
PCGen: Point Cloud Generator for LiDAR Simulation

Chenqi Li, Yuan Ren and Bingbing Liu
Huawei Noah’s Ark Lab, Toronto, Canada

{chenqi.li, yuan.ren3, liu.bingbing}@huawei.com

Abstract— Data is a fundamental building block for LiDAR
perception systems. Unfortunately, real-world data collection
and annotation is extremely costly & laborious. Recently, real
data based LiDAR simulators have shown tremendous potential
to complement real data, due to their scalability and high-
fidelity compared to graphics engine based methods. Before
simulation can be deployed in the real-world, two shortcomings
need to be addressed. First, existing methods usually generate
data which are more noisy and complete than the real point
clouds, due to 3D reconstruction error and pure geometry-
based raycasting method. Second, prior works on simulation
for object detection focus solely on rigid objects, like cars, but
Vulnerable Road User (VRU)s, like pedestrians, are important
road participants. To tackle the first challenge, we propose
First Peak Averaging (FPA) raycasting and surrogate model
raydrop. FPA enables the simulation of both point cloud
coordinates and sensor features, while taking into account
reconstruction noise. The ray-wise surrogate raydrop model
mimics the physical properties of LiDAR’s laser receiver to
determine whether a simulated point would be recorded by a
real LiDAR. With minimal training data, the surrogate model
can generalize to different geographies and scenes, closing
the domain gap between raycasted and real point clouds. To
tackle the simulation of deformable VRU simulation, we employ
Skinned Multi-Person Linear model (SMPL) dataset to provide
a pedestrian simulation baseline and compare the domain gap
between CAD and reconstructed objects. Applying our pipeline
to perform novel sensor synthesis, results show that object
detection models trained by simulation data can achieve similar
result as the real data trained model.

I. INTRODUCTION

The success of deep learning is deeply rooted in the
availability of large-scale, high-fidelity datasets. Pioneering
datasets [1]–[13] facilitate development of cutting edge visual
recognition systems, providing challenging benchmarks for
the community. However, collection and annotation of data
in the real world is very inefficient, slow and uneconomical.
Simulation, on the other hand, give users the flexibility to
generate diverse scenarios with ease, as well as providing
automatically generated ground truth annotations. For LiDAR
simulation, two distinct approaches have been explored:
graphics engine based and real data based. Results show that
real data based methods produces simulation data with lower
domain gap compared to graphics engine based methods. This
paper makes the following contributions:

• We present FPA raycasting to simulate LiDAR point
clouds and sensor features, accounting for noise in the
reconstructed scenes.

• We develop the surrogate model of a single laser
head and use it for raydrop. Comparing to the UNet

based raydrop method, the proposed method is scene-
independent. The surrogate model of a specific LiDAR
can be trained once and used in different scenes.

• We perform novel sensor synthesis with our simulation
pipeline. The test results show that it provides high-
fidelity data for the new sensor configuration, achieving
similar result as the model trained on the real data.

• We propose Learned Point Cloud Similarity (LPCS) met-
ric to measure domain gap between real and simulation
point clouds, from the perspective of perception models

• We provide a baseline pedestrian simulation result, using
SMPL and reconstructed human models

II. RELATED WORK

A. Graphics Engine Based LiDAR Simulator

Initial attempts to LiDAR simulation were spearheaded
by Car Learning to Act (CARLA) [14]. Building on top of
Unreal Engine 4 (UE4) [15], CARLA’s simulation platform
allows the user to customize scenarios, including agent model,
density, interaction with the world, weather conditions, and
sensor suite. Similarly, Yue et al. leveraged the popular,
high-fidelity simulation of Grand Theft Auto V (GTA V)
to automatically extract point cloud with ground truth labels
[16]. The framework also enables users to construct diverse,
customized scenarios interactively to test neural network
performance in corner cases. Experiments have shown that
retraining with additional synthetic point cloud significantly
improves model’s performance on KITTI dataset [17], [18].
This work is further extended by the Precise Synthetic
Image and LiDAR (PreSIL) dataset, which improves the
raycasting functionality within GTA V to address the issues
of approximating human with cylinders and missed ray-
scene collisions [19]. PreSIL provides a large simulated
dataset in KITTI format, and demonstrate that it can boost
the performance on state-of-art model in KITTI 3D Object
Detection benchmark.

