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Robot Mimicry Attack on Keystroke-Dynamics User Identification and
Authentication System

Rongyu Yu!, Burak Kizilkaya', Zhen Meng', Emma Li?, Guodong Zhao', and Muhammad Imran

Abstract— Future robots will be very advanced with high
flexibility and accurate control performance. They will have
the ability to mimic human behaviours or even perform better,
which raises the significant risk of robot attack. In this work,
we study the robot mimic attack on the current keystroke-
dynamic user authentication system. Specifically, we proposed
a robot mimicry attack framework for keystroke-dynamics
systems. We collected keyboard logging data and acoustical
signal data from real users and extracted the timing pattern of
keystrokes to understand victim’s behaviour for robot imitation
attacks. Furthermore, we develop a deep Q-Network (DQN)
algorithm to control the velocity of robot which is one of the
key challenges of forging the human typing timing features.
We tested and evaluated our approach on the real-life robotic
testbed. We presented our results considering user identification
and user authentication performance. We achieved a 90.3%
user identification accuracy with genuine keyboard logging data
samples and 89.6% accuracy with robot-forged data samples.
Furthermore, we achieved 11.1%, and 36.6% EER for user
authentication performance with zero-effort attack, and robot
mimicry attack, respectively.

I. INTRODUCTION

For network and information security, user identification
and authentication are critical. In order to distinguish one
user’s identity from others, user identification necessitates
the collection of data from all users who use or access the
system. User authentication, on the other hand, occurs when
the system verifies the user’s identity, determining whether
the user is truly who that person claims to be [1].

Recently, behavioural biometrics-based continuous user
authentication has received a lot of attention, and it is
expected to be a future trend to increase security level in case
of credentials theft and overcome the drawbacks of conven-
tional authentication schemes such as poor memorability for
password use [2], potential facial image leakage risks for face
recognition [3], and specialised sensor device requirement
for fingerprint [4]. One of the well known behavioural
biometrics-based continuous user authentication is keystroke
dynamics [5], which analyzes the rhythm/patterns of typing
considering keystroke events to differentiate between users.
Many researchers in keystroke dynamics system field focus
on developing and evaluating the verification algorithms
pursuing for a high recognition accuracy [6], [7]. The attacks
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can be classified into three categories according to informa-
tion the attacker has about the keystroke dynamics of the
victim [8], [14], [15]. These are zero-effort attack, statistical
attack and imitation attack. Early studies often evaluated the
biometrics-based systems by zero-effort attack [9], which is
a naive approach assuming the attacker is simply a ‘casual’
imposter, who does not put any effort to mimic the given
victim’s behaviour. Imitation attack, on the other hand, can
be divided into two categories, namely, manual imitation
attack and robot imitation attack [7]. In the scenario of
manual imitation attack, the attacker obtains the victims’
behavioural biometrics data in some means, then intend to
adapt their own behaviour to match that of the victim. On the
other hand, in robot imitation attack, the robot is trained to
manipulate the attempt, whose process is autonomous with
higher efficiency, and more likely to defeat any live detection
of defence approach.

In existing literature, the manual imitation attack have
been extensively studied [10], [11], [12]. For example, in
[11], authors invited a group of 84 participants to perform
human imitation attack. Their results show that the equal
error rate (EER) increased from 0.24 to 0.63 for a weak
password ‘serndele’ and from 0.2 to 0.42 for a stronger
password ‘ths.ouR2’. On the other hand, robot imitation
attack on keystroke-dynamic system is not exploited in the
current literature. To the best of our knowledge, there are
only two studies toward touch-based biometric systems. In
[14], authors utilized a simple Lego constructed robot to
perform a user-specific attack on touch-dynamics based au-
thentication system by mimicking the swiping pattern under
the assumption that some user’s samples were stolen. The
effect of the attack increases the EER by about five times
the benchmark in the zero-effort threat model test. On top of
this, authors trained a Humanoid Robot Nao to more flexibly
imitate the shape of target user’s touch gestures in [15], due
to the limitation in precision of execution of touch strokes.

Furthermore, in previous related attack designs, the perfect
copy of victim’s template is assumed to be available to the
adversary, which is a strong assumption considering that
most of the biometrics-based authentication systems employ
powerful actions to secure user’s sensitive data.

