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RangedIK: An Optimization-based Robot Motion Generation Method
for Ranged-Goal Tasks

Yeping Wang!, Pragathi Praveena', Daniel Rakita? and Michael Gleicher!

Abstract— Generating feasible robot motions in real-time
requires achieving multiple tasks (i.e., kinematic requirements)
simultaneously. These tasks can have a specific goal, a range
of equally valid goals, or a range of acceptable goals with
a preference toward a specific goal. To satisfy multiple and
potentially competing tasks simultaneously, it is important
to exploit the flexibility afforded by tasks with a range of
goals. In this paper, we propose a real-time motion generation
method that accommodates all three categories of tasks within
a single, unified framework and leverages the flexibility of
tasks with a range of goals to accommodate other tasks. Our
method incorporates tasks in a weighted-sum multiple-objective
optimization structure and uses barrier methods with novel loss
functions to encode the valid range of a task. We demonstrate
the effectiveness of our method through a simulation experiment
that compares it to state-of-the-art alternative approaches, and
by demonstrating it on a physical camera-in-hand robot that
shows that our method enables the robot to achieve smooth and
feasible camera motions.

I. INTRODUCTION

In real-time robotics applications, the robot needs to calcu-
late how to move at each update to satisfy multiple kinematic
requirements simultaneously. As exemplified in Figure [T] a
writing application may have several kinematic requirements,
which the robot must fulfill to generate accurate and feasible
motions. Following Nakamura et al. [1], we consider the
kinematic requirements that the robot must fulfill as rasks.
These tasks can be classified into three categories according
to their flexibility: (1) A task can have a specific goal
with limited flexibility, which may cause the robot to lose
the capability to achieve other tasks when attempting to
accomplish it; (2) A task can have a range of equally
valid goals, which provides broad flexibility for a robot to
accommodate other tasks; and (3) A task can have a range of
acceptable goals while also showing preference for a specific
goal, which offers flexibility when needed for more critical
tasks while still targeting a specific goal when possible. We
refer to tasks in the last two categories as ranged-goal tasks,
in contrast to the specific-goal tasks in the first category.

In this paper, we introduce a real-time robot motion
synthesis method that is able to accommodate specific-goal
tasks, ranged-goal tasks with equally valid goals, and ranged-
goal tasks with preferred goals within a single, unified
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Fig. 1. Multiple tasks need to be achieved to generate accurate, smooth, and
feasible robot motions in real-time for the whiteboard writing application.
These tasks can be classified into three categories according to their
flexibility: tasks that have a specific goal (red), tasks that have a range
of equally valid goals (green), and tasks that have a range of acceptable
goals with a preference toward a specific goal (blue). In this paper, we
present a real-time motion synthesis method that can accommodate these
three categories of tasks within a single, unified framework.

framework. We address the real-time multiple-task motion
generation problem through a generalized Inverse Kinematics
solver, called RangedIK, which incorporates a set of specific-
goal or ranged-goal tasks in a weighted-sum non-linear op-
timization structure. RangedIK supports flexible ranged-goal
tasks in joint space or Cartesian space by utilizing barrier
methods with novel loss functions to encode the valid range
of a task in optimization. The multiple-objective optimization
structure enables RangedIK to leverage the flexibility in
ranged-goal tasks to improve the accuracy, smoothness, and
feasibility of robot motions.

This paper builds on prior work [2], [3], which provides a
per-instant pose optimization method known as RelaxedIK
that optimizes single poses to achieve certain accuracy
objectives without sacrificing motion feasibility. This paper
extends the RelaxedIK method by leveraging the flexibility
offered by ranged-goal tasks. The contributions of this paper
are threefold: (1) a method to incorporate ranged-goal tasks
in a multiple-objective optimization-based motion genera-
tion structure using novel parametric loss functions (§[V-A]
and §IV-B); (2) a set of specific-goal or ranged-goal task
functions to generate accurate, smooth, and feasible robot
motions (§IV-C); and (3) empirical evidence that ranged-goal
tasks can create flexibility for improved accomplishment of
other tasks (§V). We provide an open-source implementation
of our proposed metho

To assess the efficacy of our method, we compare
RangedIK to RelaxedIK [2], [3] and Trac-IK [4] on appli-

