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Abstract— Borrowing elementary ideas from solid mechanics
and differential geometry, this presentation shows that the
volume swept by a regular solid undergoing a wide class
of volume-preserving deformations induces a rather natural
metric structure with well-defined and computable geodesics on
its configuration space. This general result applies to concrete
classes of articulated objects such as robot manipulators, and we
demonstrate as a proof of concept the computation of geodesic
paths for a free flying rod and planar robotic arms as well as
their use in path planning with many obstacles.

I. INTRODUCTION

A. Context
The concept of configuration space, first formalized in the

robotics context by Lozano-Pérez [24], is a key element for
any approach to motion planning [20], [21]. In turn, develop-
ing effective algorithms for this task requires equipping the
configuration space with an adequate metric structure, which
is a key factor in developing the sampling and interpolation
strategies that often are at the core of these algorithms.

Lavalle underlines in [21] the importance of the choice
of distance and argues that it must capture within the same
quantity different degrees of freedom of the system which
have different units (for example an angle and a length)
and that this issue can be fixed by considering a physically
meaningful distance. In this paper we postulate that the min-
imal volume swept by a robot between two configurations
is a good candidate in presence of obstacles. This follows
Kuffner’s suggestion in [18] in the case of the motion of a
solid. He writes: Intuitively, an ideal metric for path planning
in SE(3) would correspond to a measure of the minimum
swept volume [...]. Intuitively, minimizing the swept volume
will minimize the chance of collision with obstacles.

We propose in this paper to formalize and extend this
intuition to configuration spaces for regular bodies under-
going a wide class of volume-preserving deformations using
tools from solid mechanics and differential geometry. We
introduce the notion of minimum swept volume distance1 as
the minimum amount over all possible paths of volume to
swept from one configuration to another. First in a very broad
set-theoretical setting and then in a differential setting where
the configuration space is identified to a set of diffeomor-
phisms resembling the construction of Lin and Burdwick in
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the case of rigid bodies [23]. Under some mild assumptions,
we prove that the minimum swept volume is indeed a
distance with well-defined and computable geodesics. This
is intuitively rather natural, but we are not aware of any
previous statements of this result.

In addition to this theoretical contribution, our construc-
tion is an important step toward making the use of swept
volumes in trajectory optimization [15], [30] computationally
realistic. Indeed, traditionally, one first computes the region
swept along a given trajectory, which is very costly and
then measures the volume of the region. This prevents the
optimization of the trajectory with respect to the swept
volume. In comparison, our construction approaches the
swept volume as a sum of local contributions. This allows us
to formulate the problem of computing the minimum swept
volume as an energy minimization problem and to use a state
of the art second-order optimization solver [34].

In our experiments, we compute some geodesics for differ-
ent solids and for some planar robotic arms. We finally use
the minimum swept volume distance and its geodesics for
interpolation in the well-known motion planning algorithm
RRT [21] and show with multiple challenging examples a
significant reduction of the number of nodes explored.

The main contributions of the paper are:
• the construction of a local swept volume operator,
• proofs that the minimum swept volume is a distance on

the configuration space in a set-theoretical setting and
in a differential setting using the local operator,

• a closed form for the operator in the case of a poly
articulated system with rigid bodies, and

• the numerical computation of the minimum swept vol-
ume distance, its geodesics, and their use in RRT.

B. Related work

Swept volume. Several algorithms are available to com-
pute the region of space, swept by a moving robot, using vox-
els [29], [35] or its boundary using meshes [17], [31]. Despite
algorithmic progress both computations remain extremely
expensive. Blackmore and Leu discuss in [5] an analytical
formulation of the swept region that may eventually lead to
an efficient swept volume formulation but since then, this
approach does not appear to have been explored further. Re-
cent works such as [3], [26], [28] build heuristics around the
swept volume to weight a Euclidean distance, unfortunately
this approach tacitly assumes that the swept volume distance
have a Euclidean structure, which is limiting. More recently
Chiang first computes the swept volume of some trajectories
and uses neural networks to train an estimator of the swept
volume [10]. Although this partially addresses the problem of
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Fig. 1. Left: Set-theoretical notations for the volume swept by a body
along a path γ . Right: Illustration of a region swept twice and counted one.

computational cost, neither the quantity used, nor its estimate
constitute a distance on the configuration space.

