
Learning Generalizable Pivoting Skills

Xiang Zhang1, Siddarth Jain2, Baichuan Huang3, Masayoshi Tomizuka1, and Diego Romeres2

Abstract— The skill of pivoting an object with a robotic
system is challenging for the external forces that act on the
system, mainly given by contact interaction. The complexity
increases when the same skills are required to generalize
across different objects. This paper proposes a framework for
learning robust and generalizable pivoting skills, which consists
of three steps. First, we learn a pivoting policy on an “unitary”
object using Reinforcement Learning (RL). Then, we obtain
the object’s feature space by supervised learning to encode
the kinematic properties of arbitrary objects. Finally, to adapt
the unitary policy to multiple objects, we learn data-driven
projections based on the object features to adjust the state and
action space of the new pivoting task. The proposed approach
is entirely trained in simulation. It requires only one depth
image of the object and can zero-shot transfer to real-world
objects. We demonstrate robustness to sim-to-real transfer and
generalization to multiple objects.

I. INTRODUCTION

Table-top manipulation skills like pivoting are required
to reorient objects often to create pre-conditions for other
manipulation skills. For example, a book on the table may
be too large for a robot to grasp, and a peg may lay
in the wrong orientation for an insertion task. However,
reorienting the book and the peg with a pivoting motion
creates the conditions for a successful grasp. Fig. 1(a) depicts
the pivoting setup when the object is between two external
surfaces, and the robot needs to exploit the interaction with
these surfaces to pivot the object. A significant difficulty for
pivoting is that the robot must maintain the object-gripper
and object-surfaces contacts. Furthermore, multiple objects’
different kinematic and inertial properties entail additional
complexity like instability, slipping, and rolling properties.

This paper proposes a framework for learning a general-
izable robotic skill of pivoting real-world objects from only
simulation experience. Specifically, we would like to adapt
the pivoting policy on one object to multi-objects based on
the object depth image. As shown in Fig 1(b), the proposed
framework consists of three parts. First, a pivoting policy is
learned using RL to pivot one specific object, which we call
the “unitary” object. Then, to extract low-dimensional object
information from the high-dimensional object depth images,
we employed supervised learning on a dataset collected
in simulation to learn a feature space by predicting the
object class and size. Finally, object-specific state and action
projections are learned to adapt the unitary policy to a

1Mechanical Systems Control Lab, UC Berkeley, Berkeley, CA, USA.
{xiang zhang 98, tomizuka}@berkeley.edu

2Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA,
USA {sjain,romeres@merl}.com

3Department of Computer Science, Rutgers University, Piscataway, NJ,
USA. baichuan.huang@rutgers.edu

Policy Learning for 


Single Object

Object Feature Learning

State/Action Projections

Learning for Multi-Objects

Policy Learning in Simulation Zero-Shot Transfer in Real-World

(a) (b)

Fig. 1: a) Pivoting task setup. b) policy learning in simulation
and zero-shot transfer to real-world

novel object by adjusting the state and action space. These
projects are linear transformations obtained from the object
features and learned with a policy-gradient based approach.
Intuitively, the state projections adjust the states of the new
object to make it similar to the unitary object. Accordingly
to the new object, the action projections alter policy outputs
to improve policy performance. The proposed approach is
trained entirely in the simulation and zero-shot transferred
to a series of real-world pivoting tasks.

In summary, our work makes following contributions:
• It introduces an RL framework to learn generalizable

pivoting robotic skills of real-world objects with training
only in simulation.

• It proposes a policy-gradient based approach to learning
state/action transformations to achieve generalization to
unseen objects.

• It provides an extensive evaluation of our proposed
approach in both simulation and real-world experiments
with promising success rates.

II. RELATED WORKS

A. Robot Contact-Rich Manipulation

Approaches for robot contact-rich manipulation can be
mainly categorized into two classes: model-based methods
and model-free methods. Model-based approaches develop
open-loop and feedback control strategies by modeling con-
tact dynamics. However, the contact dynamics are hybrid be-
cause of different contact modes during contact. Researchers
either model the hybrid contact dynamics as complementarity
constraints [1]–[3] or directly formulates the mixed-integer
programming problem [4] to obtain the optimal control law.
Recently, some approaches [5], [6] utilized the hierarchical
framework to solve the discrete contact modes and robot
motions separately to reduce the calculation time. However,
model-based approaches require strong assumptions in the
initial conditions and contact pairs as well as system identi-
fication to obtain the physical parameters of the objects.

ar
X

iv
:2

30
5.

