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Abstract— Powered by deep representation learning, re-
inforcement learning (RL) provides an end-to-end learning
framework capable of solving self-driving (SD) tasks without
manual designs. However, time-varying nonstationary environ-
ments cause proficient but specialized RL policies to fail at
execution time. For example, an RL-based SD policy trained
under sunny days does not generalize well to rainy weather.
Even though meta learning enables the RL agent to adapt to
new tasks/environments, its offline operation fails to equip the
agent with online adaptation ability when facing nonstationary
environments. This work proposes an online meta reinforcement
learning algorithm based on the conjectural online lookahead
adaptation (COLA). COLA determines the online adaptation
at every step by maximizing the agent’s conjecture of the
future performance in a lookahead horizon. Experimental
results demonstrate that under dynamically changing weather
and lighting conditions, the COLA-based self-adaptive driving
outperforms the baseline policies regarding online adaptability.
A demo video, source code, and appendixes are available at
https://github.com/Panshark/COLA

I. INTRODUCTION

Recent breakthroughs from machine learning [1]–[3] have
spurred wide interest and explorations in learning-based
self driving (SD) [4]. Among all the endeavors, end-to-end
reinforcement learning [5] has attracted particular attention.
Unlike modularized approaches, where different modules
handle perception, localization, decision-making, and motion
control, end-to-end learning approaches aim to output a
synthesized driving policy from raw sensor data.

However, the limited generalization ability prevents RL
from wide application in real SD systems. To obtain a
satisfying driving policy, RL methods such as Q-learning and
its variants [2], [6] or policy-based ones [7], [8] require an
offline training process. Training is performed in advance in
a stationary environment, producing a policy that can be used
to make decisions at execution time in the same environments
as seen during training. However, the assumption that the
agent interacts with the same stationary environment as train-
ing time is often violated in practical problems. Unexpected
perturbations from the nonstationary environments pose a
great challenge to existing RL approaches, as the trained
policy does not generalize to new environments [9].

To elaborate on the limited generalization issue, we con-
sider the vision-based lane-keeping task under changing
weather conditions shown in Figure 1. The agent needs to
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Fig. 1: An illustration of conjectural online lookahead adap-
tation. When driving in a changing environment, the agent
first uses a residual neural network and bayesian filtering to
calibrate its belief at every time step about the hidden mode.
Based on its belief, the agent conjectures its performance
in the future within a lookahead horizon. The policy is
adapted through conjectural lookahead optimization, leading
to a suboptimal (empirically) online control.

provide automatic driving controls (e.g., throttling, braking,
and steering) to keep a vehicle in its travel lane, using only
images from the front-facing camera as input. The driving
testbed is built on the CARLA platform [10]. As shown
in Figure 1, different weather conditions create significant
visual differences, and a vision-based policy learned under a
single weather condition may not generalize to other condi-
tions. As later observed in one experiment [see Figure 3a],
a vision-based SD policy trained under the cloudy daytime
condition does not generalize to the rainy condition. The
trained policy relies on the solid yellow lines in the camera
images to guide the vehicle. However, such a policy fails on
a rainy day when the lines are barely visible.

The challenge of limited generalization capabilities has
motivated various research efforts. In particular, as a
learning-to-learn approach, meta learning [11] stands out
as one of the well-accepted frameworks for designing fast
adaptation strategies. Note that the current meta learning
approaches primarily operate in an offline manner. For exam-
ple, in model-agnostic meta learning (MAML) [12], the meta
policy needs to be first trained in advance. When adapting

ar
X

iv
:2

21
0.

03
20

9v
3 

 [
cs

.R
O

] 
 8

 M
ar

 2
02

3



the meta policy to the new environment in the execution
time, the agent needs a batch of sample trajectories to
compute the policy gradients to update the policy. However,
when interacting with a nonstationary environment online,
the agent has no access to prior knowledge or batches of
sample data. Hence, it is unable to learn a meta policy before-
hand. In addition, past experiences only reveal information
about previous environments. The gradient updates based
on past observations may not suffice to prepare the agent
for the future. In summary, the challenge mentioned above
persists when the RL agent interacts with a nonstationary
environment in an online manner.

Our Contributions To address the challenge of limited
online adaptation ability, this work proposes an online meta
reinforcement learning algorithm based on conjectural online
lookahead adaptation (COLA). Unlike previous meta RL
formulations focusing on policy learning, COLA is con-
cerned with learning meta adaptation strategies online in
a nonstationary environment. We refer to this novel learn-
ing paradigm as online meta adaptation learning (OMAL).
Specifically, COLA determines the adaptation mapping at
every step by maximizing the agent’s conjecture of the
future performance in a lookahead horizon. This lookahead
optimization is approximately solved using off-policy data,
achieving real-time adaptation. A schematic illustration of
the proposed COLA algorithm is provided in Figure 1.

In summary, the main contributions of this work include
that 1) we formulate the problem of learning adaptation
strategies online in a nonstationary environment as online
meta-adaptation learning (OMAL); 2) we develop a real-
time OMAL algorithm based on conjectural online lookahead
adaptation (COLA); 3) experiments show that COLA equips
the self-driving agent with online adaptability, leading to self-
adaptive driving under dynamic weather.

Fig. 2: An example of lane-keeping task in an urban
driving environment under time-varying weather conditions.
Dynamic weather is realized by varying three weather pa-
rameters: cloudiness, rain, and puddles. Different weather
conditions cause significant visual differences in the low-
resolution image.