Configuration space metric structure. Zhang et al. study
in [37] the maximum vertex distance originally proposed
by Lavalle in [21]. Although this distance is derived from
a physical quantity and thus allows the homogenization of
the different degrees of freedom, it may not be adapted to
the problem of exploration in a constrained environment
since the interaction of the system with the environment
will depend on the displacement of all the points and not
only the largest displacement. Zefran et al. extensively study
Riemannian geometries on the configuration space of a
solid and establish the properties necessary for a geometric
structure to respect the fundamental principles of mechanics,
but this study is restricted to the case of a configuration space
isomorphic to SE(3) and does not cover the swept volume
case.

II. SWEPT-VOLUME DISTANCE CONSTRUCTION

A. A set theoretical formulation

Let us equip the set of all compacts of the affine Euclidean
space E3 with the topology induced by the Hausdorff dis-
tance and define a regular body as a compact equal to the
closure of its interior [27]. For the sake of simplicity, we
identify E3 as well as the vector space of its translations with
R3, in the rest of the paper. Although this implies the choice
of a coordinate system, all our construction is independent
of that choice.

In this section we call configuration space, denote by C, a
set of regular bodies with constant volume U > 0. We require
C to be path connected under the Hausdorff topology. Note
that the largest possible configuration space formed by the set
containing all the regular bodies of volume U is itself path
connected. Given a continuous path γ : [0,1]→ C we define
the region swept along the motion γ and the corresponding
swept volume by:

A[γ] =
⋃

t∈[0,1]
γ(t) and V [γ] =V (A[γ])−U, (1)

where V denotes the usual volume. Figure 1 (left) illustrates
the notations.

Lemma 1: Given two configuration B0 and B1 in C, let us
denote by Γ(B0,B1) the set of all continuous paths joining
B0 and B1 in C. The mapping d : C2→ R+ defined by

d(B0,B1) = inf
γ∈Γ(B0,B1)

V [γ] (2)

is a distance on C and we call it the minimum swept volume
distance between B0 and B1.
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Fig. 2. Left: Notations of the differential point of view of the volume
swept by a body along a path. Right: Highlight of the local contribution
at time t, in green the outgoing flux, in red the incoming flux. We also
represent in purple the flow of the static velocity field vq,q̇.

Proof: d is well defined on C2, indeed Γ(B0,B1)
is never empty because C is path connected. Given any
configurations B0 and B1, we have d(B0,B1) ≥ 0 since for
any γ in Γ(B0,B1), B0 (and of course B1) is a subset of A[γ]
with volume U . The function d is symmetric by definition
(any path joining B0 and B1 also joins B1 and B0), and it
satisfies the triangular inequality because given any path γ01
joining B0 to B1 and any path γ12 joining B1 and B2, the
path γ02 obtained by concatenating γ01 and γ12 in B1 joins B0
and B2, with V [γ02] = V (A[γ01]∪A[γ12])−U ≤ V (A[γ01])+
V (A[γ12])− 2U ≤ V [γ01] +V [γ12] since B2 ⊂ A[γ12]∩A[γ23]
with volume U . Now suppose B1 6= B0. We can always find
an open ball which is in B0\B1 (by swapping B0 and B1 if
needed), so we have: V (B0∪B1) =V (B1)+V (B0\B1)>U .
For any path γ joining B0 to B1 we have V [γ] = V (A[γ])−
U ≥ V (B0 ∪B1)−U > 0. Trivially, we have d(B0,B0) = 0
because a path γ0 such that γ0(t) = B0 for any t in an open
interval verify V [γ0] =V (B0)−U = 0.
The minimum swept volume distance d is generally not a
geodesic distance. The length of a geodesic must be the
sum of the lengths of its two half sub-paths, but the swept
volume V count a region visited n times only once. Then
for a candidate geodesic the sum of the swept volumes for
two sub-paths visiting the same region may not be equal to
the swept volume of the complete path. We illustrate the
phenomenon in Figure 1 (right)

In robotics we need to be able to build geodesics to
interpolate between configurations. To obtain a distance with
geodesics we now use a differential setting and construct the
distance as an integral of local contributions.