02
55

4v
1 

 [
cs

.R
O

] 
 4

 M
ay

 2
02

3



Unlike model-based approaches, model-free approaches
skip the complex contact dynamics modeling and directly
learn a policy to achieve the manipulation task. Recently,
reinforcement learning (RL) methods have been introduced
to learn manipulation skills by optimizing a designed reward.
Examples can be found in robot assembly tasks [7]–[9], bi-
manual manipulation [10], and tabletop manipulation [11].
Specifically, authors of [12] investigated pivoting tasks using
RL. However, their pivoting policy is learned on one object
during training and can only apply to similar-sized objects,
limiting their application.

B. Learning Generalizable Robot Skills

Generalization is a significant concern for robot skill
learning because we are interested in robot skills that are
robust to environments and task condition changes. Indeed,
different objects have different geometric shapes, physical
properties, and contact dynamics. Each of these differences
would change how the robot interacts with the object and
make the generalization of skills difficult. Researchers have
proposed approaches to learn robust skills that work for
different task settings or can adapt quickly to new tasks.
Domain randomization [13] can be applied for robustness
to force the learned policy to extract useful information
from the state. Furthermore, Model Agnostic Meta Learning
(MAML) [14] and online model learning [15] can adapt the
dynamics model or policy to new tasks within a few trials.

Another approach is to encode the task information into
the policy. Thus, the robot actions generated by the learned
policy are conditioned on the tasks. This way, the robot
adjusts skills according to different tasks to achieve gen-
eralization. Commonly, the task information can be inferred
from either robot trajectories, images, or one-hot encoding.
This approach has also proven successful on assembly [8],
pick and place [16] and legged-locomotion [17], [18].

Researchers also consider skill generalization as a domain
adaptation problem. For different tasks, the state and action
space may change according to the task settings (e.g., robot
type, object shape, goal states, etc.), and the analysis is
needed to transfer a learned policy to other tasks. One
approach is finding a shared latent space between tasks
invariant to task settings. Once the skill is learned in the
invariant latent space, it can be transferred to different task
settings using task-specific mappings [19], [20]. Other meth-
ods applied direct mapping on the state or action space to
transfer the skill in the source domain to the test domain [21],
[22]. However, for previous approaches, the state or action
space mappings are either obtained manually by analyzing
the difference between spaces or obtained by the point cloud
registration algorithm. Therefore, prior human knowledge
is utilized to find out the correct mapping. Our proposed
method automatically discovers the underlying mappings on
state or action space by maximizing the trajectory return.

III. PROBLEM FORMULATION

In this work, we propose a framework to learn the robotic
skill of pivoting real-world objects in a structured environ-

ment with zero-shot transfer learning from simulation to
the real world. The main focus is generalizing the learned
pivoting skill to arbitrary unseen objects.

Consider an environment as represented in Fig 1(a), where
a rigid object o is at rest on a flat surface like a table, and
it is in the proximity of a second surface, called wall, per-
pendicular to the table. The object o can be manipulated by
any end-effector of a robotic manipulator that can establish
a patch contact with the object, like the fingers of a gripper.
The goal is to learn a policy, π(·|s) where s is the system
state, that can first bring the gripper in contact with o, then
establish contacts between o and the wall, and finally utilize
the environmental contacts gripper-object, object-table and
object-wall to pivot the object to a stand-up position.

Notice that we do not fix the initial condition of any
element in the environment. In particular, we do not require
the wall-object and the gripper-object contacts to preexist,
and we do not assume to know the exact wall and object
position and orientation.

The questions we try to answer in this scenario are:
1) How do we learn a zero-shot pivoting policy that

transfers from simulation to the real world?
2) Can the same policy generalize to different objects?