In this study, we exploit physical robot imitation attack and
propose a robot mimicry attack framework for keystroke-
dynamics system. We collect keyboard logging data, and
acoustical signal data from real users and extracted the timing
pattern of keystrokes to generate victim templates for the at-
tack. This makes our design more feasible in real world since
the victim template is not readily available. Furthermore, we
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Fig. 1. Robot mimicry attack framework

develop a deep Q-Network (DQN) algorithm to precisely
control the velocity of pressing and releasing keys which is
one of the key challenges of forging the human typing timing
features. The DQN algorithm can be applicable to different
keyboard specifications.

The main contributions of the study can be summarized

as follows.

e We propose a robot mimicry attack framework for
keystroke-dynamics system by training physical robot
to forge human typing keystroke timing patterns.

« We collect keyboard logging data and acoustical sig-
nal data from 10 participants and extracted keystrokes
timing patterns. Extracted patterns are used to generate
victim templates to be used in attacks. This way, we
relaxed the assumption of template availability and
demonstrate how to extract behavioral patterns from
acoustical signal data.

e We design a robotic testbed using UR3e robot to
perform attack experiments. Furthermore, we propose
a DQN algorithm to dynamically control and refine
robot’s velocity for better attack performance.

o We demonstrate that the robot can learn typing timing
behaviours and perform imitation attack with 36% EER.

The rest of the paper is organized as follows. In Section

I, we propose a robot mimicry attack framework, where
system overview, password timing features, feature extraction
approach from the keystroke acoustic signal, and evaluation
metrics are discussed. In Section III, we present the robotic
testbed implementation along with DQN algorithm design.
We discuss the experimental results in Section IV while we
conclude the study in Section V.

II. ROBOT MIMICRY ATTACK FRAMEWORK

In this section, we propose the robot mimicry attack
framework, where a physical robot tries to imitate users’
password typing behaviour. Users’ behaviour is extracted
from keystroke acoustic signal data.

A. System Overview

The proposed attack framework is illustrated in Fig. 1.
Mainly, there are four major components, including the (a)

user-end, (b) keystroke acoustic signal processing, (c) robot
learning & replay and (d) performance evaluation.

At user-end, we assume the victim is being eavesdropped
by an audio recording device placed in their vicinity and the
password is known to the attacker. The main objective is to
learn victim’s typing behaviour from acoustical signal. It is
also assumed that the environment is designed with limited
background noise to investigate the maximum likelihood of a
successful attack since it become very hard for an adversary
if the loudness of the background noise is comparable to
signal. This assumption may be relaxed by introducing filters
to filter out the noise from the acoustic signal data.

For acoustic signal data processing, we apply temporal
segmentation and feature extraction to understand victim’s
typing behaviour for a potential attack. More explanation is
provided for temporal segmentation and feature extraction in
Section II-C.

At robot-end, extracted timing features are used to control
the robot by applying trapezoidal trajectory planning. Fur-
thermore, we apply DQN algorithm to dynamically control
and refine the robot’s velocity for better attack performance.
The details of trapezoidal trajectory planning and the pro-
posed DQN algorithm are given in Section III.

For performance evaluation, we evaluate the system in
terms of identification and authentication performance. We
obtain the genuine data from the user-end and the robot
forged data from the robot-end. We use the split keyboard
logging to train and test the classifier and detectors for
identification and authentication purposes as our baseline.
Then, we use the robot forged samples to compare our attack
performance. Further details are provided in Section II-D.

B. Password Timing Features

Keystroke dynamics refer to detailed time information for
keystroke events. The hold time, T}, up-down time, T4,
and down-down time, T44, are most frequently used features
in the literature. Let’s denote key pressing and releasing
events as kj and ko, respectively. Then, the keystroke pair
(K1, k2) has four timings, which are (a) key-down time of
k1 t%‘f‘”n, (b) key-up time of ky: t;,”, (c) key-down time of
ko: t%f_jwn, and (d) key-up time of ky: .. Then, based on
four absolute timings, the feature vector, V is generated as
V = (Th, Taa, Tua)- As a result, three relative timing features
are given as:

o Hold time: Tj, = t;," - t{o™"
o Up-Down time: Tyq = t%gwn - th’

o Down-Down time: Tyq = t{0%" - tilo™®

C. Temporal Segmentation and Feature Extraction

In this section, we explain feature extraction from acoustic
signal data. Temporal segmentation and short-term energy
analysis are conducted to identify keystroke events in acous-
tic data.
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Fig. 2. Keystroke acoustic signal