II. SELF-DRIVING IN NONSTATIONARY ENVIRONMENTS:
MODELING AND CHALLENGES

We model the lane-keeping task under time-varying
weather conditions shown in Figure 2 as a Hidden-Mode
Markov Decision Process (HM-MDP) [13]. The state input
at time t is a low-resolution image, denoted by st ∈ S. Based

on the state input, the agent employs a control action at ∈ A,
including acceleration, braking, and steering. The discrete
control commands used in our experiment can be found in
Appendix Section III. The driving performance at st when
taking at is measured by a reward function rt = r(st, at).

Upon receiving the control commands, the vehicle changes
its pose/motion and moves to the next position. The
new surrounding traffic conditions captured by the camera
serve as the new state input subject to a transition kernel
P (st+1|st, at; zt), where zt ∈ Z is the environment mode or
latent variable hidden from the agent, corresponding to the
weather condition at time t. The transition P (st+1|st, at; zt)
tells how likely the agent is to observe a certain image st+1

under the current weather conditions zt. CARLA simulator
controls the weather condition through three weather pa-
rameters: cloudiness, rain, and puddles, and zt is a three-
dimensional vector with entries being the values of these
parameters.

In HM-MDP, the hidden mode shifts stochastically ac-
cording to a Markov chain pz(zt+1|zt) with initial distri-
bution ρz(z1). As detailed in the Appendix Section III, the
hidden mode (weather condition) shifts in our experiment
are realized by varying three weather parameters subject to
a periodic function. One realization example is provided
in Figure 2. Note that the hidden mode zt, as its name
suggested, is not observable in the decision-making process.
Let It = {st, at−1, rt−1} be the set of agent’s observations
at time t, referred to as the information structure [14]. Then,
the agent’s policy π is a mapping from the past observations
∪tk=1Ik to a distribution over the action set ∆(A).

a) Reinforcement Learning and Meta Learning: Stan-
dard RL concerns stationary MDP, where the mode remains
unchanged (i.e., zt = z) for the whole decision horizon H .
Due to stationarity, one can search for the optimal policy
within the class of Markov policies [15], where the policy
π : S → ∆(A) only depends on the current state input.

This work considers a neural network policy π(s, a; θ), θ ∈
Θ ⊂ Rd as the state inputs are high-dimensional images. The
RL problem for the stationary MDP (fixing z) is to find an
optimal policy maximizing the expected cumulative rewards
discounted by γ ∈ (0, 1]:

max
θ
Jz(θ) := EP (·|·;z),π(·;θ)[

H∑
t=1

γtr(st, at)]. (1)

We employ the policy gradient method to solve
for the maximization using sample trajectories τ =
(s1, a1, . . . , sH , aH). The idea is to apply gradient descent
with respect to the objective function Jz(θ). Following
the policy gradient theorem [7], we obtain ∇Jz(θ) =
E[g(τ ; θ)], where g(τ ; θ) =

∑H
h=1∇θ log π(ah|sh; θ)Rh(τ),

and Rh(τ) =
∑H
t=h r(st, at). In RL practice, the policy

gradient ∇Jz(θ) is replaced by its MC estimation since
evaluating the exact value is intractable. Given a batch of
trajectories D = {τ} under the policy π(·|·; θ), the MC
estimation is ∇̂J(θ,D(θ)) := 1/|D|

∑
τ∈D(θ) g(τ ; θ). Our

implementation applies the actor-critic (AC) method [16], a



variant of the policy gradient, where the cumulative reward
Rh(τ) in g(τ ; θ) is replaced with a Q-value estimator (critic)
[16]. The AC implementation is in Appendix Section IV.

To improve the adaptability of RL policies, meta reinforce-
ment learning (meta RL) aims to find a meta policy θ and
an adaptation mapping Φ that returns satisfying rewards in
a range of environments when the meta policy θ is updated
using Φ within each environment. Mathematically, meta RL
amounts to the following optimization problem [17]:

max
θ,Φ

Ez∼ρz [Jz(Φ(θ,Dz))], (2)

where the initial distribution ρz gives the probability that
the agent is placed in the environment z. Dz denotes a
collection of sample trajectories under environment z rolled
out under θ. The adaptation mapping Φ(θ,Dz) adapts the
meta policy θ to a new policy θz fine-tuned for the specific
environment z using Dz . For example, the adaptation map-
ping in MAML [12] is defined by a policy-gradient update,
i.e., Φ(θ,Dz) = θ + α∇̂Jz(θ,Dz), where α is the step size
to be optimized [18]. Since the meta policy maximizes the
average performance over a family of tasks, it provides a
decent starting point for fine-tuning that requires far less data
than training θz from scratch. As a result, the meta policy
generalizes to a collection of tasks using sample trajectories.

b) Challenges in Online Adaptation: Meta RL formu-
lation reviewed above does not fully address the limited
adaptation issue in execution time since (2) does not include
the evolution of the hidden mode zt+1 ∼ pz(·|zt). When
interacting with a nonstationary environment online, the
agent cannot collect enough trajectories Dzt for adaptation
as zt is time-varying. In addition, past experiences Dzt only
reveal information about the previous environments. The
gradient updates based on past observations may not suffice
to prepare the agent for the future.

III. CONJECTURAL ONLINE LOOKAHEAD ADAPTATION

Instead of casting meta learning as a static optimization
problem in (2), we consider learning the meta-adaptation
online, where the agent updates its adaptation strategies at
every step based on its observations. Unlike previous works
[17], [19], [20] aiming at learning a meta policy offline, our
meta learning approach enables the agent to adapt to the
changing environment. The following formally defines the
online meta-adaptation learning (OMAL) problem.

