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Abstract— Replanning in temporal logic tasks is extremely
difficult during the online execution of robots. This study
introduces an effective path planner that computes solutions
for temporal logic goals and instantly adapts to non-static and
partially unknown environments. Given prior knowledge and a
task specification, the planner first identifies an initial feasible
solution by growing a sampling-based search tree. While car-
rying out the computed plan, the robot maintains a solution
library to continuously enhance the unfinished part of the plan
and store backup plans. The planner updates existing plans
when meeting unexpected obstacles or recognizing flaws in prior
knowledge. Upon a high-level path is obtained, a trajectory
generator tracks the path by dividing it into segments of motion
primitives. Our planner is integrated into an autonomous
mobile robot system, further deployed on a multicopter with
limited onboard processing power. In simulation and real-
world experiments, our planner is demonstrated to swiftly and
effectively adjust to environmental uncertainties.

I. INTRODUCTION

In classical motion planning problems, a robot is com-
manded to generate a trajectory to reach a target config-
uration without collision [1], [2], [3]. Some works extend
the motion planning problems to goals expressed in terms of
temporal logic [4], [5], [6]. They consider tasks with complex
temporal and spatial constraints that can be expressed in
a form closely linked to natural language. Linear temporal
logic (LTL) is widely used to specify such tasks since it is a
mathematically precise language with sufficient expressive-
ness [7]. Hybrid robot controllers [8] can be computed to
satisfy tasks expressed in LTL formulae.

In classical controller synthesis approaches [9], [10], [11],
abstraction on the environment is created as a priori which
simplifies the motion of robots into symbolic transitions. A
discrete plan can be retrieved from a product automaton
constructed by taking the product of the transition system
and the task-related automata. However, most existing works
assume the environment is static, and its finite model can
be obtained in advance. In the real world, the model of the
environment is not always available and is even unpredictable
due to shifting behavioral patterns. Directly resynthesis of
the whole plan can lead to undesired consequences since
the execution history will be lost, and the revised plan may
violate the temporal specification. An example of a task is
“Pick up a box in the warehouse first, then drop it off at
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the office before picking up another box.” If the robot fails
to locate the drop zone and decides to resynthesis the plan
from scratch, the new plan will have the robot pick up a box
again, which is prohibited by the task formula.

In case the previous plan is unachievable, some replanning
methods are developed [12], [13], [14] in recent years based
on controller synthesis approaches. The work in [12] pro-
poses a plan revising mechanism assuming the environment
is partially known and static. Once one transition in the
current plan is broken, it seeks ways to find the shortest
path bridging up the two components again. Authors in [13]
develop a method to locally “patch” the defunct parts caused
by the environmental change and identify new solutions.
The work [14] develops an iterative repair strategy to re-
solve unexpected obstacles by combining local patching with
refined triangulation. However, the above-mentioned repair
operations cannot deal with both propositional change and
moving obstacles, and replanning on large product automaton
is

Unlike the abstraction-dependent methods above, our ap-
proach uses a sampling tree that explores the workspace for
solutions. The closest related work to this paper is [15],
which presents an abstraction-free method that incrementally
builds trees to search for a satisfying solution. Note that it is
an offline planner with no consideration of uncertainties. A
lot of researchers, either dealing with classical path planning
problems [16], [17] or temporal logic tasks [15], put much
effort into improving sample efficiency in sampling-based
planning. These methods invent various heuristics to speed
the convergence of the final solution to optimality. Some
work [18], [19] implement receding-horizon sampling trees
for interleaved planning and acting. However, the executed
edges are abandoned and cannot be used in future planning.
In [20], the authors develop a multi-query sampling-based
path planner by preserving all nodes sampled. Inspired by
the approach above, we reuse the sampled points connected
to the historical path for real-time replanning.