IV. PROPOSED APPROACH

In this section, we introduce our proposed approach to
solve the problem described in Section III. The basic idea
is that the pivoting operation of different objects might be
computed as a transformation of a policy learned on one
primary object rather than be learned from scratch every
time. We decompose the approach into three main steps.
First, a pivoting policy is learned in simulation for an
arbitrary object, denominated the “Unitary” object. Second,
a latent space of object features is learned to represent the
shape of objects based on synthetic depth images generated
in simulation. Finally, two neural networks are trained to
adapt the unitary policy to a novel object by adjusting the
state and action space. The overall framework is shown in
Fig 2, and the steps are detailed in the following section.

A. Reinforcement Learning for Pivoting the Unitary Object

This section describes the RL framework to learn the
policy to pivot the unitary object. A RL framework is
mathematically defined by an MDP := {S,A,R, T, γ}
which is a tuple where S is a set of states, A is a set of
actions, R is a reward function that assigns a real value to
each state/action pair, and T is the state-transition function
and γ is the discount factor.
The simulation environment. The unitary pivoting policy
πuθ (a|s) parameterized by θ is learned in a Mujoco [23] sim-
ulation environment, as shown in Fig. 3(a). The simulation
includes the robot gripper and the unitary object, which is a
9 × 9 × 3 cm3 box. The dimensions are arbitrarily chosen,
and they don’t affect the algorithm. Moreover, a rigid wall
is placed at what we consider the world frame origin to act
as an external surface.
The details to train πuθ (a|s) are as follows:



Resnet-18 Sampling Linear

Layer

Resnet18

State Projection Net

Unitary

Policy

Action Projection Net

Overall Policy

Unitary

Policy

Multi-Objects

Unitary Object 

Learnable

Network

Fixed

Network

Variable

(a)

(c)

(b)

Fig. 2: Three steps of pivoting policy learning in simulation: a) learning pivoting policy on the unitary object. b) object
feature learning by predicting object class and size c) state/action projection nets learning on multi-objects pivoting

XY

Z

(a) (b)

Fig. 3: Simulation in Mujoco: a) training on the unitary
object, b) four classes of objects (box, circle, cylinder, peg)

The state space is defined by three components: object
pose so, gripper pose sg , and the external forces measured
by the F/T sensor at the wrist of the robotic manipulator,
right above the gripper, sF . The object and gripper pose
include the cartesian position (X, Y, Z axes) and orientation
in quaternion, so, sg ∈ R7 while sF contains the forces
measured along the X, Y, and Z axes, sF ∈ R3. Thus, the
state s := [so, sg, sF ] ∈ R17. The maximum forces applied
by the robot in the simulation are ±10N in each axes, and
sF is normalized to ±1N .
The action space is defined by the linear velocity of the
robot gripper in X, Y, and Z axes as well as the angular
velocity in the pitch direction, a = [ax, ay, az, aρ] ∈ R4. The
actions are limited by a moving threshold set to 25 mm. If
the gripper moves more than this limit during training, the
robot stops and proceeds to the next action.
The reward function is the distance between the current
object rotation matrix R and the goal rotation matrix Rgoal

which is defined as:

r =
π

2
− d, with d = arccos

(
0.5(Tr(RgoalRT )− 1)

)
(1)

where Tr(·) indicates the trace of a matrix. π
2 is added

to the reward to make the initial reward close to 0. This
reward encourages the robot to pivot the object to the goal
orientation Rgoal, which is set as the orientation when the
object is perpendicular to the ground.
Domain randomization is employed to improve the robust-
ness of the pivoting policy with three kinds of noises:

1) Uncertainty of the wall position. The origin of the world
frame is set at the wall, and we assume the exact position of
the wall is unknown. Since the positions of the object and

gripper are measured w.r.t the wall, we model this uncertainty
by adding a zero-mean Gaussian noise with an std of 2 cm
to the object and the gripper positions.

2) Force measurement noise. To model the noise of the F/T
sensor measurements, a zero-mean Gaussian noise with an
std of 0.5 N is added to the measured force in the simulation.

3) Initial pose distribution. During the training, we ran-
domized the initial pose of the object. Specifically, the object
is placed with an offset to the wall and is oriented by a
random angle. The initial offset ∆x is sampled uniformly
from range [0, 5 cm]. The initial rotation angle limit is
defined as ± arctan(∆x/4.5), and the initial rotation angle
is sampled from this range to avoid an unfeasible initial pose.

