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Abstract— We present a new traffic dataset, METEOR, which
captures traffic patterns and multi-agent driving behaviors
in unstructured scenarios. METEOR consists of more than
1000 one-minute videos, over 2 million annotated frames with
bounding boxes and GPS trajectories for 16 unique agent
categories, and more than 13 million bounding boxes for traffic
agents. METEOR is a dataset for rare and interesting, multi-
agent driving behaviors that are grouped into traffic violations,
atypical interactions, and diverse scenarios. Every video in ME-
TEOR is tagged using a diverse range of factors corresponding
to weather, time of the day, road conditions, and traffic density.
We use METEOR to benchmark perception methods for object
detection and multi-agent behavior prediction. Our key finding
is that state-of-the-art models for object detection and behavior
prediction, which otherwise succeed on existing datasets such as
Waymo, fail on the METEOR dataset. METEOR marks the first
step towards the development of more sophisticated perception
models for dense, heterogeneous, and unstructured scenarios.

I. INTRODUCTION

Recent research in learning-based techniques for robotics,
computer vision, and autonomous driving has been driven
by the availability of datasets and benchmarks. Several traffic
datasets have been collected from different parts of the world
to stimulate research in autonomous driving, driver assistants,
and intelligent traffic systems. These datasets correspond to
highway or urban traffic, and are widely used in the devel-
opment and evaluation of new methods for perception [1],
prediction [2], behavior analysis [3], and navigation [4].

Many initial autonomous driving datasets were motivated
by computer vision or perception tasks such as object
recognition, semantic segmentation or 3D scene understand-
ing. Recently, many other datasets have been released that
consist of point-cloud representations of objects captured
using LiDAR, pose information, 3D track information, stereo
imagery or detailed map information for applications related
to 3D object recognition and motion forecasting. Many large-
scale motion forecasting datasets such as Argoverse [5], and
Waymo Open Motion Dataset [6], among others, have been
used extensively by researchers and engineers to develop

∗Denotes equal contribution.
1Department of Computer Science, University of Maryland, College

Park, USA. Corresponding email: rchandr1@umd.edu
2 Centre for Intelligent Robotics, Indian Institute of Information

Technology, Allahabad, India.
3 NavAjna Technologies Pvt. Ltd.
4Department of Electrical and Computer Engineering, University of

Maryland, College Park, USA.

robust prediction models that can forecast vehicle trajec-
tories. However, existing datasets do not capture the rare
behaviors or heterogeneous patterns. Therefore, prediction
models trained on these existing datasets are not very robust
in terms of handling challenging traffic scenarios that arise
in the real world.

A major challenge currently faced by research in au-
tonomous driving is the heavy tail problem [5], [6], which
refers to the challenge of dealing with rare and interesting
instances. There are several ways in which existing datasets
currently address the heavy tail problem:

1) Mining: The Argoverse and Waymo datasets use a
mining procedure that includes scoring each trajectory
based on its “interestingness” to explicitly search for
difficult and unusual scenarios [5], [6].

2) Diversifying the taxonomy: Train the prediction and
forecasting models to identify the unknown agents at
the time of testing. This approach necessitates annotat-
ing a diverse taxonomy of class labels. Argoverse and
nuScenes [7] contain 15 and 23 classes, respectively.

3) Increasing dataset size: This approach is to simply
collect more data with the premise that collecting more
traffic data will likely also increase the number of such
scenarios in the dataset.

In spite of many efforts along these lines, existing datasets
manage to collect only a handful of such instances, due
to the infrequent nature of their occurrence. For example,
the Waymo Open Motion dataset [6] contains only atypi-
cal interactions and diverse scenarios while the Argoverse
dataset [5] contains only atypical interactions. There is
clearly a need for a different approach to addressing the
heavy tail problem. Our solution is to build a traffic dataset
from videos collected in India, where the inherent nature
of the traffic is dense, heterogeneous, and unstructured. The
traffic patterns and surrounding environment in parts of India
are more challenging. than those in other parts of the world.
This includes high congestion and traffic density. Some of
these roads are unmarked or unpaved. Moreover, the traffic
agents moving on these roads correspond to vehicles, buses,
trucks, bicycles, pedestrians, auto-rickshaws, two-wheelers
such as scooters and motorcycles, etc.