B. A differential formulation

Using a slightly different point of view, borrowed from
solid mechanics [2], we now consider a regular solid of
reference B in R3 whose boundary ∂B is a smooth ori-
entable surface without boundary. We consider a space F

of diffeomorphisms of R3 to allow for deformations of the
reference body B. We require that F be a path connected
differentiable manifold with respect to the strong functional
topology, and that its elements be isochoric, i.e., preserve
volume and orientation in R3 [2]. Thus, for all q in F, q
is a diffeomorphism of R3 and q(B) is a regular body with



the same volume as B. We denote by E the mapping from
F to C defined by q 7→ Bq and we make a first hypothesis
(H1): The embedding function E is injective. With (H1), E is
a bijection between F and C= E(F) so we can identify the
diffeomorphism q and the regular body Bq = E(q) = q(B).

A differentiable path γ in F is an F-isotopy of the ambient
space, i.e., a smooth map I ×R3 → R3 where I is some
interval of the real line such that for any time t, the mapping
γt : x 7→ γ(t,x) is an element of F. We can define its time
derivative γ̇t : R3→ R3 for x in R3 as γ̇t(x) = ∂

∂ t γ(t,x). For
each t, the mapping γ̇t belongs to the tangent space Tγt F.
Regardless of any path, a configuration q in F and an element
q̇ in TqF induces a velocity field on R3 defined as vq,q̇(y) =
q̇◦q−1(y). Note that we use the variable name x to describe a
point of the reference body B in R3 before the transformation
and y = q(x) for a point of Bq. We illustrate the notation
in Figure 2 (left). Note also that since the elements of F

are isochoric diffeomorphisms, the vector field vq,q̇ has zero
divergence2 [2]. We can now define the local swept-volume
as the flux of the velocity vector field through the boundary
∂Bq of Bq:

F(q, q̇) =
ˆ

∂Bq

max(0,< vq,q̇(y),nq(y)>)dA(y), (3)

where nq(y) is the unit normal vector pointing outward at
point y of the boundary ∂Bq. Note that taking the max
ensures we only consider the outgoing flux since incoming
flux does not contribute to the swept volume as illustrated in
Figure 2 (right). For a path γ the additional volume swept by
Bγt between t and t + δ t is F(γt , γ̇t)δ t. We can now define
the flux-based swept volume associated with γ as the sum
of all local contribution:

V ′[γ] =
ˆ 1

0
F(γt , γ̇t)dt. (4)

Note that unlike the ordinary swept volume V [γ], which
counts the contribution of a region of space visited n times
only once, V ′[γ] counts it n times. When no region is visited
more than once, V ′[γ] =V [γ].

In Eq. (4), F can be interpreted as a Lagrangian on F and
the flux-base swept volume V ′[γ] as the action of F along
γ . We can define the least action of F between any pair of
configurations B0 and B1 as

d′(B0,B1) = inf
γ∈Γ1(B0,B1)

V ′[γ], (5)

where Γ1(B0,B1) is the set of differentiable paths in F such
that E(γ0) = γ0(B) = B0 and E(γ1) = γ1(B) = B1.

In the remaining part of this subsection, we prove that d′

as in (5) defines a distance on and we discuss the existence of
its geodesics. The key point to prove is that for all q in F the
mapping Fq : q̇ 7→ F(q, q̇) defines a norm on the vector space
TqF, which makes F a reversible Finslerian geometry [19]
and in turn ensures that d′ is a distance. In this context, the
existence of a geodesic between any pair of configurations is

2It is a direct consequence of the transport theorem.

given by the well-known Hopf-Rinow theorem that we will
detail in our case. The study of the differential regularity of
the operator is out of the scope of this article.