We propose a novel sampling-based planning and replan-
ning paradigm for temporal logic tasks. The contributions of
this work are threefold:
• A temporal logic constrained path planner that rapidly

responds to real-time workspace knowledge updates
using a dual-root tree;

• A graph-theoretic approach that reuses sampled nodes
and resolves state duplication during replanning;

• Integration of algorithms with an online robotic
perception-and-planning system and demonstration of
its advantages in simulation and real-world experiments.
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II. PRELIMINARIES

A. Linear Temporal Logic on Finite Traces
We restrict the task specification in the form of Linear

Temporal Logic on finite traces (LTLf ), which has sufficient
expressiveness to command robots with constrained power
supply. Let AP be a set of atomic propositions where α ∈
AP is a Boolean variable. We consider LTLf formulas
whose syntax is as follows:

ϕ := true | α | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ♦ϕ | �ϕ | ϕUϕ

where ¬ (negation), ∨ (disjunction), ∧ (conjunction) are
boolean operators, and ♦ (“eventually”), � (“always”) and
U (“until”) are temporal operators. Note that we exclude
the “next” operator due to the continuous execution without
instantaneous motion in our abstraction-free approach. We
refer readers to the work [21] for the semantics of LTLf .

For every LTLf formula ϕ there is a deterministic finite
automaton (DFA) that accepts a sequence of input words
to satisfy ϕ. DFA is formally defined by a five-tuple Aϕ =(
Q, 2AP , δ, Q0,F

)
, where Q is a finite set of automata states;

Q0 ⊆ Q is a set of initial states; 2AP is the input alphabet;
δ : Q× 2AP → 2Q is the transition relation; F ⊆ Q is a set
of accepting automata states.

A run of a finite length n on DFA is a sequence of states
r = q0q1 . . . qn, where q0 ∈ Q0 and qk+1 ∈ δ(qk, λ) for
some λ ∈ 2AP , k ∈ [0, n − 1], which implies the run starts
at an initial state and follows the transition relation. A run r
is called an accepting run if qn ∈ F .

B. Robot Model
In this paper, we model a mobile robot as a hybrid

system with state space S = Q × X , where Q is the set
of discrete modes and X is the set of continuous states.
A hybrid state is defined as a pair s = (q, x) ∈ S, and
its projection on X is denoted as s|X = x. Considering
no external disturbance caused by the environment, the
evolution of a robot can be achieved by applying a motion
primitive u during time t at a state in the domain x ∈
X , which can be written as ζ(x, u, t). A finite path is a
finite sequence of hybrid states τ = s0s1 . . . sn, and its
projection τ |X is resulted from a series of motion primitives
ζ(x0, u0, t0)ζ(x1, u1, t1) . . . ζ(xn, un, tn). The correspond-
ing trace of a path τ is σ = L(x0)L(x1) . . . L(xn), where
L : X → 2AP is a labeling function that returns the atomic
propositions that are true in the state x ∈ X . We define that
a path τ satisfies an LTLf formula ϕ if and only if the input
words of the corresponding trace lead to an acceptance state,
formally written as ∃ qf = δ (qn, L(xn)) , qf ∈ F ⇔ τ |= ϕ.

Follow [14], an event-driven trace of a path is defined as

σ̄ = L (x0)L (xi0)L (xi0+i1) . . . L
(
xi0+···+il−1

)
,

for i0 + · · · + il−1 < n by removing states with repeti-
tive discrete modes in a path. In another word, the event-
driven trace captures the label change in the trajectory and
L(xIj ) 6= L(xIj+1) where Ij =

∑j
k=0 ik. In practice, there

may exist multiple paths leading to the acceptance of a DFA
with different event-driven traces.

III. PROBLEM DESCRIPTION AND PROPOSED APPROACH

A. Problem Description

This paper considers a mobile robot with sensory capabil-
ity moving in a partially unknown workspace to accomplish
high-level goals. The mobile robot can either be a differential
drive ground vehicle or a multicopter, which can remain
stationary and change its heading. Meanwhile, the robot
is not collision resilient and is forced to stay away from
obstacles by the planner. Therefore, collision avoidance con-
straints are excluded from formulae in the following sections.
The workspace X consists of a set of regions of interest Π
whose properties are the combinations of atomic propositions
AP , and a set of regions occupied by fixed obstacles Xocc.
The robot is given the workspace model Xinit as prior
knowledge. We assume Xinit suffices the robot to compute
a trajectory within obstacle-free areas Xfree = Xinit\Xocc

that satisfies the specification ϕ. In contrast to the work
[14], we relaxed the assumption that the propositional regions
are fully-known. Due to the incomplete information given in
advance, satisfaction is not guaranteed since the actual region
property might not coincide with that in prior knowledge.
The workspace could be updated by receiving knowledge
from either onboard sensors or external observers.