A. Main Contributions

1) We present a novel dataset, METEOR, corresponding to
the dense, heterogeneous, and unstructured traffic in In-
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Fig. 1: METEOR: We summarize various characteristics of our dataset in terms of scene: traffic density, road type, lighting conditions,
agents (we indicate the total count of each agent across 1250 videos), and behaviors, along with their size distribution (in GB). The
total size of the current version of the dataset is around 100GB, and it will continue to expand. Our dataset can be used to evaluate
the performance of current and new methods for perception, prediction, behavior analysis, and navigation based on some or all of these
characteristics. Details of the organization of our dataset are given at https://gamma.umd.edu/meteor.

dia. METEOR is the first large-scale dataset containing
annotated scenes for rare and interesting instances and
multi-agent driving behaviors, broadly grouped into:

a) Traffic violations—running traffic signals, driving
in the wrong lanes, taking wrong turns).

b) Atypical interactions—cut-ins, yielding, overtak-
ing, overspeeding, zigzagging, lane changing.

c) Diverse scenarios—intersections, roundabouts,
and traffic signals.

2) METEOR has more than 2 million labeled frames and
13 million annotated bounding boxes for 16 unique
traffic agents, and GPS trajectories for the ego-agent.

3) Every video in METEOR is tagged using a diverse
range of factors including weather, time of the day,
road conditions, and traffic density.

4) We evaluate state-of-the-art methods for object detec-
tion and multi-agent behavior prediction on METEOR.

5) We present a novel, fine-grained analysis on the rela-
tionship between traffic environments and perception.
Specifically we study the effect of 2D object detection
in varying traffic density, mixture of agents, area, time
of the day, and weather conditions.

B. Applications and Benefits

• Towards Risk-Aware Planning and Control: Our
multi-agent behavior prediction benchmark can aid the
development of risk-aware motion planners by pre-
dicting the behaviors of surrounding agents. Motion
planners can compute controls that guarantee safety
around aggressive drivers who are prone to overtaking
and overspeeding.

• Towards Robust Perception: We observe that these
models fail in challenging Indian traffic scenarios, com-
pared to their performance on existing datasets captured
in the US, Europe, and other developed nations. As a
result, METEOR can be a useful benchmark for research
in perception in unstructured traffic environments and
developing nations.

• Towards Fine-grained Traffic Analysis: Our novel
analysis studying the relationship between traffic pat-
terns and 2D object detection can lead to more informed
research in perception for autonomous driving.

II. COMPARISON WITH EXISTING DATASETS

A. Tracking and Trajectory Prediction Datasets

Datasets such as the Argoverse [5], Lyft Level 5 [8],
Waymo Open Dataset [6], ApolloScape [9], nuScenes
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TABLE I: Characteristics of Traffic Datasets: We compare METEOR with state-of-the-art autonomous driving datasets that have been
used for trajectory tracking, motion forecasting, semantic segmentation, prediction, and behavior classification. METEOR is the largest
(in terms of number of annotated frames) and most diverse in terms of heterogeneity, scenarios, varying behaviors, densities, and rare
instances. Darker shades represent a richer collection in that category. Best viewed in color.

Rare and Interesting Behaviors‡

Datasets Location Bad weather Night Road type Het.? Size Density Lidar HD Maps Traffic Atypical Diverse
Violations Interactions Scenarios

Argoverse [5] USA 3 3 urban 10 22K Medium 3 3 7 3 7
Lyft Level 5 [8] USA 7 7 urban 9 46K Low 3 3 7 7 7

Waymo [6] USA 3 urban 4 200K Medium 3 3 7 3 3
ApolloScape [9] China 7 3 urban, rural 5 144K High 3 3 7 7 7

nuScenes [7] USA/Sg. 3 3 urban 13 40K Low 3 3 7 3 3
INTERACTION [10] International 7 7 urban 1 − Medium 3 3 7 7 7

CityScapes [11] Europe 7 7 urban 10 25K Low 7 7 7 7 7
IDD [12] India 7 7 urban, rural 12 10K High 7 7 7 7 7

HDD [13] USA 7 7 urban − 275K Medium 3 7 7 3 3
Brain4cars [14] USA 7 7 urban − 2000K Low 7 3 7 7 7