For a path γ in F the velocity field vγt ,γ̇t is not static in
general. If the velocity field is static, the path is exactly the
flow induced by the ordinary differential equation (ODE)
associated to this static field. Moreover, for an element q
and an element q̇ of the tangent TqF, we can uniquely
create a path γq,q̇ solution of the ODE associated to the
static velocity field vq,q̇ with the initial conditions given by
γ

q,q̇
0 = q and γ̇

q,q̇
0 = q̇. γq,q̇ is the unique path passing through

q with derivative q̇ which induce a static vector field equal
to vq,q̇. The vector field vq,q̇ and the path γq,q̇ are illustrated
in Figure 2 (right). We now need a second hypothesis: these
paths remain at least locally in F:

(H2) : ∀q, q̇,∃ε > 0,∀t ∈ (−ε,+ε),γq,q̇
t is an element of F.

Theorem 2: Under the hypotheses (H1) and (H2) the
mapping:

Fq : q̇ 7→
ˆ

∂Bq

max(0,< vq,q̇(x),nq(x)>)dA(x) (6)

defines a norm on TqF.
Proof: Let us consider some fixed q in F. Using

Stokes’ theorem, the fact that vq,q̇ has a null divergence,
that max(0,C) is the positive part of a real C and that
∂Bq = q(∂B) we obtain:

Fq(q̇) =
1
2

ˆ
q(∂B)

|< vq,q̇(x),nq(x)> |dA(x). (7)

From this formulation it follows easily from the linearity of
the integral and the inner product as well as from the norm
properties of the absolute value that Fq is positive Fq(q̇) ≥
0, homogeneous Fq(λ q̇) = |λ |Fq(q̇) and sub-additive Fq(q̇+
q̇′)≤ Fq(q̇)+Fq(q̇′) for any q̇, q̇′ in TqF and λ in R.

Now, let us consider q̇ such that Fq(q̇) = 0. We use (H2)
to construct the path γq,q̇. Since the integrand in Eq. (6) is
always positive, Fq(q̇) = 0 implies that < vq,q̇(y),nq(y)>= 0
for every y in ∂Bq Recall that ∂Bq is a compact surface
without boundary because it is isomorphic to ∂B. If a vector
field is everywhere tangent to a compact surface without
boundary, its integral curves passing by a point on this
surface stay on the surface. But γq,q̇ is exactly the flow of
vq,q̇ so we have that γ

q,q̇
t (y) is in ∂Bq for every y in ∂Bq and

t in (−ε,+ε).
We have γ

q,q̇
t (∂B) ⊂ q(∂B) and in turn E(γq,q̇

t ) = E(q)
because ∂B is a compact orientable surface without boundary
for all t in (−ε,+ε). Using E injectivity from (H1) we have
γ

q,q̇
t = q which makes γq,q̇ a constant path on (−ε,+ε) and

in turn q̇ = γ̇
q,q̇
0 = 0, which concludes the proof.

Remark 1: Both (H1) and (H2) are necessary, and we can
construct a counter example when either (H1) or (H2) is not
satisfied.
When (H1) and (H2) and thus Theorem 2 holds, F is a
reversible Finslerian geometry and d′ as defined in Eq. (5)
is automatically a distance on the configuration space. To
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Fig. 3. Geodesics for different systems and different pairs of configurations using the minimum swept volume metric structure (top row) and the canonical
Riemannian one (bottom row). From left to right: a rod (x2), an arrow-head shape, a bracket shape, a double pendulum, and a triple pendulum.

certify the existence of d′ geodesics between all pairs of
configurations, we rely on topological properties of the space
F equipped with d′ and the well-known Hopf-Rinow [6]
theorem. In our case it can be written as follows:

Theorem 3 (Hopf-Rinow): If (H1) and (H2) hold and F

equipped with the distance d′ is locally compact, complete,
and path connected, then any pair of configurations can be
joined by a geodesic.

C. The case of a poly articulated system with rigid bodies

Single rigid body. When the system is a solid B freely
moving the diffeomorphisms are exactly the isometries and
we can identify F with the space SE(3) of solid placements.
Given [R, p] in SE(3) where R is a rotation matrix and p
a vector of R3, as well as [Ṙ, ṗ] in T[R,p] SE(3), we define
the related diffeomorphism and its tangent element as q(x) =
Rx+ p and q̇(x) = Ṙx+ ṗ.