Uhttps://github.com/uwgraphics/relaxed_ik_core/tree/ranged-ik
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cations with Cartesian tolerances, which create ranged-goal
tasks to maintain end-effector poses within the tolerances
(§V). Our results suggest that RangedIK generates more
accurate, smooth and feasible motions than RelaxedIK, which
does not utilize the flexibility offered by ranged-goal tasks.
Our evaluation also shows that both RangedIK and Trac-IK
generate valid motions within the specified tolerance, but our
approach produces smoother and more feasible motions than
Trac-IK. To showcase the generality of our method, we also
demonstrate that our method enables a camera-in-hand robot
to generate stable videos (§VI). Finally, we conclude this
paper with a discussion of the limitations and implications

of this work (§VII).
II. RELATED WORK

Our work builds upon prior works in semi-constrained
motion planning, inverse kinematics, and barrier methods.

A. Semi-Constrained Motion Planning

Motion planning algorithms are widely used to enable end-
effector path following. Semi-constrained motion planners
have been presented to generate robot motions in appli-
cations that have Cartesian tolerances, i.e., where accurate
end-effector movements in all six degrees of freedom are
not required. Descartes [5], [6] is an open-source search-
based semi-constrained motion planner released by the ROS-
Industrial community. Recently, Malhan et al. [7] presented
an iterative graph construction method to find trajectories
that satisfy constraints in Cartesian or joint space. Besides
the graph-based methods mentioned above, sampling-based
methods have also been used in semi-constrained motion
planners [8], [9].

While semi-constrained motion planners can effectively
generate motions for path following, they are not appropriate
in time-sensitive, real-time scenarios such as teleoperation.
In this work, we use single pose optimization for real-time
motion generation. Prior works have shown that single pose
optimization is effective for generating motions in real-time
scenarios such as teleoperation [10] and camera control [11].

B. Inverse Kinematics

Semi-constrained motion planners often call an Inverse
Kinematics (IK) solver repeatedly to get the joint positions
that produce desired end-effector poses. Some emerging IK
solvers can handle Cartesian tolerances and only need to be
called once by the semi-constrained motion planners. Trac-
IK [4] handles Cartesian tolerances by redefining Cartesian
errors. Such an approach enables Trac-IK to be incorporated
with a motion planner [12], but results in choppy motions
when generating motion in real-time (more explanations are
in §V-B). In this paper, we present a method that generates
smooth motions not only for applications with Cartesian
tolerances, but also other ranged-goal tasks.

In our work, we use the term “fask” from task-priority IK
[1], [13], [14], [15], which utilizes joint redundancy to handle
a stack of tasks (kinematic requirements). The task priority
framework has been extended to incorporate inequality tasks

[16], [17]. Task-priority IK solvers can handle multiple tasks
simultaneously by projecting a lower-priority task into the
null-space of a higher-priority task, but this approach requires
the robot to have sufficient kinematic redundancy for the
null-space projections. Our method, on the other hand, can
manage multiple and potentially competing tasks without the
need for such redundancy requirements.

Task-priority IK approaches utilize a strict task hierarchy,
which can sometimes be too conservative [18] or challenging
to establish [19]. Meanwhile, non-strict task hierarchies are
more flexible and are usually handled by weighted-sum
strategies in optimization. Rakita et al. [2] demonstrated the
benefits of using multiple-objective optimization to com-
bine motion accuracy tasks with feasibility tasks such as
self-collision avoidance. Building on this prior work, our
approach leverages the flexibility of ranged-goal tasks to
generate accurate, smooth, and feasible motions.

C. Barrier Methods

In non-linear optimization, barrier methods convert an
inequality constraint to a positively-weighted “barrier” in
the loss function to prevent solutions from leaving feasible
regions [20]. Barrier functions have been widely used in
robotics for real-time optimization-based controllers [21],
[22], model predictive controllers [23], [24] and motion
planners [25], [26]. In this work, we apply barrier func-
tions to incorporate ranged-goal tasks in a multiple-objective
optimization-based IK structure.