D2-City [15] China 3 7 urban 12 700K Medium 7 7 7 7 3
TRAF [16] India 7 3 urban, rural 8 72K High 7 7 7 7 7
BDD [17] USA 3 3 urban 8 3000K Low 7 7 7 7 3

METEOR India 3 3 urban, rural† 16†† 2027K High§ 7 7 3 3 3

‡ Rare instances can be broadly grouped into (i) traffic violations, (ii) atypical interactions, and (iii) difficult scenarios.
† Includes roads without lane markings. Roads in other datasets with rural roads may contain lane markings.
? Heterogeneity. We indicate the classes corresponding to moving traffic agents only, excluding static objects such as poles, traffic lights, etc.
§ Up to 40 agents per frame.
†† Up to 9 unique agents per frame.

dataset [7] are used for trajectory forecasting [16], [18],
[19], [20], [21] and tracking [1]. Several of these datasets
use mining procedure [6], [5] that heuristically searches
the dataset for rare and interesting scenarios. The resulting
collection of such scenarios and behaviors, however, is only
a fraction of the entire dataset. METEOR, by comparison,
exclusively contains such scenarios due to the inherent nature
of the unstructured traffic in India.

METEOR has many additional characteristics with respect
to these datasets. For instance, METEOR’s 2.02 million
annotated frames are more than 10× the current highest
number of annotated frames with respect to other dataset
with high density traffic (ApolloScape). Furthermore, ME-
TEOR consists of 16 different traffic-agents that include only
on-road moving entities (and not static obstacles). This is by
far, the most diverse in terms of class labels. In comparison,
Argoverse and nuScenes both contain 10 and 13 traffic-
agents, respectively. METEOR is the first motion forecasting
and behavior prediction dataset with traffic patterns from ru-
ral and urban areas that consist of unmarked roads and high-
density traffic. In contrast, traffic scenarios in Argoverse,
Waymo, Lyft, and nuScenes have been captured on sparse
to medium density traffic with well-marked structured roads
in urban areas.

B. Semantic Segmentation Datasets

CityScapes [11] is widely used for several tasks, primarily
semantic segmentation. It is based on urban traffic data
collected from European cities with structured roads and
low traffic density. In contrast, the Indian Driving Dataset
(IDD) [12] is collected in India with both urban and rural ar-
eas with high-density traffic. A common aspect of both these
datasets (CityScapes and IDD), however, is the relatively low
annotated frame count (25K and 10K, respectively). This is
probably due to the effort involved with annotating every
pixel in each image. IDD also contains high-density traffic

scenarios in rural areas, similar to METEOR. However, our
dataset has 200× the number of annotated frames and 1.6×
the number of traffic-agent classes. Similar to TRAF, the
IDD does not contain the behavior data that is provided by
METEOR.

C. Behavior Prediction

Behavior prediction corresponds to the task of predicting
turns (right, U-turn, or left), acceleration, merging, and
braking in addition to driver-intrinsic behaviors such as over-
speeding, overtaking, cut-ins, yielding, and rule-breaking.
The two most prominent datasets for action prediction
include the Honda Driving Dataset (HDD) [13] and the
BDD dataset [17]. Some of the major distinctions between
METEOR and the HDD in terms of size (approximately
10×), the availability of scenes with night driving and rainy
weather, and the inclusion of unstructured environments in
low-density traffic. The BDD dataset [17] contains more
annotated samples than METEOR, however, the BDD dataset
contains 100K videos while METEOR contains 1K videos.
So the number of annotated samples per video is 66× higher
for METEOR. The annotations in prior datasets are limited to
actions and do not contain the rare and interesting behaviors
contained in METEOR.

III. METEOR DATASET

Our dataset is visually shown in Figure 1. Below, we
present some details of the data collection process and
discuss some of the salient features and characteristics of
METEOR.

A. Dataset Collection

The data was collected in and around the city of Hy-
derabad, India within a radius of 42 to 62 miles. Several
outskirts were chosen to cover rural and unstructured roads.
Our hardware capture setup consists of two wide-angle



(a) Cut-ins/Jaywalking. (b) Yielding/Cut-ins.

(c) Overtaking/Overspeeding. (d) Driving in wrong lane.