Unlike (2), the online adaptation mapping relies on online
observations ∪tk=1Ik instead of a batch of samples Dz: the
meta adaptation at time t is defined as a mapping Φt(θ) :=
Φ(θ,∪tk=1Ik). Let rπt (st; θ) := Ea∼π(·|st;θ)[rt(st, a)] be the
expected reward. The online meta-adaptation learning in the
HM-MDP is given by

max
{Φt}Ht=1

Ez1,z2,··· ,zH [

H∑
t=1

rπ(st; Φt(θ))], (OMAL)

where zt+1 ∼ pz(·|zt), t = 1, . . . ,H − 1, θ =
arg maxEz∼ρz [Jz(θ)]. Some remarks on (OMAL) are in or-
der. First, similar to (1) and (2), (OMAL) needs to be solved

in a model-free manner as the transition kernel P (·|·; zt)
regarding image inputs is too complicated to be modeled or
estimated. Meanwhile, the hidden mode transition pz is also
unknown to the agent. Second, the meta policy in (OMAL) is
obtained in a similar vein as in (2): θ maximizes the rewards
across different environments, providing a decent base policy
to be adapted later (see Algorithm 2 in Appendix). Unlike
the offline operation in (2) (i.e., finding θ and Φ before exe-
cution), (OMAL) determines Φt on the fly in the execution
phase based on ∪tk=1Ik to accommodate the nonstationary
environment.

Theoretically, searching for the optimal meta adaptation
mappings {Φt}Ht=1 is equivalent to finding the optimal non-
stationary policy {θt}Ht=1 in the HM-MDP, i.e.,

max
{θt}Ht=1

Ez1,z2,··· ,zH [

H∑
t=1

rπ(st; θt)]. (3)

However, solving for (3) either requires domain knowledge
regarding P (·|·; z) and pz [13], [21], [22] or black-box sim-
ulators producing successor states, observations, and rewards
[23]. When solving complex tasks such as the self-driving
task considered in this work, these assumptions are no
longer valid. The following presents a model-free real-time
adaptation algorithm, where Φt is determined by a lookahead
optimization conditional on the belief on the hidden mode.

The meta policy in (OMAL) is given by θ =
arg maxEz∼ρz [Jz(θ)]. Note that z ∈ Z in our case is a
three-dimensional vector composed of three weather param-
eters. The hidden model space Z contains an infinite number
of z, and it is impractical to train the policy over each
environment. Similar to MAML [12], we sample a batch
of modes z using ρz and train the meta policy over these
sampled modes, as shown in Algorithm 2 in the Appendix.
Note that the meta training program returns the stabilized
policy iterate θk, its corresponding mode sample batch Ẑ ,
and the associated sample trajectories {D̂z} under mode z
and policy θk. These outputs can be viewed as the agent’s
knowledge gained in the training phase and are later utilized
in the online adaptation process.

A. Lookahead Adaptation
In online execution, the agent forms a belief bt ∈ ∆(Ẑ)

at time t on the hidden mode based on its past observations
∪tk=1Ik. Note that the support of the agent’s belief is Ẑ
instead of the whole space Z . The intuition is the agent
always attributes the current weather pattern to a mixture
of known patterns when facing unseen weather conditions.
Then, the agent adapts to this new environment using its
training experiences. Specifically, the agent conjectures that
the environment would evolve according to P (·|·; z) with
probability bt(z) for a short horizon K. Given the agent’s
belief bt and its meta policy θ, the trajectory of future
K steps τKt := (st, at, . . . , st+K−1, at+K−1, st+K) follows
q(τKt ; b, θ) defined as
K−1∏
k=0

π(at+k|st+k; θ)

K−1∏
k=0

[
∑
z∈Z

bt(z)P (st+k+1|st+k, at+k|z)].



In order to maximize the forecast of the future
performance in K steps, the adapted policy θt =
Φt(θ) should maximize the forecast future performance:
maxθ′∈Θ Eq(τKt ;b,θ′)

∑K−1
k=0 r(st+k, at+k). Note that the

agent cannot access the distribution q(·; b, θ′) in the online
setting and hence, can not use policy gradient methods to
solve for the maximizer. Inspired by off-policy gradient
methods [24], we approximate the solution to the future
performance optimization using off-policy data {D̂z}.

Following the approximation idea in trust region policy
optimization (TRPO) [25], the policy search over a looka-
head horizon under the current conjecture, referred to as
conjectural lookahead optimization, can be reformulated as

max
θ′∈Θ

Eq(·;bt,θ)

[
K−1∏
k=0

π(at+k|st+k; θ′)

π(at+k|st+k; θ)

K−1∑
k=0

r(st+k, at+k)

]
(CLO)

subject to Es∼qDKL(π(·|s; θ), π(·|s; θ′)) ≤ δ,

where DKL is the Kullback-Leibler divergence. In the KL
divergence constraint, we slightly abuse the notation q(·) to
denote the discounted state visiting frequency s ∼ q.

Note that the objective function in (CLO) is
equivalent to the future performance under θ′:
Eq(τKt ;b,θ′)

∑K−1
k=0 r(st+k, at+k). This is because the

distribution shift between q(τKt ; b, θ′) and q(τKt ; b, θ) in
(CLO) is compensated by the ratio

∏K−1
k=0

π(at+k|st+k;θ′)
π(at+k|st+k;θ) .