A strict definition of barrier functions requires them to
go to infinity when a solution is close to an inequality
constraint boundary. However, limitations of such “strict”
barrier functions have been noted in prior work [23], [24];
strict barrier functions are only defined over the feasible
space and their derivatives go to infinity as one approaches
the constraint boundary. Therefore, Feller and Ebenbauer
[24] proposed a relaxed logarithmic barrier function that
has a suitable penalty term outside of the feasible space to
overcome the downsides of strict barrier functions. While
this function was designed to possess desired properties for
model predictive control, in this paper, we design and utilize
relaxed barrier functions to restrict kinematic task values in
valid ranges for real-time motion generation.

ITII. TECHNICAL OVERVIEW

In this section, we provide notation for our problem and
an overview of the optimization structure in our method.

A. Problem Formulation

Consider an n degree of freedom robot whose configura-
tion is denoted by q € R™. A task (kinematic requirement)
is described using x(q) € R. The tasks can be classified in
three categories according to the type of their goals.

A Specific-Goal Task has a single valid goal, e.g., a pose
matching task that requires a robot’s end-effector to match a
given goal pose. For such tasks, the value of the task function
x(q) should match the goal value ¢(t) at time ¢:

x(q) = g(t) (1



A Ranged-Goal Task with Equally Valid Goals allows for
multiple valid goals within an interval. For instance, all joint
positions are equally valid as long as they are within the
joint limits of a robot. For such tasks, the value of the task
function should fall within an interval defined by the lower
bound {(t) and the upper bound u(t):

1(t) < x(q) < u(t) 2)
A Ranged-Goal Task With a Preferred Goal has a range
of acceptable goals while showing a preference for a specific
goal. For instance, the joint acceleration of a robot should be
within its motor’s limits, but we would prefer the acceleration
to be as small as possible to minimize energy usage. This
type of task is defined by an acceptable interval [I(t), u(t)]
and a preferred goal g(t).
x(a) = g(t) 3)
1(t) < x(a) <u(t)
The goal of our work is to compute a joint configuration
q to achieve a set of tasks {x1(q), x2(q), ..., xm(q)} as best
as possible even when competing tasks arise, such as moving
a robot to a goal pose while also minimizing energy usage.
A task can be defined in joint space (e.g., minimizing joint
acceleration), Cartesian space (e.g., matching end-effector
poses), or a task-relevant space (e.g., keeping an object in
view for a camera-in-hand robot). In real-time applications,
future goals g(t + d) or goal ranges [I(t + J),u(t + J)] are
unknown at time ¢, for any ¢ > 0.

B. Non-linear Optimization

We formulate the problem posed above as a constrained
non-linear optimization problem:

q" =argmin F(x(q)) st l; <q <wu;, Vi 4)
q

where [; and u; are the lower and upper bounds of the i-th
robot joint, and x is a set of tasks to be achieved. F'(x) € R
is the weighted sum of the loss function for each task:

J
F(x) =Y w;ifi(x;(@) (5)
j=1

Here, J € Z7 is the total number of tasks to be achieved
and w; € R is the weight value for the j-th task. x(q) € R is
a task function that has a specific goal value or a goal range.
f(x) € R is a parametric loss function that calculates the
error between a task value x and the specific goal value or
the goal range. We will describe the parametric loss functions
and the task functions that we utilize in

IV. TECHNICAL DETAILS

In this section, we provide details on how we incorporate
ranged-goal tasks in a multiple-objective optimization struc-
ture. We first introduce three basic loss functions that are
used to normalize or regularize task values. Later, we use the
basic loss functions as building blocks to design parametric
loss functions f(x) for specific or ranged-goal tasks. Finally,
we detail task functions x that are used to generate accurate,
smooth and feasible robot motions.

A. Basic Loss Functions

1) Gaussian: To combine multiple tasks, it is important to
normalize each task such that their values are over a uniform
range [2]. One common normalization method is the negative
Gaussian function:

fx,g) = —e Om0?/2¢ (6)

where g is a goal value and c is the standard deviation, which
determines the spread of the Gaussian (Figure [2}A).

2) Wall: Another normalization method involves uni-
formly scaling values based on the lower bound [ and upper
bound u: x' = (2x — 1 — w)/(u — 1). After scaling, x’ is
within the interval [—1, 1]. We present a continuous function
to impose a large penalty when ' is close to or outside the
boundaries of the interval and a nearly zero penalty when X’
is within the interval:

fOolhu)=a1 (1 - e_Xm/b") @)

As shown in Figure [2} B, the function has “walls” at the
boundaries, hence it is named the Wall function. In Equation
a1 € R determines the wall “height”, b € R determines
the wall “locations’ﬂ and n € 2Z% determines the steepness
of the walls.