(e) Running red traffic lights. (f) Ignoring lane signs/wrong lane driving.

(g) High density. (h) Rainy weather. (i) Night time. (j) Rural areas.

Fig. 2: Annotations for rare instances: One of the unique aspects of METEOR is the availability of explicit labels for rare and interesting
instances including atypical interactions, traffic violations, and diverse scenarios. These annotations can be used to benchmark new methods
for object detection and multi-agent behavior prediction.

Thinkware F800 dashcams mounted on an MG Hector and
Maruti Ciaz. The camera sensor has 2.3 megapixel resolution
with a 140◦ field of view. The video is captured in full high
definition with a resolution of 1920×1080 pixels at a frame
rate of 30 frames per second. The dashcam is embedded
with an accurate positioning system that stores the GPS
coordinates, which were processed into the world frame
coordinates. The sensor synchronizes between the camera
and the GPS. Recordings from the dashcam are streamed
continuously and are clipped into 1 minute video segments.

B. Dataset organization

The dataset is organized as 1250 one-minute video clips.
Each clip contains static and dynamic XML files. Each
static file summarizes the meta-data of the entire video
clip including the behaviors, road type, scene structure etc.
Each dynamic file describes frame-level information such as
bounding boxes, GPS coordinates, and agent behaviors. Our
dataset can be searched using helpful filters that sort the data
according to the road type, traffic density, area, weather, and
behaviors. We also provide many scripts to easily load the
data after downloading.

C. Annotations

We provide the following annotations in our dataset:
(i) bounding boxes for every agent, (ii) agent class IDs,
(iii) GPS trajectories for the ego-vehicle, (iv) environment

conditions including weather, time of the day, traffic density,
and heterogeneity, (v) road conditions with urban, rural, lane
markings, (vi) road network including intersections, round-
abouts, traffic signal, (vii) actions corresponding to left/right
turns, U-turns, accelerate, brake, (viii) rare and interesting
behaviors (See Section III-D), and (ix) the camera intrinsic
matrix for depth estimation to generate trajectories of the
surrounding vehicles. This set of annotations is the most
diverse and extensive compared prior datasets.

A diverse and rich taxonomy of agent categories is nec-
essary to ensure that autonomous driving systems can detect
different types of agents in any given scenario. Towards
that goal, datasets for autonomous driving are designed or
captured to achieve two goals: (a) capture as many different
types of agent categories as possible; (b) capture as many
instances of each category as possible. In both these aspects,
METEOR outperforms all prior datasets. We annotate 16
types of moving traffic entities, not including static obstacles
listed in Figure 1 along with their distribution. Note specif-
ically that the percentages of pedestrians, motorbikes, and
bicycles are higher than the percentage of passenger vehicles.
This is particularly useful as the former categories are known
as “vulnerable road users” (VRUs) [22], and it is important
for autonomous driving systems to be able to detect them–
necessitating many instances of these VRUs in any dataset.



D. Rare and Interesting Behaviors

We provide a total of 17 different types of rich collection
of rare and interesting cases that are unique to our dataset.
They can be summarized in terms of the following groups:

1) Atypical Interactions: Atypical interactions correspond
to pairwise interactions among traffic agents that are not
often observed in regular traffic scenarios. Some examples of
atypical interactions include yielding to, and cutting across,
pedestrians, zigzagging through traffic, pedestrian jaywalk-
ing, overtaking, sudden lane changing, and overspeeding. We
describe these in more detail below:
• Overtaking (OT): When an agent overtakes another

agent with sudden or aggressive movement.
• Overspeeding (OS): If the vehicle over-speeds (based

on speed limits) due to any reason.
• Yield (Y): A pedestrian, bicycle, or any slow-moving

agent trying to cross the road in front of another agent.
If the latter slows down or stops, letting them cross the
road then such behavior is labeled as yield.

• Cutting (C): When pedestrians, bicycles, or any slow-
moving agents trying to cross the road is interrupted
by another agent. Yielding and cutting can also be re-
labeled as instances of jaywalking. In a majority of these
cases, one of the agents involved is a pedestrian crossing
the road in the middle of traffic.

• Lane change w. lane markings (LC(m)): Agents aggres-
sively change lanes on roads with clear lane markings.