B. Representation Learning for Object Features

The objective is to adapt the pivoting unitary policy to
work with multiple objects. The kinematic information of
the novel object is required to achieve this goal. We rely on
representation learning to learn a low-dimensional feature
space of the object based on top-down depth images of the
objects. The RGB textures are superfluous for this task, and
we do not rely on physical measurements because this would
require an extra engineering step for the user.

We first build a dataset of depth images in simulation
to learn such a feature space. As depicted in Fig 3(b),
we generated the dataset from four object classes cobj :
rectangular box, circle, cylinder, and peg. For each class, 100
randomly sized objects are generated. The generated dataset
is composed as D := {Ii, cobj,i, sobj,i}400i where Ii are the
depth images of each object and sobj,i = [lx, ly, lz] are the
sizes, recorded as labels. Then, D is augmented ten times to
4000 data points by applying random translations, rotations,
and Gaussian noise to each original data point.

Fig 2(b) shows the proposed network F (f |I) to learn
the object features f based on the object depth image
I. First, the standard Resnet18 architecture [24] processes
the object depth image I and outputs the mean, and the
standard deviation of the object features fmean and fstd.
Second, similarly to the variational auto-encoder [25], we
use the reparametrization trick to sample the object feature
f . Finally, another linear layer outputs the predicted object



Fig. 4: Snapshots of: a) pivoting the unitary object in simu-
lation b) pivoting a peg in real-world c) recovery behavior.

size ŝobj and logits for the object class ĉobj . The loss function
to train the network is designed as follows:

L = Lshape + Lclass + βLKL = ‖sobj − ŝobj‖2

+ LCE(cobj , ĉobj) + βDKL(N(fmean, fstd), N(0, 1))

where LCE is the cross entropy loss and β is a weight on
the KL divergence loss. The first two terms of the loss are
for supervised learning to predict the object size and class.
The KL divergence loss regulates the learned feature space
and mitigates over-fitting as mentioned in [25].

C. State and Action Projection Nets

Standard domain randomization techniques such as the
one used in Section IV-A do not generalize to objects
with significantly different kinematic properties; reaching
this level of generalization is one of our main goals. The
same MDP describes different objects, but the unitary object
would get as input unseen states and output actions unsuited
for multiple objects. However, as shown in Fig 5(b), the
trajectories of different objects during pivoting are similar
in shape and possibly can be described by trivial transfor-
mations in the right space.

Inspired by this intuition, we propose learning object-
based transformations to adjust the state and action spaces
and generalize the unitary policy to novel objects instead of
learning from scratch. Specifically, we choose to use linear
transformations for simplicity and call these transformations
state and action projection nets as depicted in Fig 2(c). The
State Projection Net: Ts = ρφ(f) is parameterized by φ,
and takes as input the feature of the object f to output a
diagonal matrix Ts of state dimensions. The output is used
as a linear operator to project the object state, s, to a space
similar to the unitary state s̄u: s̄u = Tss. The projected state
s̄u is fed into the unitary policy āu = πuθ (āu|s̄u) to generate
the pivoting action. However, āu needs to be transformed to
work into the original object. For this reason, we train the
Action Transformation Net: Ta = ρψ(f, s̄u) , that given f, su
outputs a diagonal matrix Ta of action dimensions. That is
used to compute the pivoting actions: a = Taāu.

The overall action inference process can be summarized
as:

a = Taāu = Taπ
u
θ (āu|s̄u) = Taπ

u
θ (āu|Tss) (2)

Thus, the overall generalizable pivoting policy consists
of: the unitary policy, the object feature extraction net-
work, and the state/action projection nets. The former two
are already trained, and the weights are frozen. Only the
state/action projection nets need to be trained to adapt the
pivoting policy to different objects. In particular, we use a
policy gradient approach to learn the state/action projection
nets to maximize the trajectory return of pivoting different
objects. Suppose we collected a pivoting trajectory τ =
(s1, a1, Ts, Ta, f, r1, . . . , sT , aT , Ts, Ta, f, rT ) of an object
with feature f , the advantage functions of the state/action
transformation nets are, respectively:

Âs =
1

T

T∑
i=0

γiri; Âat =

T∑
i=t

γiri (3)

where ri is the reward at time i and γ is the discount factor.
Then a simpler version of PPO [26] update is applied for
both state and action projection nets:

Ls(f, Ts, φ, φold) = (4)

min

(
ρφ(f)