The intuition is that the expectation in (CLO) can be
approximated using Dz(θ) collected in the meta training.
When θ′ is close to the base policy θ in terms of KL
divergence, the estimated objective in (CLO) using sample
trajectories under θ returns a good approximation to
Eq(τK ;b,θ′)

∑K−1
k=0 r(st+k, at+k). This approximation is

detailed in the following subsection.

B. Off-policy Approximation

We first simplify (CLO) by linearizing the objective
and approximating the constraints using a quadratic sur-
rogate as introduced in [25], [26]. Denote by L(θ′; θ)
the objective function in (CLO). A first-order lineariza-
tion of the objective at θ′ = θ is given by L(θ′; θ) ≈
∇θ′L(θ′; θ)|θ′=θ(θ′ − θ). Note that θ′ is the decision
variable, and θ is the known meta policy. The gradi-
ent ∇θ′L(θ′; θ)|θ′=θ is exactly the policy gradient un-
der the trajectory distribution q(·; bt, θ). Using the notions
introduced in Section II, we obtain ∇θ′L(θ′; θ)|θ′=θ =
Eq(·;bt,θ)[g(τKt ; θ)] =

∑
z∈Ẑ b(z)Eq(·;z,θ)[g(τKt ; θ)]. Note

that τKt is the future K-step trajectory, which is not available
to the agent at time t, and a substitute is its counterpart
in D̂z: the sample trajectory within the same time frame
[t, t + K] in meta training. Denote this counterpart by
τ̂Kt , then Eq(·;bt,θ)[g(τKt ; θ)] ≈

∑
z∈Ẑ b(z)g(τ̂Kt ; θ), and

we denote its sample estimate by ĝ(b; θ). The distribution
q(·|z, θ) is defined similarly as q(·|b, θ). More details on this
distribution and ĝ(b; θ) are in Appendix Section II.

We consider a second-order approximate for the KL-
divergence constraint because the gradient of DKL

at θ is zero. In this case, the approximated con-
straint is 1

2 (θ − θ′)TA(θ − θ′) ≤ δ, where Aij =
∂

∂θi∂θj
Es∼qDKL(π(·|s; θ), π(·|s; θ′))|θ′=θ. Let Â be the

sample estimate using τ̂Kt (see Appendix Section II), then
the off-policy approximate to (CLO) is given by

max
θ′

ĝ(b; θ)(θ′ − θ) (4)

subject to
1

2
(θ − θ′)TÂ(θ − θ′) ≤ δ.

To find such θ′, we compute the search direction dθ = Â−1ĝ
efficiently using conjugate gradient method as in original
TRPO implementation [25]. Generally, the step size is de-
termined by backtracking line search, yet we find that fixed
step size also achieves impressive results in experiments.

C. Belief Calibration

The last piece in our online adaptation learning is belief
calibration: how the agent infers the currently hidden mode
zt based on past experiences and updates its belief based on
new observations. A general-purpose strategy is to train an
inference network through a variational inference approach
[19]. Considering the significant visual differences caused
by weather conditions, we adopt a more straightforward ap-
proach based on image classification and Bayesian filtering.
To simplify the exposition, we only consider two kinds of
weather: cloudy (denoted the mode by zc) and rainy (denoted
by zr) in meta training Ẑ = {zr, zc}.

a) Image Classification: The image classifier is a bi-
nary classifier based on ResNet architecture [27], which is
trained using cross-entropy loss. The data sets (training, val-
idation, and testing) include RGB camera images generated
by CARLA. The input is the current camera image, and the
output is the probability of that image being of the rainy type.
The training details are included in Appendix Section IV.

Given an arbitrary image, the underlying true label is
created by measuring its corresponding parameter distance
to the default weather setup in the CARLA simulator (see
Appendix Section IV). Finally, we remark that the true labels
and the hidden mode zr, zc are revealed to the agent in
the training phase. Yet, in the online execution, only online
observations It = {st, at−1, rt−1} are available.

b) Bayesian Filtering: Denote the trained classifier
by f : S → ∆(Ẑ), where f(zr; s) denotes the output
probability of s being an image input under the mode zr.
During the online execution phase, given an state input st
and the previous belief bt−1 ∈ ∆(Ẑ), the updated belief is

bt(zr) =
bt−1(zr)f(zr; st)∑
z∈Ẑ bt−1(z)f(z; st)

. (5)

The intuition behind (5) is that it better captures the temporal
correlation among image sequences than the vanilla classifier
f . Note that this continuously changing weather is realized
through varying three weather parameters. Hence, two ad-
jacent images, as shown in Figure 2, display a temporal
correlation: what follows a rain image is highly likely to
be another rain image. Considering this correlation, we use



Bayesian filtering, where the prior reveals information about
previous images. As shown in an ablation study in Sec-
tion IV-B, (5) does increase the belief accuracy (to be defined
later in Section IV-B) and associated rewards. Finally, we
conclude this section with the pseudocode of the proposed
conjectural online lookahead adaptation (COLA) algorithm
presented in Algorithm 1.