The problem that this paper focused on is stated as follows:
Problem 3.1: Given a partially unknown workspace Xinit

with dynamic obstacles, a hybrid robot model whose state
space is S, and a task specification ϕ expressed in LTLf , find
a path τ that satisfies ϕ with adaptation to any admissible
uncertainties in real-time.

We suppose that the uncertainty in the environment is
admissible in the sense that the propositions of each region
do not vary dynamically, and there always exists a collision-
free finite path that results in the task’s acceptance. Once
detected property changes or dynamic obstacles, the robot
is supposed to be able to brake and avoid reaching/colliding
with them in time while satisfying kinodynamic constraints.
We assume no perception error within a sensing area, while
actuation uncertainties are taken care of by feedback motion
planning at a lower level.

B. Proposed Approach

To address Problem 3.1, we propose a path planning
framework whose diagram can be viewed in Fig. 1. The
planning part can be divided into two phases: initial planning
and reactive planning.
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Fig. 1: The framework of real-time temporal logic planning



Prior to planning, the system is provided with an envi-
ronment model, a robot model, and a task formula. The
robot model helps grow a sampling-based search tree T in
Xfree progressively with kinetically compatible edges. The
task specified in LTLf as ϕ is translated into a DFA and is
further converted to a state monitor that guides the sampling-
tree expansion. A knowledge base of the workspace is
constructed based on the environment model with labeled
regions Π and obstacles Xocc. The knowledge base serves
as an initial map Xinit in the initial planning to obtain an
initial solution whose trace satisfies the task formula ϕ, as
to be explained in Section IV-B.

In the online reactive planning part, once a solution
is successfully obtained, the robot can track the nominal
path safely with the help of a trajectory generator. During
execution, the sampling-based planner continuously searches
for a distinctive solution and improves the existing solutions,
as will be described in Section IV-C. The state estimation
helps the planner keep track of the execution progress and
updates the robot’s continuous state x. In the meantime, the
robot receives observations from both external observers and
its onboard sensors and revises the corresponding part of the
knowledge base. The evolution of both the environment state
and the robot state can trigger the replanning mechanism to
deal with the non-determinism in the domain, as will be
discussed in Section IV-D and Section IV-E.

IV. SOLUTION OF THE PROBLEM

A. Automata preprocess and temporally forbidden zones

To obtain a minimized automaton without ambiguity, we
use MONA [22] and LTLf2DFA [23] to translate an LTLf
formula to a DFA Aϕ. Chances are that, given a prefix of
a run q0q1 . . . qi on DFA, there does not exist a sequence
qiqi+1 . . . qn where qk+1 ∈ δ(qk, λ) for any λ ∈ 2AP , k ∈
[i, n − 1] and qn ∈ F , i.e., the accepting states cannot be
reached from the automata state qi on the DFA. To overcome
this issue, we apply a preprocessing routine on DFA before
planning. In detail, we construct an auxiliary automaton that
reverses all transitions of the original DFA and finds the sets
of automata states B that are not reachable from any state
in F . During planning, the planner disables any transition
relation δ(qk, λ) that can have the motion tree to include a
node with an automata state qk+1 ∈ B.

During execution, to ensure the states in B are never
reached, temporally forbidden zones Πfbd are extracted and
serve as time-variant hard constraints in path tracking. When
the robot’s state is scur = (qcur, xcur), the planner obtains
the next discrete mode as qnxt = δ(qcur, L(xcur)) due to the
determinism of DFA. The planner examines each labeled
region π ∈ Π, and tries to intake the corresponding label
L(π). If the input word transitions qnxt toward a state in B,
the corresponding region will be added into Πfbd.

B. Initial plan computation

After constructing the initial map Xinit and translating the
LTLf specification, the robot builds a motion tree toward the
temporal goal. Similar to anytime RRT* [18], the robot does

not wait till a near-optimal solution is calculated to execute.
Instead, once a feasible solution is found, the robot begins
to follow the nominal path with a trajectory generator.

Like the work [15], we employ a sampling-based tree
search method monitored by an automaton. The search tree
T is composed of node set VT and edge set ET . Additionally,
we maintain a graph G = (T ,Viso) containing not only the
search tree but also a set of isolated vertices.