ρφold(f)
, clip

(
ρφ(f)

ρφold(f)
, 1 + εs, 1− εs

))
As

La(f, su, Ta, ψ, ψold) = (5)

min

(
ρψ(f, su)

ρψold(f, su)
, clip

(
ρψ(f, su)

ρψold(f, su)
, 1 + εa, 1− εa

))
Aa

where ρ1(·)
ρ2(·) is the ratio of likelihood of two projections

and εs, εa are clipping factors for update. The weights of the
two projection nets are updated by:

φk+1 = argmax
φ

E
(f,Ts)∼πφk

Ls(f, Ts, φ, φk) (6)

ψk+1 = argmax
ψ

E
(f,su,Ts)∼πψk

La(f, su, Ta, ψ, ψk) (7)

Essentially, we maximize the likelihood of state or action
transformations with higher reward-to-go. The details of our
proposed approach are summarised in Algorithm 1.

Algorithm 1: Learning state and action projections
Initialize state and action projection nets
ρφ(f), ρψ(f, su) with random weights φ, ψ

Initialize the unitary policy πuθ (āu|s̄u) and feature
extraction network F (f |I) with pretrained weights.

for i = 0, 1, 2, . . . until convergence do
for iteration k = 1 to K do

Randomly sample an object ok with image Ik
Infer the object feature fk ∼ F (f |Ik)
Infer actions using (2) to collect a trajectory

end
Calculate advantages for state and action
transformations using (3)

for iteration m = 1 to M do
Update State/Action Projection Nets (6),(7)

end
end



(a) (b)

(c)

Fig. 5: a) t-SNE visualization of learned object features, color
difference within the same class indicates different object
size, b) pivoting trajectories before and after projection of
different objects, c) learning curves for policy adaption

V. EXPERIMENTS

A. Simulation: Training and Validation Experiments

RL for Pivoting Unitary Object: The pivoting policy
for the unitary object, πuθ (a|s), is trained on MDP described
in Section IV-A with the SAC [27] algorithm using the
implementation from RLkit [28]. The policy and Q-function
networks are parameterized as two-layer Relu networks with
128 and 256 units, respectively. The batch size is 1024, and
learning rates are 5e−3 for the Q-function and 3e−4 for the
policy. Fig 4(a) depicts a sequence of snapshots of pivoting
the unitary object in simulation after training the policy. The
gripper first pushes the object towards the wall to establish
contact between the object and the wall. Then, the robot
moves upwards while pushing the object against the wall
to start the pivoting. After the object rotates over a certain
angle, we notice that the robot applies downward forces to
maintain contact with the object, which is a robust way to
stabilize the object and prevent the object from dropping off.
Finally, the object is flipped up and standing on the table.

Representation Learning of Object Features: The en-
coding neural network is trained in a supervised fashion
using the dataset D described in Section IV-B, and the
computed object feature space is evaluated using the t-
SNE method [29]. As shown in Fig 5(a), object features
are clustered into four groups in the learned feature space,
representing four object classes. In addition, within each
class, this feature space can distinguish the size information
of different objects, which shows the learned feature space
can be utilized for downstream tasks.

State/Action Projection Nets Training: Once the unitary
policy and the object features are learned, the State/Action
Projection Nets are trained in the same simulation envi-
ronment (see Section IV) by selecting 40 randomly-sized
objects, 10 objects for each class cobj . The two projection
nets are two-layer Relu networks with 16 and 35 units,
respectively, and batches of 200 trajectories are selected to

update networks for each epoch of the algorithm. Since the
elements of quaternions in the state are coupled and will
be distorted by the transformation, we only apply the same
projection to both the object and gripper positions for the
state projection net, that is Ts ∈ R3×3 and Ta ∈ R4×4

remains unchanged.
Multi-objects generalization performances: The pro-

posed approach is evaluated in simulation and compared
against three ablation studies and two baselines:

1) NN projections: train two neural networks s̄u =
ρs(f, s), a = ρa(f, s̄u) to replace the linear transfor-
mations in the state/action projection nets;

2) w/o state: our approach without state projection net;
3) w/o action: our approach without action projection net;
4) Finetune: the unitary policy is fine tuned using PPO

without state and action projection nets;
5) Pearl: train one s.o.t.a. Meta-RL approach, Pearl [18].