Algorithm 1 Conjectural Online Lookahead Adaptation

Input The meta policy θ, classifier f , training samples
{Dz}z∈Ẑ , sample batch size M , lookahead horizon length
K, and step size α. Set θ1 = θ.
for t ∈ {1, 2, . . . ,H} do

Obtain the image input st from the camera;
Implement the action using π(·|st; θt);
Obtain the probability f(z; st) from the classifier;
Update the belief using (5);
Sample M trajectories τ̂Kt under ẑ from {Dz}z∈Ẑ ;
Obtain θ′ by solving (4), and let θt+1 = θ′;

IV. EXPERIMENTS

This section evaluates the proposed COLA algorithm
using CARLA simulator [10]. The HM-MDP setup for the
lane-keeping task (i.e., hidden mode transition, the reward
function) is presented in Appendix Section III. This section
reports experimental results under K = 10, and experiments
under other choices are included in Appendix Section V.

We compare COLA with the following RL base-
lines. 1) The base policy θbase: a stationary policy
trained under dynamic weather conditions, i.e., θbase =
arg maxEz1,z2,··· ,zH [

∑H
t=1 r

π(st; θ)]. 2) The MAML pol-
icy θMAML: the solution to (2) with Φ being the pol-
icy gradient computed using the past K-step trajectory.
3) The optimal policy under the mixture of Q functions
θQmix : the action at each time step is determined by at =
arg maxa∈A

∑
z∈Ẑ bt(z)Qz(st, a), where Qz is the Q func-

tion trained under the stationary MDP with fixed mode
z. In our experiment, this mixture

∑
z∈Ẑ bt(z)Qz(st, a) is

composed of two Q functions Qc, Qr (sharing the same
network structure as the critic) under the cloudy and rainy
conditions, respectively. 4) The oracle policy θoracle: an
approximate solution to (3), obtained by solving (CLO) using
authentic future trajectories generated by the simulator.

The experimental results are summarized in Figure 3.
As shown in Figure 3b, the COLA policy outperforms
θbase, θMAML, and θQmix , showing that the lookahead
optimization (CLO) better prepares the agent for the future
environment changes. Note that θQmix returns the worst out-
come in our experiment, suggesting that the naive adaptation
by averaging Q function does not work: the nonstationary
environment given by HM-MDP does not equal an average
of multiple stationary MDPs. The agent needs to consider
the temporal correlation as discussed in Section III-C.

To evaluate the effectiveness of COLA-based online adap-
tation, we follow the regret notion used in online learn-
ing [28] and consider the performance differences between
COLA (the other three baselines) and the oracle policy. The

performance difference or regret up to time T is defined as
Reg(T ) = E[

∑T
t=1 r

π(st; θoracle)−
∑T
t=1 r

π(st; Φt(θ))]. If
the regret grows sublinearly, i.e., Reg(T ) < O(T ), then the
corresponding policy achieves the same performance as the
oracle asymptotically. As shown in Section IV, the proposed
COLA is the only algorithm that achieves comparable results
as the oracle policy.

(a) (b)

(c) (d)

Fig. 3: Evaluations of COLA algorithms in the lane-keeping
task under nonstationary weather conditions (averaged over
500 episodes under 10 random seeds). (a) The average
rewards of the cloudy-trained the rainy-trained policies in
cloudy and rainy conditions. The policy trained under one
environment does not generalize to the other. (b) The average
rewards of the COLA policy and the four baseline policies.
COLA achieves comparable results as the oracle policy
and outperforms the other baselines. (c) The regret grows
under different policies. Only COLA policy achieves sub-
linear regret growth [below the linear bound O(T )]. (d)
The evolution of transient accuracies (averaged over 500
episodes) with respect to time step t under Bayesian filtering
and vanilla classification in dynamic weather.
A. Knowledge Transfer through Off-policy Gradients

This subsection presents an empirical explanation of
COLA’s adaptability: the knowledge regarding the speed
control learned in meta training is carried over to online
execution through the off-policy gradient ĝ in (4). As ob-
served in Table II in Appendix, when driving in a rainy
environment (i.e., zr), the agent tends to drive slowly to
avoid crossing the yellow line, as the visibility is limited.
In contrast, it increases the cruise speed when the rain stops
(i.e., zc). Denote the off-policy gradients under zr, zc by ĝr
and ĝc, respectively. Then, solving (4) using ĝr (ĝc) leads to a
conservative (aggressive) driving in terms of speeds as shown
in Figure 4a (Figure 4b), regardless of the environment
changes. This result suggests that the knowledge gained in
meta training is encoded into the off-policy gradients and



(a) (b)

Fig. 4: Figure (a) [or (b)] presents average speeds at each
time step within the horizon (average of 500 episodes) with
ĝc (red curves) and ĝr (blue curves) being used to adapt
the meta policy (grey curves) under the cloudy [or rainy in
(b)] mode. Using ĝc [or ĝr] always leads to aggressive [or
conservative] driving, regardless of the environment.

is later retrieved according to the belief. Hence, the success
of COLA relies on a decent belief calibration, where the
belief accurately reveals the underlying mode. Section IV-B
justifies our choice of Bayesian filtering.

B. An Ablation Study on Bayesian Filtering

For simplicity, we use the 0-1 loss to characterize the
misclassification in the online implementation in this ablation
study. Denote by îνt ∈ {0, 1} the label returned by the
classifier (i.e., the class assigned with a higher probabil-
ity; 1 denotes the rain class) at time t ∈ {1, . . . ,H} in
the ν-th episode (500 episodes in total). Then the loss at
time t is 1{îνt 6=iνt }

, where iνt is the true label. We define
the transient accuracy at time t as Transient Accuracy =∑500

ν=1 1−1{îνt 6=iνt }

500 =

∑500
ν=1 1{îνt =iνt }

500 , which reflects the ac-
curacy of the vanilla classifier at time t. The average
transient accuracy over the whole episode horizon H is
defined as the episodic accuracy, i.e., Episodic Accuracy =∑500

ν=1

∑H
t=1 1{îνt =iνt }

500H . These accuracy metrics can also be
extended to the Bayesian filter, where the outcome label
corresponds to the class with a higher probability.