Lemma 4: Let [ω]× = RT Ṙ the skew-symmetric form of
ω and u = RT ṗ, where ω and u are respectively the instan-
taneous rotation axis and the instantaneous linear velocity of
the local frame. We have

F(q, q̇) = GB(ω,u) (8)

=
1
2

ˆ
∂B
|det(ω,x,n(x))+< u,n(x)> |dS(x), (9)

where n(x) is the normal to ∂B in x, and dS(x) is the element
of surface on ∂B at the same point.

Proof: We start from the formulation of F in Eq. (7).
Since q(∂B) is from ∂B by the rigid transformation defined
by R and p, we have nq(y) = Rn(q−1(y)). Recall that vq,q̇ =
q̇ ◦ q−1. Using the change of variables x = q−1(y) with a
Jacobian determinant equal to 1 because of the isochorism,
we have:

F(q, q̇) =
1
2

ˆ
∂B
|< (Ṙx+ ṫ),Rn(x)> |dS(x). (10)

Using the adjoint RT of R and the relation < [ω]×x,n >=
< ω× x,n >= det(ω,x,n) concludes the proof.
In Eq. (8), (ω,u) is a twist, an element of the spatial
algebra as detailed by Featherstone in [13]. The integral GB

is calculated over the fixed reference body B which allows
us with a simple, if tedious, calculation to find a closed form
of GB for a polytope body B. See Appendix IV-A for details.

It is important to note that F depends on q and q̇ only
through the twist (ω,u) which comes from [[ω]×,u] =
[R, p]−1[Ṙ, ṗ] which is the Left lie algebra representation of
[Ṙ, ṗ] as detailed in [36]. This means that the local swept
volume operator F is left invariant, which in turn implies
that the local swept volume does not depend on the position
and orientation of the system but only on its velocity. The
left invariance of F allows us to use Theorems 2 and 3 in
the following corollary:

Corollary 4.1: If B has no continuous symmetry group,
the distance d′ is defined on SE(3) and any pair of config-
urations can be joined by a geodesic.

Proof: For (H1) to hold with F = SE(3), it suffices
by definition that the body B does not have any continuous
symmetry group. The symmetries of a compact are the group
of solid transformations by which the image of the compact
is the compact itself. If the functional space contains such
a group, E is not injective. On the other hand, if B has no
symmetry group, E is necessarily injective on SE(3).

Since SE(3) is a Lie group, the hypothesis (H2) is always
verified. On a Lie group, the path induced by the static
velocity field are exactly the exponential map of the group
[11]. If the configuration space is the whole group SE(3),
the exponential map output always belongs to SE(3) and
(H2) is verified. F is left invariant [19] and SE(3) equipped
with a norm is always locally compact and path connected.
It is known that if a norm on a group is left invariant then
it defines a complete topology [19]. Using the Hopf-Rinow
theorem 3 concludes the proof.

Multiple rigid bodies. When B is the disjoint union of its
N rigid links Bi we can associate the configuration space to
a subset of SE(3)N . If we assume first that the configuration
space does not contain configuration for which the system is
self colliding, C will be made of isochoric diffeomorphisms
and the local swept volume is the sum of the volumes swept



by each link:

F(q, q̇) =
N

∑
i=1

GBi (Ji(q)q̇) , (11)

where Ji(q) is the Jacobian of the forward kinematic for
the link i. More precisely, Ji(q)q̇ is the vector of the twists
which represents the instantaneous velocity of the link i when
the system is in configuration q and varies according to
q̇, see [13] for details. Analytic derivatives of the forward
kinematic Jacobian are well known [7] and we can easily
compute the local operator F for a poly-articulated system.
Moreover, note that if we interpret the forward kinematic
as an immersion of the configuration space in SE(3)N , F is
nothing else than the pullback of the norm on the Cartesian
product of N copies of SE(3) respectively equipped with the
norms GBi . The previous reasoning still holds even when
the poly-articulated system may intersect itself, the only
difference being that a collision region will be counted once
for each link involved in the collision.

Corollary 4.2: For a poly-articulated system with N rigid
links such that none of the Bi possesses a continuous
symmetry group and the Jacobian of the forward kinematic
always has full rank, the distance d′ is well defined on the
configuration space and any pair of configurations can be
joined by a geodesic.