• Lane change w/o. lane markings (LC): Agents aggres-
sively change lanes on roads without lane markings.
The above two annotations can be used to identify
videos in the dataset that contain roads without lane
markings for relevant applications.

• Zigzagging (ZM): If any of the agent of interest un-
dergoes a zigzag movement in the traffic, the agent
behavior is classified as zigzagging.

2) Traffic Violations: In addition to the above driving
behaviors, we also annotate traffic agents breaking traffic
rules. These are particularly unique since rule breaking
scenarios are rare.
• Running a traffic light (RB TL): Passing through an

intersection even though the traffic signal is red.
• Wrong Lane (RB WL): A road may not be divided for

inbound and outbound traffic by a physical barrier, mak-
ing it possible for the motorists to use the inbound lane
for the outbound traffic and vice versa. This behavior
identifies all such cases.

• Wrong Turn (RB WT): When an agent makes an illegal
turn (including U-turns).

3) Diverse Scenarios: Finally, we provide annotations for
challenging scenarios that include intersections, roundabouts,
traffic signals, executing left turns, right turns, and U-turns.

E. Dataset statistics

We analyze the dataset statistics and distribution of agents
and their behaviors in terms of total count, uniqueness, and
duration (in seconds). Figures 3a and 3d show that METEOR

(a) High traffic density: METEOR has up to 40 agents per frame.

(b) Number of scenes in which
behaviors occur

(c) Average scene duration of be-
haviors (in seconds)

(d) High heterogeneity: Up to 9
unique agents in a single frame.

(e) Rich features: Up to 13 mil-
lion boxes.

Fig. 3: We highlight the high traffic density, heterogeneity, and
the richness of behavior information in METEOR. Abbreviations
correspond to various behavior categories and are explained in
Section III-D.

is very dense and highly heterogeneous, respectively; the
total number of agents in a single frame can reach up
to 40 and up to 9 unique agents can exist in a single
frame. Figure 3b represents the distribution of behaviors
across videos and Figure 3c shows the distribution of each
behavior’s average duration. In particular, we note that the
average duration can reach up to 3 seconds which, at 30
frames per second, corresponds to approximately 90 frames
that contain visual, contextual, and semantic information that
can inform behavior prediction algorithms for more accurate
perception and prediction.

IV. EXPERIMENTS AND ANALYSIS

We provide the pre-trained models for object detection
and behavior prediction at https://gamma.umd.edu/
meteor.

A. Analyzing Object Detection in Unstructured Scenarios

Existing datasets have helped develop sophisticated and
robust 2D detection methods. We use the MMDetection [28]
toolbox to train the following 2D object detection models—
DETR [23], Deformable DETR [24] (with iterative bounding
box refinement), YOLOv3 [25] (with scale 608), Center-
Net [26] (with normal convolutions), and Swin-T [29]. The
models are pre-trained on the COCO dataset [30] and fine-
tuned on METEOR. We provide the training details in Table
III and report results using the standard mAP, mAP50,
mAP75, mAPS, mAPM, and mAPL. We refer the reader
to [31] for a primer on these metrics.

In Table IV, we report the mAP for the 2D object detectors
listed above. We observe that the most widely used 2D
object detectors, that perform well on the state-of-the-art

https://gamma.umd.edu/meteor
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TABLE II: Effect of meta features on object detection: We analyze how meta features such as traffic density, type of agents, location,
time of the day, and weather play a role in 2D object detection using the DETR, Deformable DETR, YOLOv3 and CenterNet object
detectors. Bold indicates the type of meta feature that is the most effective for object detection.