Every time a sample is drawn on a state xrand ∈ Xfree, the
nearest node in the tree snearest = (qnearest, xnearest) steers
to xrand with robot dynamics in time ∆t and ends at xnew.
By pairing with possible automata states, a set of hybrid
states Snew = {(q, xnew) | q ∈ Q\B} whose continuous
states are the same but automata states are different is
generated. Snew is recorded in each new vertex snew ∈ Snew

for resolving state duplication and will be referred to as
Srcd in Section IV-D. Afterward, the planner tries to add
the hybrid states as nodes to the tree. The set of vertices
that is near xnew is Snear = {s = (q, x) ∈ VT ∪ Viso |
||x − xnew|| ≤ rn(VT )}, where rn is a radius calculation
function as defined in [15]. For each snew = (qnew, xnew),
we find the node sbest = (qbest, xbest) ∈ Snear with the
least cost-to-come value that satisfies the transition relation
qnew = δ (qbest, L(xbest)), and then add an edge ε =<
sbest, snew > to the tree T . The cost-to-come values—the
cumulative distance from the tree root to the states—are
allocated to the newly added nodes Sadded in the tree. The
remaining nodes Snew\Sadded are included in graph G, and
they can be added to the tree in the future by rewiring.
The rewiring process is similar to that in [20] except for
the hybrid state space and constraints on transition relations.
Note that not only tree nodes VT but also isolated vertices
Viso can be rewired. The planner checks if the newly sampled
node snew = (qnew, xnew) can lead to the acceptance one
hop away: If δ(qnew, L(xnew)) ∈ F , then a new solution is
identified immediately.

C. Real-time solution improvement

Since the workspace may be very large, the initial feasible
plan can be sub-optimal and has a large accumulative cost
value. We develop a solution update scheme that continu-
ously improves the solution and steers the robot following
the least-cost path toward the temporal goal.

Every time an accepting path τ is found, the planner sets τ
as the current solution if no solutions have been found so far.
Otherwise, the planner inspects the solutions obtained before
and only updates those solutions that are similar to the new
solution while costing more. The intuition of the procedure
above is that different from traditional path planning whose
goal is a point in cartesian space, a temporal logic goal can
be achieved as long as the corresponding run is accepting.
An example is “go to site A or site B,” where distinct paths
driving the robot to either site A or site B can both fulfill
the given task. To exclude duplicated solutions, the planner
compares two solutions on their event-based traces as well
as path topology. We use the concept of homotopy class
[24] to decide whether paths are similar in topology, i.e.,



whether they are with the same start and end positions and
can be deformed into each other without crossing obstacles
or labeled regions. The set of paths that satisfies the temporal
goal and are distinct from each other are stored in a solution
library. The best solution is elected from all path candidates
with the least cost.

D. Robot state update

In existing works on anytime path planning [18], [25],
the planning only focuses on the pending portion of the
current plan while the nodes traveled are not useful anymore.
However, considering the potential incidents in the real
world, the robot may have to turn around and travel through
the visited nodes in order to satisfy temporal logic tasks.
During the execution of the plan, we keep the traveled edges
alive by moving the root along with the robot motion. Instead
of setting the next un-visited node as root like in [18], [20],
we transform the classical tree into a dual-root tree during
the robot movement. Fig. 2 uses the task “go to site A or site
B” as an illustration. Denoting the executed edge connecting
the last root Rold and the current motion target stgtOld as
εold =< Rold, stgtOld >, we reverse this edge once the robot
arrives at stgtOld. Then stgtOld is set as the new root of the
tree Rnew. We further denote the current edge to execute
as εnew =< Rnew, stgtNew >, the subtree stemming from
stgtNew as Tfuture, and the part T \Tfuture\εnew as Tpast.
Tpast will not be visited as the execution progresses on the
current solution unless the replanning is triggered. A rewire
process starts from Rnew at every timestamp to minimize
the cost-to-come values of each node in Tpast. Additionally,
stgtNew is treated as an auxiliary root Raux, and the cost-to-
come value of every node in Tfuture is calculated by retracing
to Raux. This is an essential step to prevent nodes in Tfuture
be rewired to Tpast during execution.

A
B

Fig. 2: Illustration of a dual-root tree during execution. The
motion tree T is composed by Tpast ∪ εnew ∪ Tfuture. Both
Rnew and Raux have zero cost-to-come values.