Approaches 1) to 4) are trained following Alg. 1 but updating
different networks. PEARL is learned from scratch.

As depicted in Fig 5(c), the proposed approach and the
ablation w/o action outperform all the other approaches. The
NN projections does not adapt the unitary policy to multi-
objects, possibly because it cannot use the structure of the
linear transformation and might require much more data to
learn the task. We also notice that the state projection net
helps the most for adaption and converges faster than the
proposed method. The reason is that the proposed method’s
action projection is not perfect initially and slows down
the training. However, as shown in Table I, the proposed
method achieves a higher success rate than all the baselines,
which indicates the action projection helps to adjust policy
according to the object feature. In our experiments, Pearl can
approach the objects but cannot learn to pivot for multiple
objects. We conclude that the objects are too different, mak-
ing it difficult for Pearl to learn a policy for all objects from
scratch. Since the objects in the simulation are randomly
generated, some objects have small surfaces to stand on
compared to their sizes, which makes them challenging to
pivot, and our approach fails.

Ours w/o action w/o state Finetune NN Pearl
30/40 27/40 19/40 15/40 0/40 0/40

TABLE I: Average success rates on 40 objects in the training
environment over 3 random runs

We further analyze the effect of the state projection net by
plotting the pivoting trajectories of different objects before
and after the projection in the two most representative axis
X,Z. As depicted in Fig 5(b), even though the original
trajectories are very diverse (solid lines), the projection net
brings the pivoting trajectories together, enabling the unitary
policy to adapt to new objects.

B. Real-World Experiments

Real Robot Setup and Vision Feedback: We use a
6DoF Mitsubishi Assista RV-5AS-D collaborative robot arm
with a WSG32 gripper as shown in Fig. 7(a). The robot is



Fig. 6: Test objects and success rates for the two vision systems

X

Y

Z

Wall

F/T
Sensor

Object

Gripper

(a) (b)

Fig. 7: a) Real-world setup. b) Objects in the real world.

controlled in impedance control mode with stiffness set to 12
N/mm. The external forces are measured by wrist mounted
F/T sensor. For state estimation, we compare two systems
to obtain the object pose from an RGB-D camera (Intel
Realsense D435). The first system uses April-tags [30] on
the objects for tracking. This system provides high-accuracy
state information but needs the tag’s placement. The second
system comprises vision-based 6D pose estimation consisting
of a mask and deep feature extraction [31], [32] pipeline
with pose tracking. To accomplish fast tracking of novel
objects in motion using RGB-D images, we introduce several
augmentations to enhance the pose tracking [33] based on
the BundleTrack [34]. The method does not require CAD
models, and because of sensor noise, the state estimation can
be noisier. We test pivoting manipulation with both systems
to evaluate the robustness of our proposed approach.

Object Dataset: Fig 7(b) shows the objects we used
for the real-world experiments. We considered nine objects
which can be categorized into four object classes in the
simulation to test the sim-to-real transfer performance of the
proposed approach. Furthermore, we test the generalizability
on two irregularly shaped objects (sanitizer and mustard
bottle). Please note that none of these objects was seen during
the simulation and the same hold for depth images of the real
objects taken by the camera and used to infer object features.

Sim-to-Real Transfer and Generalization of Pivoting:
The proposed approach is evaluated with zero-shot transfer
learning over all objects. An experiment is deemed successful
when an object reaches a stable stand-up position, and the
success rates are shown in Fig 6. We start the analysis
considering the April-Tag system to estimate the state. Even
though the shapes and sizes of the objects are very dif-
ferent, i.e., lx = [6, 18.5], ly = [1, 15], lz = [1, 5][cm].
our approach achieves 100% success rate on almost all the
objects, demonstrating direct sim-to-real transfer capability
and generalization to multiple objects. The failure cases
happen all in objects with a cylindrical base, i.e., Cylinder 1,2
and Peg 2, because their shape is prone to a rolling behaviour
and have a smaller base to stand on. However, the policy is

robust to these difficulties in most of the cases and failed only
once. Successful pivoting experiments are visualized with a
sequence of snapshots in Fig 4(b)-(c). Noticeably, the learned
policy can recover after failure has shown in Fig 4(c). The
first pivoting attempt fails probably because the box is the
heaviest object we have (450[g] while the other objects range
between [0, 200][g]), and this might enhance a slipping effect
in the contact when pushing. However, the learned policy
moves behind the object and applies a successful pivoting
the second time, showing compelling robustness properties.