B. Real Data Based LiDAR Simulator

Generating CAD model assets and complex scenarios are
labor-intensive, making simulation difficult and costly to scale.
Furthermore, domain gap between noiseless simulation and
real-world data leads to poor model performance if only
trained on simulation data, prompting the development of
domain adaptation techniques [18], [20], [21]. Fang et al.
investigated a hybrid, data-driven approach to point cloud
generation framework, which combines real world scanned
background point cloud and synthetic foreground objects

ar
X

iv
:2

21
0.

08
73

8v
1

 [
cs

.R
O

]
 1

7
O

ct
 2

02
2

[22]. They show that by augmenting the real dataset with
synthetic frames, instance segmentation and object detection
performance is improved. Concurrently, LiDARsim employed
a similar approach, leveraging real data to reconstruct both
background and foreground objects [23]. LiDARsim further
extended the simulation with the addition of a learning
system to model the physics of LiDAR raydrop, closing
the gap between real and simulation point clouds. They show
that the simulation data trained models can obtain similar
performance in object detection and semantic segmentation
as models trained using real data, without domain adaptation
techniques. Similar to LiDARsim, Langer et al. developed
a simulation pipeline for domain transfer in the context of
semantic segmentation [24]. Their results show that closest
point raycasting, along with geodesic correlation alignment,
successfully generated simulation data to adjust a model
trained on the source domain (Velodyne-64) to the target
domain (Velodyne-32).

Fig. 1: Overview of Simulation Pipeline

III. METHODOLOGY

A. 3D Scene Reconstruction

Given a sequence of single frame point clouds, ground truth
bounding box annotations are used to crop out foreground
object points. If an instance moves more than 0.5 meters
in the global frame, the instance is treated as a dynamic
object. Since annotation for dynamic objects are less accurate,

the bounding box dimensions are slightly enlarged before
cropping, to ensure complete removal of all foreground
points. Using odometry, single frame point cloud without
foreground objects are transformed into the global coordinate
frame and subsequently accumulated to obtain a dense 3D
reconstruction of the sequence. Voxel downsampling and
point cloud radius outlier removal are performed as post-
processing steps, in order to reduce memory requirements
and remove noisy points. In the case where odometry is
inaccurate, Simoutaneous Localization and Mapping (SLAM)
and Iterative Closest Point (ICP) [25] can be used to improve
mapping quality.

For object reconstruction, all bounding boxes belonging to
the same object throughout the sequence can be identified.
The cropped point cloud cluster from each frame can be
returned to x-axis aligned origin using bounding box location
and orientation. To reduce the impact of human annotation
and odometry imperfections, a generalized ICP can be used
to improve the alignment. However, if the source and/or
target point cloud contain very few points, minimizing the
point cloud distance using ICP often leads to unreasonable
reconstructions. Thus, we adaptively employ ICP if both
source and target point cloud contains greater than threshold
number of points, otherwise, object clusters are simply
accumulated. The foreground objects can then be inserted
into the background to simulate a variety of scenarios.

B. Raycasting method

Theoretically, the reconstructed 3D scene is a 2D surface
embedded in the 3D space, represented in the form of a dense
point cloud. Through raycasting, intersections between the
laser beams and point cloud can be computed. LiDARsim
rendered dense point cloud as surfels [26] and used Intel
Embree Engine to compute ray-disc intersections [27]. Langer
et al. used Closest Point (CP) raycasting, which projects dense
point cloud into a range image, and the closest point from
each pixel is extracted to render the raycasted point cloud [24].
However, localization, calibration and sensor synchronization
are subject to error, points in the reconstructed point cloud
do not strictly lie on 2D surface of the scene. Both raycasting
methods suffer from noisy reconstructions, leading to noisy
raycasted point clouds. Moreover, CP raycasting only works
with spinning scan LiDAR. For LiDARs with irregular scan
pattern, such as the DJI Livox, multiple rays might land in
the same pixel, leading to redundant points.