3) Polynomial: Neither the Gaussian nor the Wall func-
tion provides sufficient derivatives when solutions are far
away from their goal or goal range. The non-sufficient deriva-
tives make optimization sensitive to the initial guess, causing
it stuck before reaching the optimal point. On the other
hand, polynomials provide sufficient gradients everywhere
that point towards a goal g:

fOGg) =axx—g)™ ®)

where m € 2Z7 is the degree of the polynomial and as
determines the severity of the penalty when a value is away
from the optimal point (Figure 2}C).

B. Parametric Loss Functions

Below, we use the basic loss functions in as building
blocks to design a loss function for each task category. All of
these parametric loss functions are continuous and smooth.

1) Specific-goal tasks: To enable task values to match a
specific goal g, Rakita et al. [2], [3] combine the Gaussian
and polynomial functions to design the Groove loss function:

Folxo9,9) = —e~ 92 g (v — )™ (9)

Here, the scalar values ¢, as, and m form the set of
parameters 2. As shown in Figure [2}D, the Groove function
has a narrow “groove” around the goal to steer values towards
the goal and a more gradual descent away from the goal for
better integration with other objectives.

2We computed b by solving 1 — exp (—1/b™) = 0.95 to impose 0.95
of the maximum penalty at boundaries.
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Fig. 2. We use the basic loss functions (A, B, C) as building blocks
to design parametric loss functions for specific-goal tasks (D), ranged-goal
tasks with equally valid goals (E), and ranged-goal tasks with a preferred
goal (F).

2) Ranged-goal tasks with equally valid goals: Tasks with
a continuous range [/, u] of equally valid goals require a loss
function that imposes nearly zero penalties if task values are
within the range and large penalties if task values are close
to or outside the boundaries. Moreover, the function should
have sufficient gradients outside the boundaries. To satisfy
these requirements, we present the Swamp loss function,
which is a Wall function surrounded by a polynomial:

F06 L, Q) = (a1 +axx™) (1= ") =1 (10)

Here, the scalar values ai, az, m, n, and b form the set of
parameters . x’ is the scaled task value described in
[Al As shown in Figure 2}E, the Swamp function has a flat
“swamp” region to ensure that any solution within the range
is equally good. There are steep “walls” near the boundaries
to restrict solutions within the range. Outside of the walls,
the gradual “funnel” provides gradients to drive solutions
towards the swamp region.

3) Ranged-goal tasks with a preferred goal: We combine
the Gaussian, Wall, and polynomial functions to design the
Swamp Groove loss function that meets the requirements
of tasks with acceptable goals within a range [/,u] and a
preferred goal g:

2 2
fT‘g(leaumgvg) :767(X79) /2C +a2(ng)m
tay (1 _ e*Xm/bn>

Here, the scalar values ¢, aj, as, m, n, and b form the
set of parameters . As shown in Figure }F, the Swamp
Groove function has a “groove” shape near the preferred
goal, steep “walls” at the boundaries, and a gradual “funnel”
shape outside the walls. We note that the Swamp Groove
function does not require the preferred goal g to be at the
center of the range [/, u] but g must be within the range.

(1)

C. Task Functions

In this section, we describe the mathematical details of
task functions used in our work to generate accurate, smooth,
and feasible motions. Besides these task functions, additional

functions can be introduced for more specialized tasks. Task
functions y are composed with parametric loss functions
f(x) described in and then combined using Equation
to form the objective function F'(x). The parameters 2 of
the parametric loss function can be found in our open-source
implementation. We estimated the parameters based on vi-
sualizations (e.g., Figure [2) and fine-tuned them according
to the robot behaviors. The following task functions were
adapted from the objective terms in prior work [2].