We compare the transient and episodic accuracy as well
as the average rewards under Bayesian filtering and vanilla
classification, and the results are summarized in Table I
and Figure 3d. Even though the two methods’ episodic
accuracy under two methods differ litter, as shown in Table I,
the difference regarding the average rewards indicates that
Bayesian filtering is better suited to handle nonstationary
weather conditions. As shown in Figure 3d, Bayesian fil-
tering outperforms the classifier for most of the horizon in
terms of transient accuracy. The reason behind its success is
that Bayesian filtering better captures the temporal correla-
tion among the image sequence and returns more accurate
predictions than the vanilla classifier at every step, as the
prior distribution is incorporated into the current belief. It
is anticipated that higher transient accuracy leads to higher
mean rewards since the lookahead optimization [see (CLO)]
depends on the belief at every time step.

V. RELATED WORKS

a) Reinforcement Learning for Self Driving: In most of
the self-driving tasks studied in the literature [29], such as

Bayesian Filtering Vanilla Classification

Episodic Accuracy 91.18% 90.41%
Average Reward 152.37± 49.58 122.44± 54.80

TABLE I: Comparisons of episodic accuracies and average
rewards under dynamic weather.

lane-keeping and changing [30], [31], overtaking [32], and
negotiating intersections [5], the proposed RL algorithms are
developed in an offline approach. The agent first learns a
proficient policy tailored to the specific problem in advance.
Then the learned policy is tested in the same environment as
the training one without any adaptations. Instead of focusing
on a specific RL task (stationary MDP) as in the above works,
the proposed OMAL tackles a nonstationary environment
modeled as an HM-MDP. Closely related to our work,
a MAML-based approach is proposed in [33] to improve
the generalization of RL policies when driving in diverse
environments. However, the adaptation strategy in [33] is
obtained by offline training and only tested in stationary envi-
ronments. In contrast, our work investigates online adaptation
in a nonstationary environment. The proposed COLA enables
the agent to adapt rapidly to the changing environment in an
online manner by solving (CLO) approximately in real time.

b) Online Meta Learning: To handle nonstationary
environments or a streaming series of different tasks, recent
efforts on meta learning have integrated online learning ideas
with meta learning, leading to a new paradigm called online
meta learning [20], [34] or continual meta learning [35], [36].
Similar to our nonstationary environment setup, [20], [35],
[36] focuses on continual learning under a nonstationary data
sequence involving different tasks, where the nonstationarity
is governed by latent variables. Despite their differences
in latent variable estimate, these works utilize on-policy
gradient adaptation: the agent needs to collect Dz and then
adapt θz = Φ(θ,Dz) [see (2)]. Note that on-policy gradient
adaptation requires a few sample data under the current task,
which may not be suitable for online control. The agent
can only collect one sample trajectory online, incurring a
significant variance. In addition, by the time the policy is
updated using the old samples, the environment has already
changed, rendering the adapted policy no longer helpful. In
contrast, COLA better prepares the agent for the incoming
task/environment by maximizing the forecast of the future
performance [see (CLO)]. Moreover, the adaptation in COLA
can be performed in real time using off-policy data.

VI. CONCLUSION

This work proposes an online meta reinforcement learning
algorithm based on conjectural online lookahead adaptation
(COLA) that adapts the policy to the nonstationary envi-
ronment modeled as a hidden-mode MDP. COLA enables
prompt online adaptation by solving the conjectural looka-
head optimization (CLO) on the fly using off-policy data,
where the agent’s conjecture (belief) on the hidden mode is
updated in a Bayesian manner.
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APPENDIX I
META TRAINING

The meta training procedure is described in Algorithm 2.
Our experiment applies two default weather conditions in

Algorithm 2 Meta Training

Input Initialization θ0, k = 0, step size α.
while not converge do

Draw the k-th batch of modes (weather conditions)
Zktrain = {z}, z ∈ Z;

for each environment z do
Sample a batch of trajectories Dz(θk) under

P (·|·; z) and π(·|θk);
Compute the policy gradient ∇̂Jz(θk,Dz)

θk+1 = θk + α/|Zktrain|
∑
z ∇̂Jz(θk,Dz);

k = k + 1.
Return θk, Ẑ = Zktrain, {D̂z} = {Dz(θk)}z∈Zktrain .

CARLA world: the cloudy and rainy in meta training. In
this case, Ẑ = {zr, zc} and D̂zr corresponds to the sample
trajectories collected under the rainy condition. Likewise,
D̂zc denotes those under the cloudy one.

APPENDIX II
OFF-POLICY APPROXIMATION

To reduce the variance of the estimate ĝ(b, θ), we use the
sample mean of multiple trajectories, i.e.,

Eq(·;bt,θ)[g(τKt ; θ)] ≈
∑
z∈Ẑ

∑
τ̂Kt ∈D̂z

1/|D̂z|b(z)g(τ̂Kt ; θ),

q(τKt ; z, θ) =

K−1∏
k=0

π(at+k|st+k; θ)P (st+k+1|st+k, at+k|z).

The sample estimate of A using the off-policy data is

Âij =
1

K

K−1∑
k=0

∂

∂θi∂θj
DKL(π(·|st+k; θ), π(·|st+k; θ′)).

