2 - rolling contact: The task in experiment
1 has orthogonal motion and force control directions, such
that the parallel motion controller causes minimal interfer-
ence to the force controller. In this experiment, we use a
block tilting task (shown in Fig. 9) to demonstrate our force
controller’s robustness to disturbances in the force control
direction when the contact is rolling.

In the experiment, the robot’s fourth joint tilts up at 0.24
degrees/s, which approximately moves the end-effector to
the right. At the contact, this movement disturbs the normal
deformation (recall the lumped spring at the contact point),
and the disturbance level changes as the object tilts and
the contact normal direction rotates. The control policy is
deployed on the sixth joint, and it needs to resist disturbance
and maintain the desired normal contact force. After the
initial contact, the policy achieves the desired normal force,
which results in a sticking contact with the wooden block. As
the fourth joint rotates, the end-effector moves to the right,
and the block tilt because of the sticking contact. During
tilting, the sticking contact transforms into a rolling contact.
After the block tilts past the self-balancing configuration, the
normal contact force decreases as gravity becomes the major
source of the force. The policy then tries to increase the force
by pushing back (highlighted by the orange circle), but the
block slips away as the normal force continues to decrease
and finally tilts completely.

We report baseline comparisons, additional experiments,
and implementation considerations in [22].

V. CONCLUSION AND FUTURE WORK

We developed a low-cost solution to the marginally-
informed normal force control problem in this study. Our
learning results demonstrated the validity of key learning

Fig. 9: Tilting a block. From left to right, top to bottom:
initial contact made, tilting started, just passed the mid-way,
fully tilted.

design choices, and our hardware experiments showed that
the learned controller could be implemented in parallel with
a motion controller to be deployed on a real-world robotic
system to facilitate fine contact interactions. Although being
the first of its kind, the proposed solution is far from perfect,
which encourages further study:

∙ Although already useful, our learned policy only con-
trols a single robot joint. The force control capacity
depends on the contact location, i.e., the policy loses
control over the normal force when boundary singularity
occurs. It is less likely for this to occur if the policy can
control all robot joints simultaneously.

∙ This study focused on force control of a single contact
point using a robot arm as a “dexterous finger.” A future
direction would be using multiple dexterous fingers to
enable in-hand dexterous manipulation.

∙ The learned force controller, combined with a parallel
motion controller, can be used as a building block
for learning higher-level manipulation skills requiring
fine contact interactions. For example, the contact-
maintaining nature of our controller may enable more
efficient exploration compared to intermittent contacts
in reinforcement learning. The ways our controller can
be used in learning and planning for manipulation tasks
is a rich field for future research.

REFERENCES

[1] O. Kroemer, S. Niekum, and G. Konidaris, “A review of robot learning
for manipulation: Challenges, representations, and algorithms,” Jour-
nal of Machine Learning Research, vol. 22, no. 30, pp. 1–82, 2021.

[2] J. Cui and J. Trinkle, “Toward next-generation learned robot manipu-
lation,” Science Robotics, vol. 6, no. 54, p. eabd9461, 2021.

[3] D. J. Balkcom and J. Trinkle, “Computing wrench cones for planar
rigid body contact tasks,” The International Journal of Robotics
Research, vol. 21, no. 12, pp. 1053–1066, 2002.

[4] O. M. Andrychowicz, B. Babker, M. Chociej, R. Józefowicz, B. Mc-
Grew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray,
J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba,
“Learning dexterous in-hand manipulation,” The International Journal
of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.

[5] W. G. Bircher, A. S. Morgan, and A. M. Dollar, “Complex manipula-
tion with a simple robotic hand through contact breaking and caging,”
Science Robotics, vol. 6, no. 54, p. eabd2666, 2021.

[6] T. Lozano-Pérez, M. T. Mason, and R. H. Taylor, “Automatic synthesis
of fine-motion strategies for robots,” The International Journal of
Robotics Research, vol. 3, no. 1, pp. 3–24, 1984.

[7] T. Lefebvre, J. Xiao, H. Bruyninckx, and G. de Gersem, “Active
compliant motion: a survey,” Advanced Robotics, vol. 19, no. 5,
pp. 479–499, 2005.

[8] Y. Hou and M. T. Mason, “Robust execution of contact-rich motion
plans by hybrid force-velocity control,” in 2019 International Confer-
ence on Robotics and Automation (ICRA), pp. 1933–1939, 2019.

[9] F. R. Hogan, J. Ballester, S. Dong, and A. Rodriguez, “Tactile
dexterity: Manipulation primitives with tactile feedback,” in 2020
IEEE International Conference on Robotics and Automation (ICRA),
pp. 8863–8869, 2020.

[10] G. Sutanto, N. Ratliff, B. Sundaralingam, Y. Chebotar, Z. Su,
A. Handa, and D. Fox, “Learning latent space dynamics for tactile
servoing,” in 2019 International Conference on Robotics and Automa-
tion (ICRA), pp. 3622–3628, 2019.

[11] S. Chiaverini and L. Sciavicco, “The parallel approach to force/position
control of robotic manipulators,” IEEE Transactions on Robotics and
Automation, vol. 9, no. 4, pp. 361–373, 1993.

[12] D. Prattichizzo and J. C. Trinkle, Grasping, pp. 955–988. Cham:
Springer International Publishing, 2016.

[13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2019.

[14] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” CoRR,
vol. abs/1707.06347, 2017.

[15] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, A. Pieter, and W. Zaremba, “Hindsight
experience replay,” in In Proceedings of the 2017 Advances in Neural
Information Processing Systems, vol. 30, pp. 5048–5058, 2017.

[16] A. Feldbaum, “Dual control theory problems,” IFAC Proceedings
Volumes, vol. 1, no. 2, pp. 541–550, 1963.

[17] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proceedings of the 34th
International Conference on Machine Learning (ICML), vol. 70,
pp. 1126–1135, 2017.

[18] Y. Zhang and W. Deng, “Class-balanced training for deep face recog-
nition,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, June 2020.

[19] E. Todorov, “Convex and analytically-invertible dynamics with con-
tacts and constraints: Theory and implementation in mujoco,” in
Proceedings of the 2014 IEEE International Conference on Robotics
and Automation (ICRA), pp. 6054–6061, IEEE, May 2014.

[20] A. F. Agarap, “Deep learning using rectified linear units (relu),” CoRR,
vol. abs/1803.08375, 2018.

[21] S. Chen, Y.-C. Peng, J. Wason, J. Cui, G. Saunders, S. Nath, and
J. T. Wen, “Software Framework for Robot-Assisted Large Structure
Assembly,” vol. 3 of International Manufacturing Science and Engi-
neering Conference, June 2018.

[22] J. Cui, J. Xu, D. Saldana, and J. Trinkle, “Toward fine contact
interactions: Learning to control normal contact force with limited
information (supplemental materials),” https://github.com/
j1h/L-ACM/blob/main/supplements.pdf.

https://github.com/j1h/L-ACM/blob/main/supplements.pdf
https://github.com/j1h/L-ACM/blob/main/supplements.pdf

	Introduction
	Problem Statement
	Reinforcement Learning Approach
	Observation and Action
	Training Environment and Domain Randomization
	Task-Balanced Network Updates (TBNU)

	Experiments
	Learning Performance
	Hardware Experiments
	Experiment 1 - sticking and slipping contacts
	Experiment 2 - rolling contact

	Conclusion and Future Work
	References