Acoustic data are shown in Fig. 2 with extracted
keystrokes events. As shown in the figure, the acoustic data
of keystroke events contain two distinct peaks. The high
peaks in every stroke show the key press event, and low
peaks show the key release event. To identify the both events,
we need to identify high and low peaks in the acoustic data.
To achieve this, we apply short-term energy analysis to the
keystroke acoustic data in the time domain by computing
short-term energy of the signal using a sliding hamming
window with 250 ms displacement and 44.1k Hz sampling
frequency. As a result, we produce short-term energy curve of
the signal as shown in Fig. 2. Then, we identify high and low
peaks for every keystroke event by finding local maximums
of the signal. Local maximums are used to calculate the hold
time, 73, up-down time, 7,4, and down-down time, Tqq, for
our analysis. With this approach, we estimated the T}, T4,
and Tyq as follows.

o Ty : the time difference between two energy peaks of
the same keystroke event

o Tyq: the time difference between last peak of the current
keystroke and the first peak of the next keystroke.

o Tyq: the time difference between the first peaks of two
consecutive keystroke events, i.e., T}, + Tyq-

Please also note that keyboard specification is an important
factor, affecting the the produced keystroke sound. In the lit-
erature, 7}, is generally assumed to be constant (e.g., 100ms)
for all keys. However, T3, cannot be constant for every type
of keyboard. For example, standard laptop keyboard keys are
close (< 2mm) to the keyboard plate which imposes short
key travel time. On the other hand, mechanical keyboard
has larger key travel. As a result, constant 7} assumption
may result unreliable performance evaluation. Therefore, we
extract all the features, including 73, from the acoustic data
instead of assuming constant value for the hold time.

D. Evaluation Criteria

In this study, the proposed system is evaluated considering
user identification and user authentication.

For user identification, we utilize the Gradient-boosting
decision tree classifier (GBDT). User identification accuracy
is used to evaluate the system. Labelled genuine keyboard
logging dataset is used to train the classifier. Then, identifi-
cation accuracy is investigated using both genuine user data
and the robot’s forged data samples.

For user authentication, we use the Scaled Manhattan
Distance Detector since it achieves the best average EER
of 9% as discussed in [14]. We first test the authentication
system with the zero-effort attack as baseline, where genuine
user data samples are used to test the system. Furthermore,
we test the system with robot imitation attack, where both
genuine user samples and robot forged data are used. The
main objective is to show how the system degrades under
the proposed robot mimicry attack. We use the Receiver
Operating Curve (ROC) to show the performance of the
detector. Furthermore, we use the well-known EER threshold
metric by adopting macro-averaging approach considering
each class with the same contributing weight to evaluate
the system performance under zero-effort and robot imitation
attacks.

E. Attack Design Limitation

The core purpose of this work is to pursue the simplic-
ity and feasibility of robotic attack to keystroke dynamics
system. We assume the password is known by the imposter.
Previous study [16] has been provided the acoustic emana-
tion side-channel attack aiming to identify the text/password
the victim is typing. We use a UR3e robotic arm to imitate
human hunt & peck typing style using one finger. The
participants is likely to behave slower than their natural
typing speed in this scenario. Although the defined typing
style narrows individual difference, the result shows their
personal keystroke behavioural trait is still distinctive enough
for recognition purposes.