One can also take the sample mean of Â over multiple
trajectories τ̂Kt .

It should be noted that τ̂Kt is not an i.i.d copy of τKt ,
as the initial states st ∈ τKt and ŝt ∈ τ̂Kt are subject
to different distributions determined by previous policies
{θk}tk=1. In other words, as the online adaptation updates
θt at each time step by solving (CLO), θt deviates from the
meta policy θ, leading to a distribution shift between τKt
and τ̂Kt . Hence, τ̂Kt is referred to as the off-policy (i.e., not
following the same policy) data with respect to τKt . Thanks
to the KL-constraint in (CLO), such deviation is manageable
through the constraint δ, and a mechanism has been proposed
in [24] to address the distribution shift. Finally, Figure 5
provides a schematic illustration on how the training data
is collevcted and reused in the online implementation, and
Table II summarizes the average speeds under three different
weather setups.

Fig. 5: Off-policy Approximation. The future K-step trajec-
tory τKt is not available at time t in online execution. A
substitute is its counterpart in D̂z: the sample trajectory τ̂Kt
within the same time frame [t, t+K] in meta training.

Algorithm Cloudy Rainy Dynamic

COLA 1.26 1.07 1.53

TABLE II: Average speeds of 500 episodes under COLA in
three weather setups.

APPENDIX III
EXPERIEMENT SETUP

Our experiments use CARLA-0.9.4 [10] as the au-
tonomous driving simulator. On top of the CARLA, we mod-
ify the API: Multi-Agent Connected Autonomous Driving
(MACAD) Gym [37] to facilitate communications between
learning algorithms and environments. To simulate various
traffic conditions, we enable non-player vehicles controlled
by the CARLA server.

Three kinds of weather conditions are considered in ex-
periments: stationary cloudy, rainy, and dynamic weather
conditions. For stationary weather conditions, we use two
pre-defined weather setup: CloudyNoon and MidRainyNoon
provided by CARLA. For the dynamic environment, the
changing weather in experiments is realized by varying three
weather parameters: cloudiness, precipitation, and puddles.
The changing pattern of dynamic weather is controlled by the
parameters update frequency, the magnitude of each update,
and the initial values. The basic idea is that as the clouds get
thick and dense, the rain starts to fall, and the ground gets
wet; when the rain stops, the clouds get thin, and the ground
turns dry.

a) States, Actions, and Rewards: The policy model uses
the current and previous 3-channel RGB images from the
front-facing camera (attached to the car hood) as the state
input. Basic vehicle controls in CARLA include throttle,
steer, brake, hand brake, and reverse. Our experiments only
consider the first three, and the agent employs discrete
actions by providing throttle, brake, and steer values. Specif-
ically, these values are organized as two-dimensional vectors
[throttle/brake, steer]: the first entry indicates the throttle or
brake values, while the other represents the steer ones. In
summary, the action space is a 2-dimensional discrete set,
and its elements are shown in Table III.

The reward function consists of three components: the
speed maintenance reward, collision penalty, and driving-
too-slow penalty. The speed maintenance function in (III.6)
encourages the agent to drive the vehicle at 30 m/s. Note



TABLE III: Discrete control actions in the experiments

Action Vector Control

[0.0, 0.0] Coast
[0.0,−0.5] Turn Left
[0.0, 0.5] Turn Right
[1.0, 0.0] Forward
[−0.5, 0.0] Brake
[0.5,−0.5] Forward Left
[0.5, 0.5] Forward Right
[−0.5,−0.5] Brake Left
[−0.5, 0.5] Brake Right
[0.5, 0.0] Bear Forward
[0.75, 1.0] Sharp Right
[0.75,−1.0] Sharp Left
[−0.5, 1.0] Brake Sharp Right
[−0.5,−1.0] Brake Sharp Left
[0.5, 0.75] Accelerate Forward Inferior Sharp Right
[0.5,−0.75] Accelerate Forward Inferior Sharp Left
[0.75, 0.0] Accelerate Forward
[−1.0, 0.0] Emergency Brake

that the corresponding sensors attached to the ego vehicle
return the speed and collision measurements for reward
computation. These measurements are not revealed to the
agent when devising controls.

FSMR(t) =


−0.005, V (t) < 0
1
9V (t)2, 0 ≤ V (t) ≤ 30

5(50− V (t)), 30 < V (t) ≤ 50
−2(V (t)− 50)2, 50 < V (t)

,

(III.6)

To penalize the agent for colliding with other objects,
we introduce the collision penalty function FCP defined in
(III.7). FCP is a terminate reward function. The terminal
reward depends on 1) whether the agent completes the task
(the episode will be terminated and reset when collisions
happen); 2) how many steps the ego vehicle runs out of the
lane in an episode. Denote by tterminate ≤ H the terminal
time step and by Nout the number of time steps when the
ego vehicle is out of the lane. Let δ(·) be the Dirac function,
and FCP is given by

FCP =− 100 + (tterminate −H)

+ 100δ(tterminate −H)− 0.1Nout, (III.7)

penalizing the agent for not completing the task and running
out of the lane.