1) End-effector Pose Matching: xp(q,t,i) and
xr(q,t,1) indicate the end-effector’s position and rotation
error in the i-th DoF. We describe xp and xr with respect
to the goal end-effector pose [p(t), R(¢)].

xp(a,t,i) = {R7'(t) [¥,(q) —p(1)]},
XR(qatvi) = {S [Ril(t)‘I’R(q)] }L

where ¥(q) is the robot’s forward kinematics function. ¥,
and ¥ denote the position and orientation of the robot’s
end-effector. S denotes a conversion from a rotation matrix
to a vector (scaled-axis) with the direction of the rotation
axis and whose norm is the rotation angle. {-}; denotes the
i-th element of a vector. xp and x g can be specific-goal
tasks if exact pose matching is desired, but for applications
with Cartesian tolerances, e.g., the benchmark applications
we evaluate in §V] xp or xr can be ranged-goal tasks.

2) Smooth Motion Generation: We consider the velocity
v, acceleration a, and jerk j of each robot joint separately
for the smooth motion generation task. We set limits for each
joint as follows (i refers to the i-th joint of the robot):

12)
13)

Xﬂ(qytai) = ql? Xa(q7 t, 7‘) = q17 X](q7tvl) = qla (14)

For joint velocities and accelerations, we use ranged-goal
tasks with preferred goals. Joint velocities or accelerations
are acceptable if they are within the motor limits and their
preferred values are zeros. Joint jerks are treated as specific-
goal tasks whose goal values are zeros.

3) Self-Collision Avoidance: We adapt the collision avoid-
ance method from [27] for self-collision avoidance. Each
robot link 1; is represented as a convex shape (e.g., a capsule).
A task function that represents the shortest straight-line
distance between the i-th and j-th link can be written as:

Xe(a,i,7) = dist(l;(a),1;(q)) (15)

where dist() is the shortest straight-line distance be-
tween two convex shapes and is computed using Sup-
port Mapping [28]. To consider self-collisions between all
pairs of non-adjacent robot links, a group of ranged-goal
tasks are added to the objective function (Equation [5):
Zf\;Q Z;V:H? fr(xe(a,i,5),0.02,00,Q), where N is the
number of robot links. We set 0.02 m as the minimum
allowable distance between two non-adjacent robot links.
4) Kinematic Singularity Avoidance: We use the
Yoshikawa manipulability measure [29] to evaluate how
close a configuration q is to a singularity. The manipulability

task is defined as x.,(q) = /det (J(q)JT(q)), where J is

the Jacobian matrix that maps joint speeds to end-effector



velocities. x,,(q) is a specific-goal task and is injected into
the loss function f,(,1,2) to maximize manipulability.

V. EVALUATION

In this section, we compare RangedIK with two alternative
approaches, RelaxedIK and TraclK, to generate motions
for applications that allow some tolerances in end-effector
poses. These Cartesian tolerances create ranged-goal tasks
that maintain end-effector pose within the tolerances.

A. Implementation Details

Our prototype implementation was based on the open-
source CollisionIK libraryﬂ Our prototype uses the Proximal
Averaged Newton-type Method (PANOC) [30] as the opti-
mization solver. All evaluations were performed on an Intel
Core 17-11800H 2.30 GHz CPU with 16 GB RAM.

B. Comparisons

RelaxedIK [2] is an optimization-based Inverse Kinematics
solver that generates feasible motions given multiple ob-
jective terms, such as end-effector pose matching, smooth
joint motion, and self-collision avoidance. However, all of
the objectives have a single goal. We want to show that by
considering ranged-goal tasks, RangedIK will generate more
accurate, smooth, and feasible motions than RelaxedIK.

Another alternative approach is to generate motions with
a widely used Inverse Kinematics solver, Trac-IK [4], which
biases the search around the joint space of a given seed value.
We provide the seed value as the configuration from the
previous update. Trac-IK considers Cartesian pose tolerances
by mapping pose errors to a discontinuous function:

if 1<pl, <u

7 _ Oa
Perr = { pl,.., otherwise (16)

Here, pt,.. is the pose error in the i-th degree of freedom.
The discontinuous function makes the robot stop moving
when the end-effector pose error is within the interval and
leads to a sudden, large movement once the pose error is
outside of the range. Consequently, motions generated by
Trac-IK can have large joint accelerations and jerks.

C. Experimental procedure

We compared our method to alternative approaches on
the four benchmark applications described in Section
The randomly generated path for each benchmark was dis-
cretized to 2,000 end-effector goal poses at 30 Hz. The goal
poses, along with the Cartesian tolerances, were provided to
RangedIK and Trac-IK, whereas RelaxedIK received only
goal poses due to its inability to accommodate Cartesian
tolerances. We repeated all benchmarks 10 times using two
simulated robots: a 6-DoF Universal Robots URS and a 7-
DoF Rethink Robotics Sawyer. Our experiment consisted of
480,000 discrete solutions and involved 2 robots, 3 meth-
ods, 4 benchmark applications, and 10 randomly generated
configurations for each application.