To solve this problem, we propose First Peak Averaging
(FPA) raycasting. First, the reconstructed point cloud is
projected into a range image. Each pixel of the range image
corresponds to a frustum in the 3D space, as shown in Figure
2(a). Each point within the frustum can be defined using the
Spherical coordinates (d,λ ,φ) or the Cartesian coordinates
(x,y,z). Typically, the depth distribution of all points within
the frustum forms multiple peaks, due to occlusion and
observation of the scene from multiple angles. The intuition
behind FPA raycasting is to average points from the closest
peak, in order to estimate the true 2D surface from the noisy
3D point cloud. We are interested in the closest peak, because

(a) (b)

Fig. 2: First peak averaging raycasting

it corresponds to the first intersection between the ray and
the 3D scene. To speed up the simulation, a fixed peak width
δd is used to screen the first peak points. In Figure 2(b), λl
and φl are the azimuth and elevation of the casted laser beam
(indicated by the blue star), λi and φi, i = 1,2, . . . ,N are the
azimuth and elevation of each point within the closest peak
(indicated by the red and yellow circles, with the red circle
being the closest point within the frustrum). The intersection
between the ray and the 3D scene is estimated with the
Inverse Distance Weighted (IDW) averaging.

f =
N

∑
i=0

wi fi (1)

where f can be the x, y, z coordinates or the feature, such
as the intensity, of a point. The inverse distance weights wi
and inverse distance di are defined as:

wi =
d̃i

∑
N
j=1 d̃ j

(2)

d̃i =
1√

(λi−λl)2 +(φi−φl)2
(3)

C. Raydrop
Laser returns are affected by many factors, such as the

distance, incidence angle, material reflectivity and atmo-
spheric composition. The FPA raycasting algorithm records
every ray-scene intersection, without taking into account the
aforementioned factors. Thus, a domain gap exists, where
the simulation point cloud contains more points than the real
point cloud. LiDARsim developed a 2D UNet for raydrop
[28], trained using pairs of simulation and real point cloud
range images. This requires strict pixel-wise correspondence
between the two range images, and it cannot be guaranteed
due to odometry and calibration error. Furthermore, deep
learning models require large amounts of data to generalize.
With convolution layers, the encoder-decoder network learns
to drop rays based on context. Generalization to different
geographies will be limited. A real LiDAR, however, does not
use the wide perceptive field of the UNet to determine laser
return. To address these problems, we propose a surrogate
model (MLP) for the laser head.

r = MLP(d,θ , i) (4)

where r is a ray’s return probability, d, θ , i are the distance,
incidence angle and simulation intensity of the ray. By

learning ray-wise drop/return probability, the surrogate model
does not require pixel-wise range image correspondence
between the real and the simulation point clouds. Furthermore,
the model does not require large amounts of data to train and
can generalize across geographies.

Given a pair of raycasted and real dataset, the d, θ and i of
each point can be computed and projected into the parameter
space, as shown in Fig. 3(a).

d =
√

x2 + y2 + z2 (5)

where x,y,z is Cartesian coordinate of a raycasted point in
the LiDAR frame

θ = arccos
~R ·~N
‖~R‖‖~N‖

(6)

where ~R is the ray vector, ~N is the point’s normal vector,
computed from single frame point cloud using Open3D
[29]. Intensity, i, is taken directly from the real point cloud.
For the FPA simulation point cloud, the raycasted intensity
is the average reflection intensity of laser beams from
different directions, which abstractly describes the material’s
reflectivity.

To train the model, we pair the real dataset with a
simulation dataset, which is raycasted using the real dataset’s
LiDAR poses. With sufficient data, the parameter space will
be filled, which can then be voxelized. The ratio between
the number of real points and the number of simulation
points, r, can be computed for each voxel. This represents
the probability the ray would be returned, at the given d,
θ , i. The parameter space can be converted directly into a
lookup table for inference. We approximate the parameter
space with an MLP, to enable GPU inference acceleration
and infer values for voxels without data.

(a) (b)

Fig. 3: Input parameter space of the surrogate model

Figure 3(b) shows an example 2D projection of the
voxelized input parameter space. Each pixel shows the ray’s
return probability, with yellow and purple representing a
probability of 1 and 0 respectively. A LiDAR point cloud
cutoff at 75 meters is observed, and the rays that intersect
farther away from the LiDAR require greater intensity to
be returned. The parameter space is not very smooth, due
to voxelization. In order to reduce the influence of the
unsmoothness, the data of a voxel will not be used for training
if the number of simulation points in the voxel is less than
the given threshold or the number of the real points is larger
than that of the simulation points.