One can notice that when the edge εold is reverted, the
transition relation Rold|Q = δ (Rnew|Q, Rnew|X) might not
hold. Hence Algorithm 1 is applied on Tpast in a depth-first-
search manner. At the beginning of the propagation, Rnew

is the parent node, and Rold is the child node. In Line 3,
the function CheckATran(·) checks if the transition relation
from qm to qn is valid given the label of the parent node.
If the transition is broken, routines described in Line 5-
10 will be applied. The algorithm searches the set of the
successor states of qm and finds the state qk, which can be

evolved from qm by taking the word L(xi). The automata
state of the corresponding node is therefore updated. This
process ensures that all nodes in Tpast are reachable in future
replanning. Recall the sampling process in Section IV-B, sc
records a node set Srcd

c with all possible combinations of
xc and q ∈ Q\B. If there is no node in Srcd

c with the same
hybrid state as sc (Line 7), the algorithm adds a copy of sc
to the isolated vertices set Viso (Line 8) before modifying sc.

Algorithm 1: PropagateState
Input: Parent node sp, child node sc, DFA Aϕ, isolated vertices

set Viso
Output: Successfulness of the propagation

1 sp = (qm, xi)
2 sc = (qn, xj)
3 if CheckATran(qm, L(xi), qn,Aϕ) then
4 return >
5 for qk ∈

{
qv | ∃λ ∈ 2AP , qv = δ (qm, λ)

}
do

6 if CheckATran(qm, L(xi), qk,Aϕ) then
7 if |SameStateNodes(sc)| = 0 then
8 AddNodeCopy(sc,Viso)
9 sc ← (qk, xj)

10 return >

11 return ⊥

However, after line 9 in Algorithm 1 modifies the automata
state of sc, duplication may occur between sc and the
node with the same hybrid states in Srcd

c . Similar problems
occur after the propagation in dealing with propositional
updates, as to be mentioned in Section IV-E. It will incur
problems in extending and rewiring nodes as several nodes
with identical hybrid states and costs exist simultaneously.
Besides, duplicated nodes make it difficult to maintain tree
sparsity. To prevent the tree from becoming entangled and
excessively dense, we require an algorithm to visit all the
duplicated nodes and only keep the one that has the least
cost-to-come value.

We propose Algorithm 2 to deduplicate the nodes in linear
time. When handling robot state updates, the algorithm is
recursively applied on the Tpast in a preorder fashion and
eliminates one duplicated node at a time. In Line 1, denoting
the visiting node as sm, all the nodes with the same hybrid
state are identified as Sdup given the node set Srcd

m = {s ∈
G | s|X = sm|X}. In Line 2-Line 4, the duplicated and
isolated states VisoDup are detected and be removed from the
isolated vertices set Viso as well as duplicated states set Sdup

permanently. In Line 7, one element sd in the set Sdup is
selected, while the rest of the nodes are to be processed later.
If the pair of states sd, sm is directly connected, i.e., are in
parent-child relationship, the child node is marked as sworse.
Otherwise, the algorithm evaluates the cost of the two nodes
sm, sd and marks the node that costs more as sworse. After
that, in Line 16-Line 20, the inward and outward edges of
sworse is re-connected to the better node sbetter, and sworse

node is safely deleted. The offspring of the sbetter is visited
recursively by Algorithm 2 until every node in the subtree
is marked as visited.

As a consequence of Algorithm 1 and Algorithm 2 to-



Algorithm 2: MergeNode
Input: Node sm, tree vertices set VT , tree edge set ET , isolated

vertices set Viso
Output: Successfulness of the merging

1 Sdup ← SameStateNodes(sm)
2 VisoDup ← Sdup ∩ Viso
3 Viso ← Viso\{VisoDup}
4 Sdup ← Sdup\{VisoDup}
5 if |Sdup| = 0 then
6 return >
7 sd ← Sdup.pop()
8 if sd = Parent(sm) ∨ Cost(sd) ≤ Cost(sm) then
9 sbetter ← sd

10 sworse ← sm

11 else
12 sbetter ← sm
13 sworse ← sd

14 sbetter.visited← >
15 sworse.visited← >
16 for schild ∈ Children(sworse) do
17 ET ← ET \{< sworse, schild >}
18 ET ← ET ∪ {< sbetter, schild >}
19 ET ← ET \{< Parent(sworse), sworse >}
20 VT ← VT \{sworse}
21 return >

gether, all nodes in T are updated with future-reachable
automata states, and the cost-to-come value of each node
is less than or equal to the original value.