DETR and Deformable DETR (in parentheses)

Density Agents Environment Time Weather

Low Medium High Mixed Uniform Urban Rural Day Night Normal Rainy

mAP 19.00 (22.70) 27.00 (38.30) 19.30 (28.10) 27.00 (38.30) 14.80 (31.30) 27.00 (38.30) 14.20 (25.70) 27.00 (38.30) 12.00 (20.60) 27.00 (38.30) 12.00 (20.90)
mAP50 33.33 (36.80) 48.40 (61.80) 32.40 (41.40) 48.40 (61.80) 31.80 (44.30) 48.40 (61.80) 23.40 (34.90) 48.40 (61.80) 22.70 (36.10) 48.40 (61.80) 21.90 (32.70)
mAP75 21.50 (22.10) 28.10 (41.50) 20.40 (31.30) 28.10 (41.50) 11.70 (37.00) 21.80 (41.50) 16.30 (28.40) 28.10 (41.50) 12.20 (20.50) 28.10 (41.50) 12.60 (22.90)
mAPS 2.60 (7.10) 1.20 (12.10) 0.20 (2.50) 1.20 (12.10) 0.30 (12.80) 1.20 (12.10) 2.00 (10.30) 1.20 (12.10) 0.10 (0.30) 1.20 (12.10) 1.80 (9.50)
mAPM 7.40 (25.20) 8.30 (22.50) 10.50 (16.90) 8.30 (22.50) 7.20 (34.30) 8.30 (22.50) 11.70 (28.10) 8.30 (22.50) 3.30 (12.50) 8.30 (22.50) 6.20 (19.90)
mAPL 25.60 (24.90) 45.90 (54.10) 24.70 (35.60) 45.90 (54.10) 40.30 (57.80) 45.90 (54.10) 26.30 (35.60) 45.90 (54.10) 16.70 (27.80) 45.90 (54.10) 15.10 (23.80)

YOLOv3 and CenterNet (in parentheses)

Density Agents Environment Time Weather

Low Medium High Mixed Uniform Urban Rural Day Night Normal Rainy

mAP 19.20 (22.90) 30.40 (32.90) 21.10 (23.30) 30.40 (32.90) 19.10 (30.20) 30.40 (32.90) 13.80 (13.60) 30.40 (32.90) 13.30 (15.90) 30.40 (32.90) 13.40 (14.00)
mAP50 36.90 (34.80) 52.50 (55.40) 36.30 (32.50) 52.50 (55.40) 35.10 (43.40) 52.50 (55.40) 22.00 (22.70) 52.50 (55.40) 25.00 (25.70) 52.50 (55.40) 25.00 (22.50)
mAP75 16.10 (28.10) 32.30 (33.40) 23.20 (26.70) 32.30 (33.40) 19.70 (37.30) 32.30 (33.40) 15.70 (13.20) 32.30 (33.40) 13.40 (27.00) 32.30 (33.40) 13.60 (15.50)
mAPS 2.70 (8.40) 2.40 (13.10) 0.60 (2.90) 2.40 (13.10) 7.90 (19.30) 2.40 (13.10) 5.20 (5.40) 2.40 (13.10) 0.00 (0.90) 2.40 (13.10) 1.30 (10.90)
mAPM 14.10 (26.20) 13.10 (30.50) 11.70 (17.60) 13.10 (30.50) 19.10 (38.80) 13.10 (30.50) 22.50 (25.80) 13.10 (30.50) 7.50 (11.60) 13.10 (30.50) 11.60 (17.40)
mAPL 23.70 (29.50) 48.70 (44.60) 27.30 (27.90) 48.70 (44.60) 38.90 (40.00) 48.70 (44.60) 21.20 (21.40) 48.70 (44.60) 18.50 (21.70) 48.70 (44.60) 16.40 (14.30)

TABLE III: Training Details for Object Detection (BS: Batch
size, Mom: Momentum, WD: Weight decay, MGN: Max Gradient
Norm)

Method Backbone BS Opt. LR Mom. WD (L2) MGN

DETR [23] ResNet-50 2 AdamW 1e−4 − 1e−4 0.1
Def. DETR [24] ResNet-50 2 AdamW 2e−4 − 1e−4 0.1

YOLOv3 [25] Darknet-53 8 SGD 1e−3 0.9 5e−4 35
CenterNet [26] ResNet-18 16 SGD 1e−3 0.9 5e−4 35

TABLE IV: Object detection on Waymo and KITTI: We report
the standard mAP for many widely used methods on autonomous
driving datasets.