D. Learned Point Cloud Similarity (LPCS)

Raycasting algorithm requires the selection of three hyper-
parameters, the range image width & height and averaging
peak width. To tune hyperparameters, a point cloud similaity
metric is required. By computing the sum of squared distances
between nearest neighbors, Chamfer Distance (CD) does
not take into account mismatching local density. Such low-
level features, however, will be extracted by backbones of
the perception architectures and influence model prediction.
Inspired by Learned Perceptual Image Patch Similarity
(LPIPS), we propose LPCS, which compares the backbone
feature distance between pairs of point clouds from a model
pretrained on real data. Given a pair of corresponding point
cloud, all objects of interest can be cropped out using
bounding box annotations, yielding two subset point clouds
for simulation and real, Ps,Pr ∈ R3, respectively. LPCS can
be computed via the absolute element-wise distance between
the feature of both subsets:

LPCS(Ps,Pr) =
N

∑
i=1
|F(Ps)i−F(Pr)i| (7)

where F , the model backbone, outputs a high-dimensional
vector of N terms

E. Novel Sensor Synthesis

With reconstructed maps and objects, a dense representation
of any single frame can be obtained by inserting the objects
using their poses from the real frame. By providing the
raycasting algorithm with 1. the elevation and azimuth angle
of each ray with respect to the LiDAR frame 2. the pose
of the LiDAR with respect to the global frame, we can
simulate a corresponding point cloud, under a new LiDAR
configuration. Note that if the new LiDAR’s Field of View
(FOV) dramatically exceed that of the original dataset, part of
the new dataset might be missing. This can be circumvented
by collecting the original dataset using the LiDAR with largest
FOV, and optionally, highest density. Our simulation pipeline
greatly reduces the data collection and annotation costs to
train a model that can generalize to any combination of car
and LiDAR models.

F. Pedestrian Simulation

Previous works on simulation for object detection focused
primarily on rigid object classes, such as car. We attempt to
expand simulation classes to VRU, in particular, pedestrians.
Following the same reconstruction procedure from Section
III-A, a pedestrian object library is generated. However, body
movements lead to deformed reconstructions. To address this
problem, we employ the SMPL [30] dataset, which provides
realistic 3D human CAD models. Unlike cars, pedestrians
share similar geometry and mainly differ in their postures.
Thus, we believe that the SMPL models provide sufficient
degrees of freedom to capture the diverse set of pedestrian
poses that can be found on the road. During raycasting,
CAD models are converted to point clouds by sampling a
large number of points on the surface of triangle meshes.
A tight bounding box can also be generated to enclose all

points. Using statistics, dimensions of the real bounding boxes
and its enclosed point cloud cluster can be computed. The
distributions are used to filter out unrealistic CAD poses, as
well as loosening the bounding box annotations to match
human annotations.

IV. EXPERIMENTAL EVALUATION

Through the following experiments, we intend to demon-
strate the fidelity and potential applications of our pipeline.

1) To verify the fidelity of our raycasting and raydrop al-
gorithms, we show that object detection models trained
using real data or simulation data, achieves similar
performance when evaluated on the real validation data.

2) To prove LPCS as an useful point cloud similarity
metric, we show negative correlation between LPCS
and object detection Mean Average Precision (mAP)

3) To demonstrate sensor type conversion, we show that
with only source sensor data and 10% annotated target
sensor data, we can simulate target sensor and achieve
similar object detection performance as 100% annotated
target sensor data.

4) To demonstrate VRU simulation, we provide a baseline
for pedestrian simulation and compare CAD models
against reconstructed pedestrian.

A. Experimental Setup

1) Dataset: We evaluate our simulation pipeline using
Waymo Open Dataset, which consists of 800 training and
200 validation segments spanning over different geographical
locations [3]. Each segment provides synchronized sensor
data over 20 seconds. Each LiDAR frame is composed of
5 LiDARs: top, left, right, front and rear, captured at 10Hz.
For all of our experiments, we perform reconstruction and
mapping using top LiDAR, due to its high density and long
range of 75 meters.