III. ROBOTIC TESTBED IMPLEMENTATION

As seen in Fig. 3, we deploy UR3e robotic arm with
Robotig 2F-85 gripper for our experiments. The robotic arm
is equipped with a stylus to enable key pressing. A wireless
keyboard with scissor-kick keys is utilized to collect the
robotic forged data at robot-end. UR3e robot is controlled by
control PC via Real-Time Data Exchange (RTDE) interface
which provides a platform to synchronize external applica-
tions with UR3e controller over a TCP/IP connection. We
also use the ur-rtde python API to control and receive data
from the robot. For performing an attack, we decompose
the continuous typing motion into multiple waypoints as
pre-defined series of poses P (p,0), where p = (z,y,2)
is the position and o = (rz,ry,rz) is the orientation of
pose P with respect to UR3e base frame. Let’s denote the
pose that stylus touches the key without pressing as key up
pose, Py, and denote the pose that stylus pressing the key
as key down pose, Pyown- Then, we enable robot to press
keys by moving from the key up pose to key down pose.
The orientation of the robot is defined as a constant, i.e.,
o = (0,3.14,0), so that the stylus vertically downward.
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Only the position is changed to define different poses.
Robot movement follows trapezoidal trajectory planning for
a given maximum velocity and acceleration with zero initial
and final velocities.

A. Trapezoidal Trajectory Planning

Robotic arm is controlled considering trapezoidal trajec-
tory planning which follows trapezoidal velocity profile as
seen in Fig. 4. It has three main components, namely, accel-
eration, constant velocity, and deceleration. In acceleration,
velocity starts from zero and increases to the maximum value
Wmax With a defined positive maximum acceleration amax. In
constant velocity, velocity is kept at wnax for a specific time
or distance. In deceleration, velocity decrease to zero with a
deceleration —apax.

According to the characteristic of trapezoidal velocity
profile, for a given time period T" = t,cc + tmax + fgec and
distance between waypoints s, the maximum velocity can be
estimated as

T amax T2a2,, — 45>
Umaxl = 2ma m2a > (D

T Gmax T2a2  — 452
max
VUmax2 = - ) (2)

Umax1 Z 0, Umax2 Z 07
Umax1 Z Oavmax2 S 07 (3)
Umax1 S OavmaXZ 2 0.

min(vmax 1y 'Umax2) )

Umax = § Umaxl,

Umax2
B. Velocity Adjustment via DON Learning

As mentioned in previous sections, Tyq, i.e., down-down
time, is the addition of Ty,q and Tj, thus our trajectory
planning strategy will focus on the path in up-down and hold
segments. Let’s assume that there is a keystroke pair (k1,ks),
then the movement can be decomposed into three segments:
(D pd = P 2) P = p” 3) p2 — py> . For segment
(a), we firstly make an initial estimation of the v .y in
the previous subsection to move between (3) referring to
the given time and predefined acceleration. It may even be
different for different keys for the same keyboard. The key
challenge is the velocity of stylus moving at the segment
(1) and (2) which will affect the both 7}, and T,.4. As a
result, this will affect the behaviour of typing. Furthermore,
we cannot simply define the amount of time spent in segment
(1) and (2) as Ty, since the activation and deactivation points
of keys are different for different keyboards

Motivated by these issues, we turn to design velocity
adjustment algorithm. Since this is a sequential decision
problem, it can be formulated as a Markov Decision Process
(MDP).

1) States: The state, S is target acoustic extracted data
which includes the hold time, 73, and up-down time, Tq.
For each password input, we define a state chain with 25
timing features.

2) Actions: Action A includes the value of minimum
velocity, Viower, the value of maximum velocity, vupper,
and the value of steps between maximum and minimum
velocities, Vgep.

3) Reward: Given the states and actions, the reward R is
defined as the negative of the difference between the genuine
Ty, and T,,q and observed ¢y, and t.q.

The algorithm for the proposed DQN-based velocity ad-
justment is given in Algorithm 1. We train the Q-network
to find the most appropriate velocity adjustment considering
target timings T}, or T,q. During the training process, the
agent generates actions from the action space and transforms
them into robotic control commands. UR3e robot receives
the control commands via python API and executes them
to press the desired keys. Then, the reward is obtained by
measuring the negative of the difference between the genuine
and observed timings.

C. Data Collection

We utilized a standard laptop keyboard and a cellphone
to record the keyboard logging and acoustic signal data. We
collected keystroke data from 10 subjects (5 female, 5 male,
average age is 24, all of whom are students at our university).



Every participant typed the password ‘.tieSRoanl’ 150 times
in six sessions. The password is chosen considering the
related studies in the literature [6] which is a typically strong
password. Each sample contains 13 key press events and
total 37 features including two key presses of ‘caps locks’
for capital letter of ‘r’ and a ‘Return’ key. We collected 120
genuine keyboard logging data to train the both classifier and
detector. Furthermore, we collected 30 acoustic signal data
for feature extraction.