DETR [23] CenterNet YOLO v3 Def. DETR Swin-T

KITTI [27] 23.00 80.40 81.60 42.20 −
Waymo [6] 65.31 64.83 56.93 65.31 37.20

METEOR 8.30 12.10 14.30 15.80 32.60

autonomous driving datasets, like the Waymo Open Motion
Dataset [6] and the KITTI dataset [27], do not perform
well on METEOR. More specifically, the detectors achieve
37% − 65% and 23% − 81% mAP on the Waymo and
KITTI datasets, respectively, while the same methods achieve
8% − 31% mAP on the METEOR dataset. In other words,
the best possible result on METEOR is 1

2× and 1
3× the best

result on the Waymo and KITTI datasets, respectively. In
Table V, we compare METEOR in depth with the Waymo
dataset using the Swin-T method [29], which is currently
one of the top performing methods on the standard COCO
2D object detection benchmark leaderboard [30]. The Swin-
T method performs 14% better on the Waymo Dataset.

There are two possible reasons for performance degrada-
tion on METEOR. First, 2D detectors are typically pre-trained
on MS COCO [30] and ImageNet [32], which contain only
up to 9 categories of the commonly occurring traffic agents.
This was not an issue for detectors on existing datasets like
Waymo and KITTI since those datasets contain a subset of
those 9 classes. METEOR, on the other hand, contains 16
agent categories that are approximately equally distributed.
The approximately 7 − 8 traffic agent categories that are
contained in METEOR but do not appear in MS COCO are

TABLE V: Swin-T on Waymo and METEOR: We present a
more detailed analysis of Swin-T, one of the state-of-the-art object
detection approaches, on Waymo and METEOR.

mAP mAP50 mAP75 mAPS mAPM mAPL

Waymo [6] 37.20 70.60 52.00 17.20 41.80 67.20

METEOR 32.60 46.90 36.20 20.50 35.40 54.70

novel to these 2D object detectors and are not classified
correctly.

The other reason why object detection deteriorates on
METEOR is due to the challenging traffic environments in
METEOR. More specifically, METEOR contains many chal-
lenging scenarios such as bad weather, nighttime traffic, rural
area, high density traffic, etc. (see Figure 2). We analyze the
effect of meta-features such as traffic conditions (density and
heterogeneity), road conditions, weather, and time-of the day
on 2D object detection and present this analysis in Table II.
For this analysis, we form separate test sets corresponding
to each label in a meta-feature (for example, we have two
test sets for day and night). Most datasets contain videos
of medium density traffic. In Table II, we see that the
performance of the DETR, Deformable DETR, YOLOv3,
and CenterNet suffers as the traffic density increases from
medium to high. Similar reasoning can be made for other
factors–object detection is less effective for homogeneous
traffic, in rural areas, at nighttime, and in rainy weather.
In most datasets, the number of annotated data samples
with these adverse and challenging factors are a fraction of
the entire dataset, which partly explains why 2D detectors
are more successful on those datasets. The analysis in this
section empirically validates the difficulty that the heavy-tail
problem poses to perception tasks in autonomous driving.

B. Multi-Agent Behavior Recognition

Multi-agent behavior recognition (MABR) is the task of
first localizing agents in a video followed by classifying
their behaviors. This task has drawn attention in recent
years and plays an important role in autonomous driving.



TABLE VI: ACAR-Net on AVA and METEOR: We applied
currently the state-of-the-art multi-agent action recognition ap-
proach on AVA to our METEOR dataset. (PT: pre-train, BS: batch
size, Opt.: Optimization, LR: learning rate, WD: weight decay,
FR(RX-101): Faster R-CNN (ResNeXt-101), Kin.-700: Kinetics-
700, CR(Swin-T): Cascade R-CNN (Swin-T))

Dataset Detector PT BS Opt. LR WD mAP
AVA [33] FR(RX-101) Kin.-700 32 SGD 0.008 1e−7 30.0