3https://github.com/uwgraphics/relaxed_ik_core/tree/collision-ik

TABLE I
CARTESIAN TOLERANCES

Benchmark Tolerances

z/m y/m z/m rx/rad  ry/rad  rz/rad
Writing 0 0 0 % % +o0
Spraying +0.05 +0.05 0 0 0 0
Wiping 0 0 0 0 0 +oo
Filling +0.05 0 +0.05 0 +o0 0

D. Benchmark

We developed four benchmark applications with Carte-
sian tolerances (Table |I) to compare our method against
alternative approaches. The first three benchmarks involve
manipulation tasks on a whiteboard positioned in front of
the robot. The facing angle of the whiteboard is uniformly
sampled from [0, 7/2], with 0 and 7/2 representing a vertical
and horizontal whiteboard, respectively.

1) Writing: The robot uses a marker as the end-effector
to draw curves on the whiteboard. The writing trajectory
includes 5 randomly generated cubic Bezier curves. The
application requires the marker tip position to be accurate
but allows the marker to tilt (rotational tolerances about the
marker’s z and y axes) or freely rotate about the marker’s
principal z axis.

2) Spraying: The robot sprays cleaner on the whiteboard.
The spraying positions are uniformly sampled to cover the
whiteboard. Some position tolerances parallel to the white-
board plane (the zy plane) are allowed because the cleaner
will be wiped by an eraser in the next application.

3) Wiping: The robot wipes the whiteboard with a round
eraser, moving along a predefined, lawnmower path to cover
the entire whiteboard. The round eraser’s rotational sym-
metry allows the robot to rotate freely about the eraser’s
principal axis (rotational tolerances about the z axis).

4) Filling Water: The robot fills a cup with the water from
a faucet and places the cup on a tabletop. The positions of
the initial empty cup, the faucet, and the final full cup are
uniformly sampled from three 0.2mx0.2mx0.2m domains
within the robot’s workspace. A cup can be filled as long as
the water flow is within the cup, allowing for some horizontal
position tolerances in the xz plane. The cup’s rotational
symmetry allows the robot to rotate freely about the cup’s
principal y axis.

E. Metrics

We used 7 metrics to measure the accuracy, smoothness,
manipulability and validity of robot motions. Motion accu-
racy was measured using mean position error (m) and mean
rotation error (rad), which were measured only in the degrees
of freedom without tolerances. We used mean joint velocity
(rad/s), mean joint acceleration (rad/s?), and mean joint jerk
(rad/s3) to assess motion smoothness. Motion manipulabil-
ity was measured by mean Yoshikawa manipulability [29],
where a higher value indicates better manipulability. Motion
validity was measured by the total number of solutions that
exceeded the tolerances. We also measured mean movements
in joint space, where larger joint movements result in in-
creased wear and tear on the robot.
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TABLE I
RESULTS FROM THE EXPERIMENT

Method Mean Pos. Mean Rot. Mean Joint Mean Joint Mean Joint Mean Mani- # Exceed Mean Joint

etho Error (m) Error (rad) Vel. (rad/s)  Acc. (rad/s2) Jerk (rad/s3) pulability Tolerances ~ Movement (rad)
w  RangedlK  0.0021+0.002  0.005+0.003 0.042+0.02  0.0269-+0.02 0.224+0.2  0.0544+0.01 0 16.747+8.132
o RelaxedIK  0.0023+0.002  0.007+0.005 0.0504+0.02  0.029940.02 0.336+0.3  0.0533+0.01 0 20.097+8.796
> Trac-IK 1.8e-6+1.6e-6  1.5e-6+1.6e-6 0.061+0.04  1.93334+2.48  115.5364+149  0.048740.01 0 24.195+15.918
5 RangedlK  0.00141+0.001  0.003+0.002 0.034+0.02  0.0265+0.02 0.290+0.3  0.1539+0.04 0 15.897+7.934
;’ RelaxedIK  0.0017+0.001  0.006+0.004 0.041+0.02  0.0280+0.03 0.32840.4  0.1535+0.04 0 19.247+9.783
& Trac-IK 1.3e-6t1.1e-6  2.0e-6+1.6e-6  0.047+0.03  1.4882+1.79 88.930+107  0.1440+0.05 0 22.051+14.029

The range values are standard deviations. The best value among the three methods for each measure is highlighted in bold.