The agent is said to drive too slowly if the speed is lower
than 0.5 m/s in two consecutive steps. Similar to the collision
penalty, we introduce a driving-too-slowly(DTS) penalty as
a terminal cost. Denote by Nslow the number of steps when
the vehicle runs too slowly, and the DTS penalty is given by

FDTS = −0.005×max(50, 10−7 ×Nslow). (III.8)

The horizon length is 1200 time steps, and the interval for
adjacent frames is 0.05 seconds. The discount factor of all
experiments is 0.99.

b) Dynamic Weather Setup: To realize dynamic
weather conditions, we create a function W (t) with respect
to time defined in the following. To randomize the exper-
iments, the initial value W (0) is uniformly sampled from
[−150, 100] (subject to different random seeds in repeated
experiemnts). To align time-varying weather with the built-
in timeclock in CARLA, we first introduce a weather update
frequency 1/∆T,∆T > 0. The whole epsidoe is evely
divided into n intervals: [0,∆T ), [∆T, 2∆T ), . . . , [(n −
1)∆T, n∆T ). Then, for t ∈ [k∆T, (k + 1)∆T ), k > 1, the
function W (t) is given by

W (t) =
25

12
· |Mod(1.3k∆T +W (0), 250)− 125)| − 150,

and W (t) = W (0), for t ∈ [0,∆T ).
Note that the hidden environment mode z(t) consists of

three weather parameters: clouds, rain, and puddles. Denote
by Clouds(t),Rain(t), and Puddles(t) the three parameters
at time t, i.e., z(t) = [Clouds(t),Rain(t),Puddles(t)].
Based on the function W (t), these parameters are given by

Clouds(t) := Clip(W (t) + 40, 0, 90),

Rain(t) := Clip(W (t), 0, 80),

Puddles(t) := Clip(W (t) + d(t), 0, 75),

where d(t) is defined as the following: for t ∈ [k∆T, (k +
1)∆T ), k ≥ 0,

d(t) =

{
−10, if W ((k + 1)∆T ) ≥W (k∆T ),

90, otherwise.

d(t) is a translation applied to W (t) in the definition of
Puddles(t) to preserve the causal relationship between rain
and puddles in the simulation: puddles are caused by rain
and appear after the rain starts.

APPENDIX IV
TRAINING DETAILS

a) The Actro-Critic Policy Model: Our policy models
under three weather conditions: cloudy, rainy, and dynamic
changing weather, are trained via the Asynchronous Ad-
vantage Actor-Critic algorithm (A3C) with Adam optimizer
mentioned in [38]. The learning rate begins at 1×10−4, and
the policy gradient update is performed every 10 steps. The
reward in each step is clipped to -1 or +1, and the entropy
regularized method [39] is used. Once episode rewards
stabilize, the learning rate will be changed to 1× 10−5 and
1× 10−6.

The policy network consists of two parts: the Actor and
the Critic. They incorporate three convolution layers that use
Rectified Linear Units (ReLu) as activation functions. The
input is a 1×6×84×84 dimension image data transformed
from two 80×80×3 RGB images. A linear layer is appended
to convolution layers. The softmax layer serves as the last
layer in the Actor and the Critic. The schematic diagram of
the model structure is shown in Figure 6.



Fig. 6: Network structures of the actor and the critic. The
perception and decision-making module are incorporated into
a single policy model that outputs control commands when
fed with raw images.

b) Image Classifier: Our image classifier is based on a
residual neural network [27] with two residual blocks and
one linear output layer. The input is the current camera
image, and the output is the probability of that image being
of the rainy type. The data sets (training, validation, and
testing) include RGB camera images under the cloudy and
rainy conditions in the CARLA world.

Every image input is paired with a three-dimensional
vector z (the mode), with entries being the values of three
weather parameters: cloudiness, rain, and puddles, respec-
tively. Denote the corresponding mode of an image by
zimg . Let zr, and zc be the parameter vectors provided by
the simulator in the default rainy and cloudy conditions,
respectively. Then, the true label i of an image is given by

Label =

{
1, if ‖zimg − zr‖ < ‖zimg − zc‖,
0, otherwise.

We use One-Cycle-Learning-Rate [40] in the classifier
training, with the max learning rate 1×10−3 in the first 120K
iterations of training and 1×10−6 in the later 600K iterations
for fine-tune training. The test accuracy of the classifier is
91.7%.

APPENDIX V
THE TRADEOFF OF LOOKAHEAD HORIZON

The impact of the lookahead horizon K on the online
adaptation is due to a tradeoff between variance reduction
and belief calibration. If K is small, the sample-based
estimate of E[

∑K−1
k=0 r(st+k, at+k)] would incur a large vari-

ance, which is then propagated to the gradient computation
ĝ in (4). Hence, the resulting approximate also exhibits a
large variance. On the other hand, when K is large, the
agent may look into the future under the wrong belief since
the agent believes that the environment is stationary for the

K Cloudy Rainy Dynamic

5 113.16± 47.80 −156.36± 60.83 109.72± 57.45

10 159.09± 38.41 −145.75± 47.64 159.89± 51.35

20 150.41± 43.68 −136.72± 55.33 124.03± 52.36

TABLE IV: The average cumulative rewards and associated
standard deviations under different lookahead horizons K in
three weather conditions.

future K steps. In this case, the obtained policy may not
be able to adapt promptly to the changing environment.
Table IV summarizes the average rewards under three looka-
head horizons K = 5, 10, 20. As we can see from the
table, the average rewards under K = 5 exhibit the largest
variances across all weather conditions in comparison with
their counterparts under K = 10, 20. Even though K = 20
achieves performance in stationary environments (i.e., cloudy
and rainy) comparable to that under K = 10, we choose
K = 10 in our experiments as it balances variance reduction
and quick belief calibration, leading to the highest rewards
in the dynamic weather.