E. Environment state update

In real-world applications, prior knowledge may not be
precise, making the acceptance condition τ |= ϕ invalid.
To tackle this problem, we enable the robot to sense the
environment and receive observations from other agents. We
consider a mobile robot moving in a scenario where the
properties of regions can change, and unexpected obstacles
may block the path. The robot continuously analyzes sensor
data and extracts knowledge in two forms: κreg = (π, L(π))
or κobs = (υ, xυ), where π ∈ Π stands for the region
covered by the sensor, L(π) is the set of propositions satisfied
in ∀x ∈ π, υ is an unexpected obstacle instance, and xυ is
the position of υ. If knowledge stored in memory is found
inconsistent with the newly obtained knowledge, the robot
will update the knowledge base and perform plan revision.

Every time κreg is obtained, labels of the region π are
updated. The planner first calls Algorithm 1 to correct the
states of nodes in the whole tree T given the updated
workspace, and then uses Algorithm 2 to resolve state
duplication. Afterward, each possible solution is examined
to see if its trace satisfies ϕ. If there still exist feasible
solutions, the solution with the least accumulative cost is
set as the current plan. Otherwise, if the knowledge change
is critical and all previous solutions are infeasible, the robot
will come to a full stop at xstop. The new root is set as
sstop = (qstop, xstop), where qstop ∈ Q is calculated by
the previous root. The robot waits at xstop until the planner
obtains a new solution as described in Section IV-B.

Given knowledge κobs, if the obstacle υ is not observed
before, or the traveled distance ∆xυ exceeds a threshold, the

planner updates Xfree and triggers the replanning procedure.
The planner first blocks the edges that cross υ by setting
their weights of them as positive infinity. Afterward, like the
situation in dealing with κreg, the robot will carry out the best
executable solution or await a feasible solution generated by
the sampling-based search.

After coping with environmental state change, the search
tree is corrected so that every edge in T satisfies its transition
relation in Aϕ. If no solutions have been found so far,
the planning is converted to an LTL-constrained sampling-
based tree search described in the work [15], which has been
proved to be probabilistically complete. Hence by continually
growing T during replanning, a solution that satisfies ϕ is
bound to be found if one exists in the domain X . Therefore,
we can conclude that Problem 3.1 is solved.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

For comparison and illustration purposes, we present case
studies on fire extinguishing tasks. The target scenario con-
tains three regions of interest, three known obstacles, and one
unknown obstacle, as can be seen in Fig. 4(a) and Fig. 4(c).
Specifically, l1 and l3 are labeled as grasslands and l2 is
a pond in the robot’s prior knowledge, and the robot can
validate a label or detect an obstacle within its sensing area
(3m×3m). To ensure that the sensing distance is enough for
braking, we set the maximum velocity of the robot and the
obstacle as 0.5 m/s and 0.2 m/s, respectively.

A. Comparative results in simulation
We conduct simulations in three workspaces with different

types of uncertainties. XA is a workspace where the initial
knowledge of either one of grassland regions is inaccurate.
XB is a workspace where one obstacle moves from one side
of the workspace to the other side. XC combines the property
uncertainty and occupancy uncertainty of XA and XB . A
vehicle is given a task formula ϕ1 = ♦(pond∧♦grassland),
which instructs the vehicle to fetch water from the pond and
then put out the fire in the grasslands. We select methods
from Guo et al. [12] and Luo et al. [15] to compare the
replanning speed and solution quality, and all simulations are
conducted in Python with an Intel i7 CPU. The abstraction-
dependent approach [12] is used to compare the performance
only in XA since the planner cannot deal with dynamic
behaviors in XB and XC . The abstraction-free approach
[15] is implemented by us in a reactive way that, once
the current path is found invalid, the vehicle saves the
execution progress and builds the search tree again. Results
can be viewed in Table I, where each entry is obtained by
averaging 30 simulation rounds with randomized initial robot
configurations. Our planner outperformed Luo et al. [15] by
adapting to uncertainties faster and planning shorter paths
to satisfy temporal goals. Furthermore, our approach has
broader applicability than Guo et al. [12].