2) Object Detection Model: OpenPCDet [31] implementa-
tion of Centerpoint [32] will be used to evaluate the quality of
our simulation dataset. During training, no data augmentation
is performed, in order to minimize stochasticity among trials.
All models are trained over 80 epochs.

B. First Peak Averaging Raycasting Ablation

With 2D and 3D object detection, we quantitatively
benchmark CP against FPA. Given a real LiDAR frame, a
dense representation can be obtained via reconstruction. Two
simulation datasets, which are identical to the real dataset,
can be raycasted using CP and FPA. Both datasets employ
the same LiDAR pose and ray configurations from Waymo
Open Dataset’s calibration. Centerpoint is trained using the
CP, the FPA and the real dataset. The trained models are
evaluated on the real validation dataset, which is summarized
in Table I. When trained using only XYZ, FPA method
provides a small performance gain of +0.35/+0.05% and
+0.91/+1.31% for 3D and 2D mAP0.5/0.7. This shows that
the FPA, compared to CP, reduces noise in the simulated
point clouds. When point cloud features (intensity, elongation)
are included during training, FPA provides +1.72/+1.85%,

TABLE I: Top LiDAR Raycasting (Real Top Validation)

(a) XYZ

3D mAP IoU 0.5/0.7 2D BEV IoU 0.5/0.7

Simulation CP 74.06/41.93 77.93/61.30
Simulation FPA 74.41/41.98 78.84/62.61

Real 77.59/47.27 81.19/66.01

(b) XYZ + Intensity + Elongation

3D mAP IoU 0.5/0.7 2D BEV IoU 0.5/0.7

Simulation CP 74.44/40.33 79.46/61.86
Simulation FPA 76.16/42.18 80.56/63.75

Real 79.23/48.21 82.57/67.24

TABLE II: Top LiDAR Raydrop (Real Top Validation)

Threshold 3D mAP IoU 0.5/0.7 2D BEV IoU 0.5/0.7

No raydrop 76.16/42.18 80.56/63.75
0.28 77.56/44.93 81.21/65.75
0.30 77.36/42.80 82.07/65.24
0.32 77.22/43.63 81.30/64.80
0.34 76.63/41.24 80.51/63.02
Real 79.23/48.21 82.57/67.24

+1.10/+ 1.89% improvement for 3D and 2D mAP0.5/0.7.
More importantly, the inclusion of point cloud features lead
to improved model performance for FPA, but worsened 3D
mAP0.7 model performance for CP. This indicates that the
simulated point cloud feature by CP compared to FPA is also
more noisy and can cause confusion for the model.

C. Raydrop Ablation

To show the generalization capability of the proposed
raydrop model, we will use a surrogate model trained
on the validation set to drop points in the training set.
Following IV-B, FPA simulation of the real validation dataset
is first generated. Following Section III-C, simulation and
real validation dataset is used to train the surrogate model.
For each point in the raycasted simulation training set, the
surrogate model checkpoint provides a probability the point
should be kept. By choosing a threshold, probabilities can
be converted to binary drop/keep masks. The higher the
threshold, the more points will be dropped. The trained
model’s performance on the real validation set is summarized
in Table II. "No raydrop" indicates original raycasting results,
and "Real" indicates real data. Since XYZIE is used for
training, these two rows are identical to "Simulation FPA"
and "Real" rows of Table I(b). At threshold 0.28, 3D
mAP0.5/0.7 is maximized at 77.56/44.93%, a +1.40/+2.75%
improvement compared to without raydrop. 2D mAP0.5/0.7
also increases +1.51/+1.49% and +0.65/+2.00% at 0.30
and 0.28 threshold, respectively. Thus, the surrogate model
is an extremely light-weight and generalizable method to
effectively reduce the sim2real domain gap. Figure 4(a)
provides a visual comparison of point cloud with and without
raydrop. After raydrop, simulation point cloud more closely
matches that of the real point cloud.