Proof: If the Jacobian has full rank, the forward
kinematic is an immersion of C in SE(3)N . If none of
the Bi possesses a continuous symmetry group, each GBi

defines a complete Finslerian geometry on SE(3). Using
that the pullback by an immersion of the Cartesian product
of a complete Finslerian geometry is a complete Finslerian
geometry [6] concludes the proof.

III. EXPERIMENTS

A. Technical details

To illustrate our construction we restrict ourselves to the
case of a 2D physical space with 2D solids in motion and
planar poly-articulated arms. The previous section provides a
method for the computation of the distance and its geodesics
in these cases. First, we implement GB in the automatic dif-
ferentiation framework CasADi [1]. Second, we use CasADi
in conjunction with the rigid body library Pinocchio [8] to
obtain a differentiable implementation of the forward kine-
matic Jacobian and in turn a differentiable implementation of
F when using a smooth approximation of the absolute value
as in [33]. In Finslerian geometry [12], geodesics are exactly
the stationary trajectories for the energy functional associated
with F [19]. Now we translate the infinite dimensional
minimization problem into a finite dimensional one using
M time steps. For a pair of configurations (a,b) in C2, we
now call q = (qi)i=0..M an array of M + 1 elements of the
configuration space C joining a = q0 and b = qM as well as
w = (wi)i=1..M an array of M elements of the configuration
space lie algebra c which represent the M tangential vectors
that maps qi to qi+1 through the group exponential map [11].

We solve the multiple shooting problem:

min
w∈cM ,q∈CM+1

M−1

∑
k=0

F(qk,wk)
2

qk+1 = Expqk
(wk), k = 0..M−1; q0 = a,qM = b,

(12)

where Expq is the exponential map of the configuration
space Lie group in configuration q implemented through the
Pinocchio library [9]. We solve this minimization program
using an off the shelf optimizer based on the interior point
method [25] because we can construct an initial guess that
respects the constraints. As this problem is not convex in
general, we use multiple initial guesses which are constructed
with the Riemannian geodesic and a random perturbation. To
compute d′(a,b) it is sufficient to compute the sum of the
terms F taken on the steps of path solution to the problem
(12).

Note on complexity. We could use a Riemannian ap-
proximation of F given by g = ∂q̇q̇F2 to obtain differential
equations characterizing the geodesics [14], but it would still
require solving a bounded value problem with the same order
of complexity. The problem we solve is in general non-
convex, and a global convergence study is out of the scope of
this paper. The overall complexity of the geodesics’ compu-
tation is of the same order as that of trajectory optimization
algorithms such as dynamic differential programming [30],
[15] but without the dynamical constraints because in our
case the control variable is exactly the velocity. In motion
planning, we use the geodesics as the paths associated to
the tree edges [21] and the distance for the nearest neighbor
searches. Thus, when we use the new metric, the computa-
tional complexity of the planning is of the same order as
that of methods combining RRT and trajectory optimization
such as [16]. However, in our case the cost of the trajectory
optimization problem is a distance, and we can combine
the use of efficient spatial trees structure such as KD tree
[4] with the optimization procedure for every new node
instead of a two stages approach as in [16]. Finally, even
if dealing with obstacles is the main motivation behind the
choice of the minimum swept volume distance as a metric
structure, the distance and its geodesics construction do not
depend on any specific environment choice. For a given
system, we can first compute the solution of the optimization
procedure for a large exploration of the free space and then
use this computation to construct initial guesses for the
geodesics and estimators for the distances when we explore
specific environments. On the other hand, most trajectory
optimization methods use the knowledge of the environment
in the optimization procedure and no such pre-computation
can be done.