Algorithm 1 Robot Control Algorithm via DQN Learning
1: Input parameters: Initialize parameters of Q-network,
0 with random weights. Obtained the value of vyax, Th,
Tud> Vupper> Vlowers Usteps @» ¢, Y from the calculation
of trapezoidal trajectory planning.
for episode = 1, M do
for t=1, T do
With probability € select a random action a;
Otherwise select a; = max,Q* (s, a; 6)
Execute action a; by the robotic arm and obverse
the reward r; and state s;4;

A

7: if done; then
8 Yi =715
: else
10: yi = ri +ymaxy Q(s¢41,0a’;0)
11: end if
12: Performing a gradient descent step on (y; —
Q(sr.a;:0))?
13: end for
14: end for

IV. PERFORMANCE EVALUATION

In this section, we evaluate the proposed robot mimicry
attack framework in terms of user identification and user
authentication'.

To illustrate the collected data, we present average key-
board logging data, average acoustic extracted data, and av-
erage robot forged data in Fig. 5 for User 2 with 30 samples.
Acoustic extracted data are similar to the keyboard logging
data. The main difference is that keyboard logging data
comes from keystroke logs of the keyboard, whereas acoustic
extracted data are derived from the keystroke acoustic signal
data. As seen from the figure, the acoustic extracted data
have larger hold time, 73, which is around 0.01-0.1s and have
slightly smaller up-down time, 7},4, (0.01-0.05) attributing to
the short key travel of scissor switch. Furthermore, the time
difference between the keyboard logging data and the robot
forged data is around 0.3s for typing whole password for
User 2.

A. User Ildentification Performance

To evaluate the performance of user identification, we
present accuracy results of the classifier for both genuine

'We will release our data set and source code along with the publication
of this paper.
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keyboard logging data and robot forged data. To provide
a baseline, we used the genuine keyboard logging dataset
to train and test the model for identification accuracy. Fur-
thermore, we use robot forged data, which are extracted
from acoustic data, to show the performance of the proposed
robot mimicry attack. As seen in Fig. 6, user identification
accuracy is around 90.3% if the genuine keyboard logging
data samples are used to test the classifiers. On the other
hand, 89.6% user identification accuracy is achieved when
the UR3e forged data are used (see Fig. 7). The user
identification accuracy results are very close to each other,
showing that real user and robot are almost indistinguishable.

B. User Authentication Performance

To evaluate the user authentication performance, we per-
form zero-effort and robot imitation attacks. Zero-effort at-
tack is performed as a baseline, where 30 valid users’ feature
vectors and randomly selected 30 other users’ samples are
used as genuine and anomalous data, respectively. On the
other hand, robot imitation attack is performed by using
the robot forged users’ samples as the anomalous data to
test the system. The main objective is to show whether the
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effectiveness of the system is degraded under the proposed
robot mimicry attack. As seen in Fig. 8, we achieve 0.9558
area under curve (AUC) value with zero-effort attack when
EER is 11% and 0.6809 with robot mimicry attack when
EER is 36%. Comparing with the similar study in literature
[11], where AUC is 0.6 with human attack when EER is 24%,
our zero-effort attack and robot mimicry attack performances
are quite promising and comparable.

V. CONCLUSIONS

In this study, we investigated physical robot imitation
attack and proposed a robot mimicry attack framework for
keystroke-dynamics systems. We collected keyboard logging
data and acoustical signal data from real users and extracted
the timing pattern of keystrokes to generate victim templates
for the robot imitation attack. Furthermore, we developed a
DQN algorithm to precisely control the velocity of pressing
and releasing keys which is one of the key challenges of
forging the human typing timing features. We tested and eval-
uated our approach on real robotic testbed. We presented our

results in terms of user identification and user authentication
performance. Considering user identification performance,
we achieved 90.3% accuracy with genuine keyboard logging
data samples and 89.6% accuracy with robot forged data
samples. On the other hand, we achieved 11% EER for user
authentication performance with zero-effort attack, whereas
36% EER is achieved with robot imitation attack which are
quite promising.
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