Fig. 4: Surrogate Model Raydrop Visualization (a) Top LiDAR
raydrop (b) Side LiDAR raydrop

Fig. 5: Correlation between LPCS and Object Detection mAP

D. Learned Point Cloud Similarity

We perform a small hyperparameter search using 10%
of the validation set. Using different combinations of hy-
perparameters (averaging peak width, range image width,
range image height), new simulation validation datasets are
raycasted. With a real data trained model, we can obtain the
mAP of each raycasted dataset, as well as computing the
LPCS between the raycasted and the real dataset.

Figure 5 shows a negative correlation between LPCS and
mAP, which implies that LPCS provides a good estimate
of the domain gap between the simulation and the real
dataset. Using LPCS to guide gridsearch of raycasting
hyperparameters, we conclude that the optimal range image
dimension is 2560×128, along with an averaging peak width
of 20cm. These hyperparameters are used in all of the top
LiDAR experiments.

E. Novel Sensor Synthesis

In this section, we showcase an example novel sensor
synthesis, from top to side LiDARs. Following Section III-
E, side LiDAR dataset can be raycasted using top LiDAR
reconstructions. First 10% of the real and raycasted side
LiDAR training set is used to train a surrogate raydrop model,
to raydrop the entire raycasted training set. Using the first
10% and random 10% of the real side LiDAR training set, the
simulation data trained models are further finetuned. Object
detection performance, evaluated on the real side LiDAR
validation set, is summarized under Table III(a). Some real
data trained baselines are also provided in Table III(b). If a
real top LiDAR trained model (Top 100%) is evaluated on
the real side validation set, we observe around 20% domain
gap compared to the real side LiDAR trained model (Side
100%). A similar performance is observed for raycasted
simulation dataset (Raycast only). However, raydrop (Raycast

TABLE III: Side LiDAR Simulation (Real Side Validation)

(a) Simulation Ablation

Raycast Raydrop Finetune 3D mAP
IoU 0.5/0.7

2D BEV
IoU 0.5/0.7

3 7 7 61.98/28.25 68.98/51.00
3 3 7 77.00/36.05 81.99/63.19
3 3 First 10% 82.09/45.86 85.79/66.46
3 3 Random 10% 82.99/49.90 85.77/69.45

(b) Real Data Baselines

Dataset Sensor Volume 3D mAP
IoU 0.5/0.7

2D BEV
IoU 0.5/0.7

Top All 100% 62.31/32.39 65.02/51.70
Side First 10% 75.22/35.06 79.63/56.95
Side Random 10% 83.77/49.57 86.96/68.39
Side All 100% 85.28/52.84 88.02/70.78

+ Raydrop) is extremely useful. Compared to (Raycast
only), we observe +15.02/+7.80% and +13.01/+12.19%
improvement. Compared to (Side First 10%), we observe
+1.78/+1.01% and +2.36/+6.24% improvement. Figure
4b shows that after dropping the scanlines around the top
and rear sections of the car, the raydropped point cloud is
a lot more similar compared to the real point cloud than
the raycasted point cloud. The reduced domain gap is likely
the main contributing factor to the improved performance.
Finetuning with first 10% further boosts model performance
(Raycast + Raydrop + First 10%). Compared to (Side First
10%), we observe +6.87/+ 10.8% and +6.16/+ 9.51%
improvement. Compared to (Side All 100%), we observe a
gap of −3.19/−6.98% and −1.17/−1.93%. This suggests
that given a large scale primary dataset of an old sensor and a
small scale secondary dataset of a new sensor, our simulation
pipeline can leverage both datasets and train a model that
is capable of achieving similar performance compared to a
model trained on the large scale dataset of the new sensor.
Alternatively, the simulation pipeline can be thought of as a
data augmentation generator. The large scale primary dataset
can be converted to augmentation frames for the secondary
dataset, to improve the model’s generalization capability on
the secondary dataset.

F. Deformable Object Simulation

Table IV compares the pedestrian simulation using re-
constructed and CAD pedestrians, when evaluated on the
real top validation set. "Real" represents real data trained
model. "CAD Naive" represents randomly sampling from the
CAD library and replacing real pedestrians. "CAD Modified"
improves upon "CAD Naive" with the inclusion of pose
filtering and bounding box adjustment as described in Sec-
tion III-F. "Reconstruction" replaces real with reconstructed
pedestrians. Figure 6 provides a visual comparison of the
above experiments. The reconstructed pedestrians leads to
noticeably thicker outline compared to the real and CAD
point clouds.