Next, we test the generalization to two out-of-distribution
objects: “sanitizer” and the “mustard bottle”. The shapes
of these two objects are complex, non-convex and with
irregular contact surfaces that are not flat. Moreover, no
similarly shaped object is considered in training. However,
our approach succeeds on these two objects with 100%
success rate and demonstrates generalizability properties.

Finally, we evaluate the performance when using the
vision tracking system that returns more noisy state estima-
tions. As shown in Fig 6, we still achieves 100% success
rates for most objects. The failure cases are due to excessive
noise in the state: in Box 2 because the object has no texture,
in Cylinder 2 because the object is very small, and for the
Mustard bottle the tracking gets lost when close to the goal.

VI. CONCLUSIONS

We propose a framework to learn robotic skills for pivoting
real-world objects. The method is trained only in simulation,
requiring only one depth image of the manipulated object
to transfer to real-world tasks. Moreover, the same policy
generalizes to pivot multiple real-world objects. The main
idea is based on learning a robust RL policy for a “unitary”
object and then learning two projection networks that adapt
the states and actions fed into/outputted by such a policy. An
object feature space is learned from top-down view depth
images of the objects to encode the kinematic properties
such as size and shape. The real-world experiments show
a successful zero-shot transferring for sim2real gap and
generalization to multiple objects.

The proposed approach adapts the state/action space based
on object visual features. However, other characteristics, such
as friction and inertial properties, can also be considered to
generalize our approach to a broader class of tasks using ad-
ditional sensor inputs or system-ID procedures. Furthermore,
we apply linear transformations to the states and actions
to have more structured models and gain data efficiency.
Still, more complex manipulation tasks require learning state-
dependent nonlinear transformations.



REFERENCES

[1] Y. Shirai, D. K. Jha, A. U. Raghunathan, and D. Romeres, “Robust
pivoting: Exploiting frictional stability using bilevel optimization,” in
2022 International Conference on Robotics and Automation (ICRA),
2022, pp. 992–998.

[2] S. Jin, D. Romeres, A. Ragunathan, D. K. Jha, and M. Tomizuka,
“Trajectory optimization for manipulation of deformable objects: As-
sembly of belt drive units,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA), 2021, pp. 10 002–10 008.

[3] A. U. Raghunathan, D. K. Jha, and D. Romeres, “Pyrobocop: Python-
based robotic control & optimization package for manipulation,” in
2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 985–991.

[4] Y. Shirai, D. K. Jha, A. Raghunathan, and D. Romeres, “Chance-
constrained optimization in contact-rich systems for robust manipula-
tion,” arXiv preprint arXiv:2203.02616, 2022.

[5] F. R. Hogan, E. R. Grau, and A. Rodriguez, “Reactive planar manipula-
tion with convex hybrid mpc,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 247–253.

[6] X. Cheng, E. Huang, Y. Hou, and M. T. Mason, “Contact mode guided
motion planning for quasidynamic dexterous manipulation in 3d,” in
2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 2730–2736.

[7] X. Zhang, S. Jin, C. Wang, X. Zhu, and M. Tomizuka, “Learning
insertion primitives with discrete-continuous hybrid action space for
robotic assembly tasks,” in 2022 International Conference on Robotics
and Automation (ICRA). IEEE, 2022, pp. 9881–9887.

[8] T. Z. Zhao, J. Luo, O. Sushkov, R. Pevceviciute, N. Heess, J. Scholz,
S. Schaal, and S. Levine, “Offline meta-reinforcement learning for
industrial insertion,” in 2022 International Conference on Robotics
and Automation (ICRA). IEEE, 2022, pp. 6386–6393.

[9] X. Zhang, L. Sun, Z. Kuang, and M. Tomizuka, “Learning variable
impedance control via inverse reinforcement learning for force-related
tasks,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2225–
2232, 2021.

[10] R. Chitnis, S. Tulsiani, S. Gupta, and A. Gupta, “Efficient bimanual
manipulation using learned task schemas,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp.
1149–1155.