B. System integration and real-world experiment
The proposed planner produces a path τ = s0s1 . . . sn

satisfying the task formula. To drive the robot ahead follow-
ing the piece-wise linear path τ |X , a trajectory generator is



TABLE I: Performance of different planners

Metrics Methods XA XB XC

Total Completion Time (s)
Guo et al. 23.15 — —
Luo et al. 30.19 34.78 46.94

Ours 22.90 30.14 29.56

Average Replanning Time (s)
Guo et al. 0.44 — —
Luo et al. 5.87 6.82 6.92

Ours 0.39 1.63 1.24

Total Travel Distance (m)
Guo et al. 10.0 — —
Luo et al. 8.49 8.54 9.83

Ours 8.01 7.03 9.26

required to track the path without deviating from the task
formula. Note the trajectory generator is system-dependent
due to different robot dynamics. Following the assumption of
robot dynamics in Section III, we utilize a motion-primitive-
based local motion planner [26], which can be deployed
on both multicopter and differential-drive vehicles. In detail,
given start configuration xi and end configuration xi+1, the
motion planner solves a boundary value problem from xi
to xi+1 and generates a motion primitive ζ(xi, ui, ti) in a
model predictive control manner. In the meantime, a volu-
metric mapper [27] builds a Euclidean distance transform
(EDT) map for the motion planner by combining data from
prior knowledge and online observation.

In the real-world experiment, we use a multicopter to
follow the nominal path in real time. A motion capture
system provides position estimation for the multicopter as
well as the observation of the obstacle if within the sensing
range. The multicopter is asked to accomplish the task: “
Don’t fly over the grasslands until you’ve got water from
the pond, and eventually put out the fire in a grassland
without colliding with obstacles.” The formula is written as
ϕ2 = (¬grassland U pond)∧♦grassland, and is translated
into a DFA, as in Fig. 3.

4

true

1

grassland & pond

~grassland & ~pond

2pond & ~grassland

3

grassland & ~pond

grassland~grassland

true

Fig. 3: The DFA of task formula ϕ2

In DFA preprocess (Section IV-A), the algorithm identi-
fies that the automata state 3 belongs to B. The resulting
temporally forbidden zones Πfbd together with unexpected
obstacles are encapsulated into pointcloud and broadcast to
ROS. The volumetric mapper clusters the pointcloud and
yields an EDT map pushing the robot away from Πfbd and
obstacles. With the EDT map updated in every planning
iteration, the motion planner generates a series of safety-
guaranteed motion primitives. All computations are running
at 10 Hz on an onboard computer, Nvidia Xavier NX.

One typical execution can be viewed in Fig. 4. The multi-
copter takes off at the center of the map and carries out the

(a) (b)

(c) (d)

Fig. 4: An indoor experiment of the task ϕ2. (a) The
multicopter (in the red dashed circle) identifies the labeling
error in l3 (highlighted in yellow). (b) The old path (dark
red) is no longer valid, and a new path (green) takes its
place almost instantly. The background is colored according
to the distance value in EDT. (c) The multicopter detects
an unexcepted obstacle (in the red dashed rectangle) which
moves back and forth. (d) A new accepting path is calculated
without intersecting the moving obstacle.

initial plan l2 → l3 → l2. In Fig. 4(a), after getting water, the
multicopter flies towards l3 and receives knowledge κreg =
(l3,∅), indicating that the property of region l3 is incorrect
in Xinit. Benefiting from the solution library maintained, the
multicopter rapidly adopts an alternative solution, turning
around and heading to l1 (Fig. 4(b)). In Fig. 4(c), the
multicopter gets knowledge κobs = (υ1, (1.36, 0.98, 1.02))
during flight, and potential collision is detected. Thanks to
the sample reusing strategy, the multicopter quickly alters
its course and flies around the obstacle to l3 (Fig. 4(d)). The
multicopter eventually completes the task by reaching l3 and
putting out the fire. Our planner is shown to successfully
accommodate property and occupancy uncertainties through
online plan revision and refinement mechanisms. The full
video can be found at https://youtu.be/UH-4KcCUixw.

VI. CONCLUSION

In this paper, we have proposed a high-level path planner
for mobile robots to complete a temporal logic task regard-
less of a limited understanding of the workspace. The planner
quickly obtains a feasible plan and improves it over time dur-
ing execution. We develop two algorithms for node reusing
and deduplication to overcome issues that may impair the
correctness and effectiveness of our plan-revising mechanism
when responding to incidents. Results in simulation and real-
world missions show that the proposed planner can facilitate
online robot tasking in partially-unknown environments. Fu-
ture work includes developing a user-friendly interface and
dedicated motion planning algorithms.
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