FE Results

As shown in Table |lIL both the non-redundant URS5 and
the redundant Saywer robot benefitted from RangedIK. Com-
pared to RelaxedIK, our method generated more accurate
and smoother robot motions with higher manipulability.
Specifically, RangedIK could reach better Cartesian accuracy
with less joint movement compared to RelaxedIK, and all
solutions generated by RangedIK were within the Cartesian
tolerances. These results indicate that our method RangedIK
could leverage the flexibility offered by ranged-goal tasks to
improve the quality of generated robot motions.

Our results also show that RangedIK could satisfy multiple
kinematics requirements simultaneously. Compared to Trac-
IK, which focuses on generating accurate solutions within
joint limits, RangedIK could generate smoother motions
with larger manipulability. In particular, due to the discon-
tinuity in Equation [T6] Trac-IK generated choppy motions
with large accelerations and jerks.

VI. DEMONSTRATION

The experiment in §V]shows that our method can generate
feasible motions for applications with Cartesian tolerances.
In addition, we demonstrate the effectiveness our method on
a camera-in-hand robot that tracks a user’s hand to capture
clear hand gestures or movements.

Prior works [11], [31] have presented a series of tasks to
generate feasible camera motions (Figure @-A). One of these
tasks is the “look-at task” which steers the robot to look at
the user’s hand. While prior works have set a specific goal
for this task (Figure E|-B left), our method allows us to set a
preferred goal and a range of acceptable goals (Figure [3}B
right). By utilizing the flexibility of the ranged-goal task, our
method generates smoother motions to prevent shaky videos.
The demonstrations are shown in the supplementary video El

VII. DISCUSSION

In this work, we presented RangedIK, a real-time motion
generation method that accommodates specific and ranged-
goal tasks and leverages the flexibility offered by ranged-
goal tasks to generate higher-quality robot motion. Below,
we discuss the limitations and implications of this work.

4https://github.com/uwgraphics/relaxed_ik_core/tree/ranged-ik#
supplementary-video

A.

Keep camera Avoid self-collisions

|_upright Keep joint velocity,

accel. within limits and
prefer them to be small

Minimize camera
movement

Lookatrighthand  Minimize joint jerk

X
Or  Keep hand in view and prefer centralized

Loss Function

Swamp Groove

Fig. 3. A. We apply our method on a camera-in-hand robot, which requires
a set of tasks to enable feasible camera motions. Specific-goal tasks, ranged-
goal tasks with equally valid goals, and ranged-goal tasks with a prefer goal
are in red, green, and blue, respectively. B. The task to track a user’s right
hand can be either a specific-goal task (left) or a ranged-goal task with a
prefer goal (right). We observed that our method generated smoother videos
with flexibility in ranged-goal tasks.

A. Limitations

Our work has some limitations that highlight directions
for future research. While our method can generate real-time
feasible motions, it can lack foresight because the tasks are
defined to find a feasible solution for now. Extension to this
work could investigate ways to incorporate future feasibility
tasks in our optimization-based structure. Also, our method
builds on a non-linear optimization formulation that may get
stuck in local minima. Future work should explore methods
(e.g., warm-start strategies [32]) to enable our method to
escape local minima. Finally, RangedIK treats all tasks as
optimization objectives, which may require scenario-specific
tuning of parameters and weights. Future work can extend
our method to include automatic weight-tuning.

B. Implications

Our results demonstrate that RangedIK can utilize the
flexibility in ranged-goal tasks to generate feasible motion
on-the-fly. We believe that such capability makes our method
applicable in complex real-life scenarios where many, and
potentially competing, tasks need to be achieved simul-
taneously, such as teleoperation or active camera control.
Furthermore, the parametric loss functions presented in our
work could benefit other optimization-based methods, e.g.,
offline motion planning or model predictive control.


https://github.com/uwgraphics/relaxed_ik_core/tree/ranged-ik#supplementary-video
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