[11] S. Nasiriany, H. Liu, and Y. Zhu, “Augmenting reinforcement learning
with behavior primitives for diverse manipulation tasks,” in 2022
International Conference on Robotics and Automation (ICRA). IEEE,
2022, pp. 7477–7484.

[12] W. Zhou and D. Held, “Learning to grasp the ungraspable with
emergent extrinsic dexterity,” in ICRA 2022 Workshop: Reinforcement
Learning for Contact-Rich Manipulation, 2022. [Online]. Available:
https://openreview.net/forum?id=Zrp4wpa9lqh

[13] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas,
“Reinforcement learning with augmented data,” Advances in neural
information processing systems, vol. 33, pp. 19 884–19 895, 2020.

[14] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International conference on
machine learning. PMLR, 2017, pp. 1126–1135.

[15] C. Wang, Y. Zhang, X. Zhang, Z. Wu, X. Zhu, S. Jin, T. Tang,
and M. Tomizuka, “Offline-online learning of deformation model for
cable manipulation with graph neural networks,” IEEE Robotics and
Automation Letters, vol. 7, no. 2, pp. 5544–5551, 2022.

[16] K. Hausman, J. T. Springenberg, Z. Wang, N. Heess, and M. Ried-
miller, “Learning an embedding space for transferable robot skills,” in
International Conference on Learning Representations, 2018.

[17] T. Li, N. Lambert, R. Calandra, F. Meier, and A. Rai, “Learning gen-
eralizable locomotion skills with hierarchical reinforcement learning,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 413–419.

[18] K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen, “Efficient off-
policy meta-reinforcement learning via probabilistic context variables,”
in International conference on machine learning. PMLR, 2019, pp.
5331–5340.

[19] Z.-H. Yin, L. Sun, H. Ma, M. Tomizuka, and W.-J. Li, “Cross domain
robot imitation with invariant representation,” in 2022 International
Conference on Robotics and Automation (ICRA). IEEE, 2022, pp.
455–461.

[20] K. Kim, Y. Gu, J. Song, S. Zhao, and S. Ermon, “Domain adaptive
imitation learning,” in International Conference on Machine Learning.
PMLR, 2020, pp. 5286–5295.

[21] M. E. Taylor, P. Stone, and Y. Liu, “Transfer learning via inter-
task mappings for temporal difference learning.” Journal of Machine
Learning Research, vol. 8, no. 9, 2007.

[22] T. Tang, C. Liu, W. Chen, and M. Tomizuka, “Robotic manipulation
of deformable objects by tangent space mapping and non-rigid reg-
istration,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2016, pp. 2689–2696.

[23] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ Int. Conf. on Intelligent
Robots and Syst. IEEE, 2012, pp. 5026–5033.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[25] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[26] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[27] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel et al., “Soft actor-critic
algorithms and applications,” arXiv preprint arXiv:1812.05905, 2018.

[28] Rail-Berkeley, “Rail-berkeley/rlkit: Collection of reinforcement
learning algorithms.” [Online]. Available: https://github.com/
rail-berkeley/rlkit

[29] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.”
Journal of machine learning research, vol. 9, no. 11, 2008.

[30] E. Olson, “Apriltag: A robust and flexible visual fiducial system,”
in 2011 IEEE international conference on robotics and automation.
IEEE, 2011, pp. 3400–3407.

[31] C. Mayer, M. Danelljan, G. Bhat, M. Paul, D. P. Paudel, F. Yu,
and L. Van Gool, “Transforming model prediction for tracking,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 8731–8740.

[32] J. Revaud, P. Weinzaepfel, C. De Souza, N. Pion, G. Csurka, Y. Cabon,
and M. Humenberger, “R2d2: repeatable and reliable detector and
descriptor,” arXiv preprint arXiv:1906.06195, 2019.

[33] B. Huang, J. Yu, and S. Jain, “EARL: Eye-on-hand reinforcement
learner for dynamic grasping with active pose estimation,” 2023.

[34] B. Wen and K. Bekris, “Bundletrack: 6d pose tracking for novel ob-
jects without instance or category-level 3d models,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021, pp. 8067–8074.

https://openreview.net/forum?id=Zrp4wpa9lqh
https://github.com/rail-berkeley/rlkit
https://github.com/rail-berkeley/rlkit