METEOR CR(Swin-T) Kin.-700 32 SGD 0.008 1e−7 6.10

Unlike object detection, which can be accomplished solely
by observing visual appearances, MABR reasons about the
actors’ interactions with the surrounding context, including
environments, other people and objects.
Dataset Preparation: The METEOR dataset is ideal for
spatio-temporal MABR due to the availability of bounding
box annotations and their corresponding behavior labels for
more than 1231 video clips, each lasting one minute in
duration, and over 2 million annotated frames. We use 1000
video clips for training and 231 video clips for testing. As
the guidelines of the benchmarks, we evaluate 16 behavior
classes with mean Average Precision (mAP) as the metric,
using a frame-level IoU threshold of 0.5.
Framework: We use the ActorContext-Actor Relation Net-
work (ACAR-Net) [34] which builds upon a novel high-order
relation reasoning operator and an actor-context feature bank
for indirect relation reasoning for spatio-temporal action lo-
calization. This framework is composed of an object detector,
backbone network, and ACAR components.
Object Detector: For the object detection step, we use
the Swin-T detector, generated by combining a Cascade
R-CNN [35] with a Swin-T [29] backbone. The model is
pre-trained on ImageNet and MS COCO, and fine-tuned on
METEOR using the same settings as Swin-T [29]: multi-scale
training [36] (resizing the input with the shorter side between
480 and 800 and the longer side at most 1333), AdamW [37]
optimizer (initial learning rate of 1e−4, weight decay of 0.05,
and batch size of 16), and 1× schedule (12 epochs).
Backbone Network: Following ACAR-Net [34], we use
SlowFast networks [38] as the backbone in the localization
framework and double the spatial resolution of res5. We
conduct experiments using a SlowFast R-101 8 × 8, pre-
trained on the Kinetics-700 dataset [39], without non-local
blocks. The inputs are 64-frame clips, where we sample
T = 8 frames with a temporal stride τ = 8 for the slow
pathway, and αT (α = 4) frames for the fast pathway.
Training Settings: We train ACAR-Net using synchronous
SGD with a batch size of 16. For the first 3 epochs, we
use a base learning rate of 0.008, which is then decreased
by a factor of 10 at iterations 4 epochs and 5 epochs. We
use a weight decay of 1e−7 and Nesterov momentum of
0.9. We use both ground-truth boxes and predicted object
boxes for training. For inference, we scale the shorter side
of input frames to 384 pixels and use detected object boxes
with scores greater than 0.85 for final behavior classification.
Results: We compare METEOR with the AVA dataset [33]
as the latter is the state-of-the-art in multi-agent action
recognition. In Table VI, we show that the current state-

of-the-art approach, ACAR, achieves 30.0% mAP on AVA
but yields 6.1% mAP on METEOR. There are several rea-
sons why ACAR performs better on AVA. AVA focuses
exclusively on only one target, humans, a category which
most state-of-the-art object detectors can detect with ease.
Furthermore, the videos in the AVA dataset consist of high-
definition movies, in which agents (actors) are clearly visible,
the background is simple, and the movements performed
are also exaggerated and easier to identify. METEOR, on
the other hand consists of 16 different categories of agents
from vehicles to animals, most of which are novel for
most detectors and therefore hard to detect. Moreover, the
movements of the agents on the road are very fast, making
them hard to capture. Finally, different agents have different
motion patterns; for example, pedestrians move differently
than vehicles and buses move differently than motorbikes.
All of these factors collectively contribute to the complexity
of MABR in dense, heterogeneous, and unstructured traffic
scenarios. Our experiments and analysis show that there is
much room for improvement and our hope with METEOR
is that it provides the research community the resources it
needs to tackle this important problem.

V. CONCLUSION, LIMITATIONS AND FUTURE WORK

We present a new dataset, METEOR, for autonomous
driving applications in dense, heterogeneous, and unstruc-
tured traffic scenarios. rain consists of more than 1000 one-
minute video clips, over 2 million annotated frames with
2D and GPS trajectories for 16 unique agent categories,
and more than 13 million bounding boxes for traffic agents.
We found that current models for object detection and
multi-agent behavior prediction fail on the METEOR dataset.
METEOR marks the first step towards the development of
more sophisticated and robust perception models for dense,
heterogeneous, and unstructured scenarios.

Our dataset has some limitations. While METEOR contains
bounding box information for the surrounding agents, we
currently do not provide trajectory information from a fixed
reference frame. One would have to use depth estimation
techniques to extract such trajectories. Furthermore, our
dataset does not contain HD maps ad pointcloud data, which
are used in many applications. For future work, we hope that
our dataset can benefit in terms of design and evaluation of
new motion forecasting and behavior prediction algorithms in
dense and heterogeneous traffic. Finally, we hope to include
semantic segmentation capability as part of METEOR by
providing pixel labels for each object.
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