Compared to car classes, reconstructed pedestrians suffer
from increased sim-real domain gap of −8.55/−14.48% and

TABLE IV: Pedestrian Simulation (Real Top Validation)

Training Dataset 3D mAP IoU 0.25/0.50 2D BEV IoU 0.25/0.50

CAD Naive 55.62/06.56 59.31/11.92
Reconstruction 69.76/47.14 70.49/55.44
CAD Modified 74.56/54.31 75.19/62.47

Real 78.31/61.62 79.24/68.31

Fig. 6: Pedestrian Simulation Visualization

−8.75/−12.87% for 3D and 2D mAP0.5/0.7. "CAD Modified"
achieves the lowest domain gap of −3.75/− 7.31% and
−4.05/− 5.84%. Our results provides a baseline for VRU
simulation and show that SMPL is a viable alternative to
replace reconstruction for pedestrians.

V. CONCLUSION

In this work, we propose a point cloud based simulation
pipeline. Experiments show that the pipeline is capable of
transferring a dataset collected by an old sensor to recreate the
LiDAR stream that would have been collected by a new sensor
configuration of different density, placement and scanning
mechanism. It greatly reduces the cost of data collection and
annotation to generalize model performance from a particular
vehicle-LiDAR setup to any desired combination. To harness
the full potential of our pipeline, we look to close the domain
gap between simulated and real pedestrians by augmenting
the SMPL dataset with accessories, such as backpacks and
handbags, as well as expanding VRU simulation to cyclists.

REFERENCES

[1] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[2] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 11 621–11 631.

[3] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine, et al., “Scalability in perception
for autonomous driving: Waymo open dataset,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 2446–2454.

[4] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan, et al., “Argoverse: 3d tracking
and forecasting with rich maps,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
8748–8757.

[5] B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh, S. Khandelwal,
B. Pan, R. Kumar, A. Hartnett, J. K. Pontes, et al., “Argoverse 2:
Next generation datasets for self-driving perception and forecasting,”
in Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2), 2021.

[6] X. Huang, X. Cheng, Q. Geng, B. Cao, D. Zhou, P. Wang, Y. Lin,
and R. Yang, “The apolloscape dataset for autonomous driving,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition workshops, 2018, pp. 954–960.

[7] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, L. Chen, A. Jain, S. Omari,
V. Iglovikov, and P. Ondruska, “One thousand and one hours: Self-
driving motion prediction dataset,” arXiv preprint arXiv:2006.14480,
2020.

[8] J. Mao, M. Niu, C. Jiang, H. Liang, J. Chen, X. Liang, Y. Li, C. Ye,
W. Zhang, Z. Li, et al., “One million scenes for autonomous driving:
Once dataset,” arXiv preprint arXiv:2106.11037, 2021.

[9] Y. Choi, N. Kim, S. Hwang, K. Park, J. S. Yoon, K. An, and I. S.
Kweon, “Kaist multi-spectral day/night data set for autonomous and
assisted driving,” IEEE Transactions on Intelligent Transportation
Systems, vol. 19, no. 3, pp. 934–948, 2018.

[10] A. Patil, S. Malla, H. Gang, and Y.-T. Chen, “The h3d dataset for
full-surround 3d multi-object detection and tracking in crowded urban
scenes,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 9552–9557.

[11] J. Xue, J. Fang, T. Li, B. Zhang, P. Zhang, Z. Ye, and J. Dou, “Blvd:
Building a large-scale 5d semantics benchmark for autonomous driving,”
in 2019 International Conference on Robotics and Automation (ICRA).
IEEE, 2019, pp. 6685–6691.

[12] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year, 1000 km:
The oxford robotcar dataset,” The International Journal of Robotics
Research, vol. 36, no. 1, pp. 3–15, 2017.

[13] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss,
and J. Gall, “Semantickitti: A dataset for semantic scene understanding
of lidar sequences,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 9297–9307.

[14] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” in Conference on robot learning.
PMLR, 2017, pp. 1–16.

[15] A. Sanders, An introduction to Unreal engine 4. AK Peters/CRC
Press, 2016.