In the remaining part of this section, we give a proof of
concept of the minimum swept volume distance advantages
over the canonical Riemannian distance by visualizing the
geodesics of different systems and by observing the gain in
terms of nodes needed in RRT. In the context of rigid body
dynamic, the geodesic of the canonical Riemannian metric
structure is the linear or spherical linear interpolation of each



33 nodes 170 nodes 337 nodes 275 nodes 177 nodes

a. 403 nodes b. 1657 nodes c. 1823 nodes d. 833 nodes e. 1826 nodes

Fig. 4. Different motion planning problems solved with RRT using the minimum swept volume metric structure (top row) and the canonical Riemannian
one (bottom row). From left to right: a. some random boxes, b. a narrow passage, c. a crossroad, d. a random cluttered environment and e. a narrow
passage. The shape in red (resp green) is the starting (resp goal) configuration. In blue some snapshots of the final trajectory. We plot in dark green the
position of the end effector for all the configurations in the tree.

degree of freedom.

B. Geodesics

We compute the geodesics of the minimum swept volume
distance, and we compare them with the canonical Rieman-
nian geodesics for different systems and different pairs of
configurations. The trajectories obtained are illustrated in
Figure 3. We observe that the geodesics can have quite varied
behaviors, but we often observe some characteristic sub paths
of the motion that seems to be steady in some sense. This is
an instance of the turnpike property extensively studied by
Trelat [32] in optimal control; the turnpike property of an
optimal control problem is the fact that optimal trajectories
decompose into transient phases and a steady state for
most of the motion. A steady state is a solution of the
static optimization problem associated to an optimal control
problem. In the context of rigid body motion and minimal
swept volume metric structure, it ma correspond to regular
motions such as pure translation or pure rotation. For the
rod and the arrowhead shape the turnpike is a translation
in the direction perpendicular to the shorter edge. For the
bracket shape it is a rotation with a center such that the
edges are tangential to the circles induced by the rotation.
For the arms the turnpike is the rotation of the base link
when the remaining links are orthogonal to the base link.

C. Motion planning

Since the optimization problem 12 is in general non-
convex, it is important to check that the empirical solutions
verify the axioms of a distance. To validate the use of the
minimum swept volume distance in RRT [22] we verify the
triangular inequality on 100000 triplets of random configu-
rations. The accuracies are 97.1% for the rod, 98.2% for the
arrowhead shape, 96.7% for the bracket shape, 91.2% for
the double pendulum and 87.2% for the triple pendulum.

We compare the usage of the minimum swept volume
metric structure to the canonical Riemannian one in RRT

when solving the motion planning problems illustrated in
Figure 4. We solve the problem of an arrowhead shape
moving in a randomly generated set of boxes, a narrow
passage, and a crossroad. We also solve the motion of
a two-link arm moving in a randomly generated cluttered
environment and in a set of tightened obstacles. For each
scenario we select a pair of configurations and we run RRT
until they are connected. We can observe in Figure 4 how
RRT needs far fewer nodes to solve the problem when using
the minimum swept volume metric structure instead of the
canonical Riemannian one.

For the case of the narrow passage Fig. 4 b., we plot
in Figure 5 the average number of nodes needed to solve
the problem in function of the tunnel width. The advan-
tage becomes more marked as the passage narrows. Let
us consider two configurations of the arrowhead shape on
either side of the narrow passage with their centers aligned
with the tunnel. Based on the geodesics observed in Figure
3, the Riemannian geodesics will be this pure translation
if in addition the orientation of the configurations are the
same and aligned with the tunnel direction. On the other
hand, the turnpike property of the minimum swept volume
geodesics will naturally produce this translation whatever the
orientation of the configurations. Thus, the narrowness of the
tunnel affects the requirements in position but also in terms
of orientation in the Riemannian case. This explains why the
advantage of the minimum swept volume metric structure is
even more important when the passage gets narrower.

IV. CONCLUSION

This paper lays the theoretical foundations of the minimum
swept volume metric structure on the configuration space.
Our construction allows us to formulate the swept volume
as an integral of local contributions so tools from Finslerian
geometry ensure the existence of the geodesics and provide
a computation procedure.
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Fig. 5. Average number of nodes required to solve a narrow passage
problem using RRT with the minimum swept volume metric structure or
the canonical Riemannian one over 50 random seeds.

Our metric structure addresses some issues raised in the
introduction because it is unique and does not rely on any
parametrization choice. Our experiments do suggest it is
appropriate for exploration in the presence of obstacles.
These two points makes the strength of our construction.
The fact that it is useful for dense environment while being
agnostic to the environment is a powerful feature.