[16] X. Yue, B. Wu, S. A. Seshia, K. Keutzer, and A. L. Sangiovanni-
Vincentelli, “A lidar point cloud generator: from a virtual world to
autonomous driving,” in Proceedings of the 2018 ACM on International
Conference on Multimedia Retrieval, 2018, pp. 458–464.

[17] B. Wu, A. Wan, X. Yue, and K. Keutzer, “Squeezeseg: Convolutional
neural nets with recurrent crf for real-time road-object segmentation
from 3d lidar point cloud,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 1887–1893.

[18] B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer, “Squeezesegv2:
Improved model structure and unsupervised domain adaptation for road-
object segmentation from a lidar point cloud,” in 2019 International
Conference on Robotics and Automation (ICRA). IEEE, 2019, pp.
4376–4382.

[19] B. Hurl, K. Czarnecki, and S. Waslander, “Precise synthetic image and
lidar (presil) dataset for autonomous vehicle perception,” in 2019 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2019, pp. 2522–2529.

[20] B. Sun, J. Feng, and K. Saenko, “Correlation alignment for unsupervised
domain adaptation,” in Domain Adaptation in Computer Vision
Applications. Springer, 2017, pp. 153–171.

[21] P. Morerio, J. Cavazza, and V. Murino, “Minimal-entropy correlation
alignment for unsupervised deep domain adaptation,” arXiv preprint
arXiv:1711.10288, 2017.

[22] J. Fang, D. Zhou, F. Yan, T. Zhao, F. Zhang, Y. Ma, L. Wang, and
R. Yang, “Augmented lidar simulator for autonomous driving,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 1931–1938, 2020.

[23] S. Manivasagam, S. Wang, K. Wong, W. Zeng, M. Sazanovich,
S. Tan, B. Yang, W.-C. Ma, and R. Urtasun, “Lidarsim: Realistic
lidar simulation by leveraging the real world,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[24] F. Langer, A. Milioto, A. Haag, J. Behley, and C. Stachniss, “Domain
transfer for semantic segmentation of lidar data using deep neural
networks,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2020, pp. 8263–8270.

[25] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,”
in Sensor fusion IV: control paradigms and data structures, vol. 1611.
Spie, 1992, pp. 586–606.

[26] H. Pfister, M. Zwicker, J. Van Baar, and M. Gross, “Surfels: Surface
elements as rendering primitives,” in Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, 2000,
pp. 335–342.

[27] T. Möller and B. Trumbore, “Fast, minimum storage ray/triangle
intersection,” in ACM SIGGRAPH 2005 Courses, 2005, pp. 7–es.

[28] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” in International Conference
on Medical image computing and computer-assisted intervention.
Springer, 2015, pp. 234–241.

[29] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3d: A modern library for
3d data processing,” arXiv preprint arXiv:1801.09847, 2018.

[30] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black,
“Smpl: A skinned multi-person linear model,” ACM transactions on
graphics (TOG), vol. 34, no. 6, pp. 1–16, 2015.

[31] O. D. Team, “Openpcdet: An open-source toolbox for 3d object detec-
tion from point clouds,” https://github.com/open-mmlab/OpenPCDet,
2020.

[32] T. Yin, X. Zhou, and P. Krahenbuhl, “Center-based 3d object detection
and tracking,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2021, pp. 11 784–11 793.

https://github.com/open-mmlab/OpenPCDet

	I INTRODUCTION
	II Related Work
	II-A Graphics Engine Based LiDAR Simulator
	II-B Real Data Based LiDAR Simulator

	III Methodology
	III-A 3D Scene Reconstruction
	III-B Raycasting method
	III-C Raydrop
	III-D Learned Point Cloud Similarity (LPCS)
	III-E Novel Sensor Synthesis
	III-F Pedestrian Simulation

	IV Experimental Evaluation
	IV-A Experimental Setup
	IV-A.1 Dataset
	IV-A.2 Object Detection Model

	IV-B First Peak Averaging Raycasting Ablation
	IV-C Raydrop Ablation
	IV-D Learned Point Cloud Similarity
	IV-E Novel Sensor Synthesis
	IV-F Deformable Object Simulation

	V Conclusion
	References