There are several avenues for further work. First, we
plan to implement a dedicated geodesic solver in C++ in a
general 3D setting. We will then properly benchmark the total
computational time of the approach. Second, the turnpike
property framework [32] seems to be a powerful tool to
study the convergence of algorithms using the minimum
swept volume metric structure. On the other hand, the
Riemannian approximation g= ∂q̇,q̇F2 may also lead to other
applications: it can be used to characterize the geodesics
by differential equations, but it is also a simple way to
create a new sampling method for the configuration space.
We can indeed sample the configuration space following a
law proportional to det(∂q̇,q̇F2) the volume element of our
geometry. This will favor tricky regions where displacements
sweep more volume.

Geometric structures may have properties useful in robotic
applications and we think that the formalism behind the
minimum swept volume distance is a step in this direction.

APPENDIX

A. Closed form for a solid in motion

The following calculation apply for a generic polyhedral
body in a 3D physical space. Let us consider a polyhedral
reference body B with I facets and each facet fi is a collection
of Ji edges represented by the pair of points xs

i, j,x
e
i, j. We call

Ai the area of facet i and ni the normal vector to the facet.

We have GB(ω,u) = 1
2 ∑

I
i=1 gi(ω,u) with:

gi(ω,u) =

{
Ai|< ni,u > | ω ∝ ni

1
6 ∑

Ji
k=1

[le
i, j |l

e
i, j |+ls

i, j |l
s
i, j |+χ(le

i, j ,l
s
i, j)](z

s
i, j−ze

i, j)

‖ω‖2−<ω,ni>2 ω�∝ni,

where lα
i, j = det(ω,xα

i, j,ni)+ < u,ni > and zα
i, j =< ω,xα

i, j >

− < ω,ni >< xα
i, j,ni > where χ(x,y) = xy |x|−|y|x−y , χ(x,x) =

x|x|.
Proof: We decompose the integral into a sum of

the integrals on each facet and we have gi(ω,u) =´
fi
|det(ω,x,ni)+ < u,ni > |dS(x). If there is a real λ such

that ω = λni, the integrand does not depend on x and we have
the result. Otherwise let us construct the direct orthonormal
basis (uz,ul ,ni) with uz =

ω−<ω,ni>ni√
‖ω‖2−<ω,ni>2

, such that he plan

span by (uz,ul) contain the facet and we have dS = dldz
where l and z are the corresponding coordinate. With this
basis we have

det(ω,x,ni) = det(ω−< ω,n > ni,x,ni) =
√
‖ω‖2−< ω,ni >2l.

Applying the change of variable l 7→√
‖ω‖2−< ω,n >2l+ < u,n > and z 7→√
‖ω‖2−< ω,n >2 in the integral we can calculate:

gi(ω,u) =
1

‖ω‖2−< ω,ni >2

ˆ
φ( fi)
|l|dldz,

where φ( fi) is the l-z transform of facet fi, if we note the l-z
value of a vertex lα

j ,z
α
j where α stands for e or s we have

the proper expression for lα
j ,z

α
j in the frame.

We just need to calculate |l|dldz over the polygon φ(F)
to finish. Using the fact that the edges constitute a closed
loop we have by integrating l:ˆ

φ( fi)
|l|dldz =

1
2

L

∑
j=1

ˆ zs
j

ze
j

l j(z)|l j(z)|dz

Using the affine parametrization of an edge j we have
li, j(z) =

z−zs
i, j

ze
i, j−zs

i, j
(le

i, j− ls
i, j)+ ls

i, j and use it for a last change of
variable and we have:ˆ

φ( fi)
|l|dldz =

1
6 ∑

j

ze
i, j− zs

i, j

le
i, j− ls

i, j
(|ls

i, j|3−|le
i, j|3)

=
1
6 ∑

j
(zs

i, j− ze
i, j)[l

s
i, j|ls

i, j|+ le
i, j|le

i, j|+χ(le
i, j, l

s
i, j)]

Hence the result when we introduce χ such as χ(x,y) =
xy |x|−|y|x−y , χ(x,x) = x|x| for a factorization that also work
when le

i, j = ls
i, j.
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