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Abstract— As autonomous driving systems prevail, it is
becoming increasingly critical that the systems learn from
databases containing fine-grained driving scenarios. Most
databases currently available are human-annotated; they are
expensive, time-consuming, and subject to behavioral biases. In
this paper, we provide initial evidence supporting a novel tech-
nique utilizing drivers’ electroencephalography (EEG) signals
to implicitly label hazardous driving scenarios while passively
viewing recordings of real-road driving, thus sparing the
need for manual annotation and avoiding human annotators’
behavioral biases during explicit report. We conducted an EEG
experiment using real-life and animated recordings of driving
scenarios and asked participants to report danger explicitly
whenever necessary. Behavioral results showed the participants
tended to report danger only when overt hazards (e.g., a
vehicle or a pedestrian appearing unexpectedly from behind
an occlusion) were in view. By contrast, their EEG signals
were enhanced at the sight of both an overt hazard and a
covert hazard (e.g., an occlusion signalling possible appearance
of a vehicle or a pedestrian from behind). Thus, EEG signals
were more sensitive to driving hazards than explicit reports.
Further, the Time-Series AI (TSAI, [1]) successfully classified
EEG signals corresponding to overt and covert hazards. We
discuss future steps necessary to materialize the technique in
real life.

I. INTRODUCTION

Over the past few decades, self-driving cars have emerged
as a promising mode of transportation, while security con-
cerns are on the rise [2], [3]. Central to resolving these
concerns is hazard perception [4], the vehicles’ capacity
to anticipate traffic hazards in driving situations, a concept
borrowed from human drivers’ driving competence.

There has been a growing body of literature proposing
novel deep-learning models that allow cars to detect traffic
hazards during autonomous driving [5], [6]. For example, [7]
presented a vision system fusing deep learning and geometric
modelling to detect unexpected obstacles on the road. In [8],
the authors proposed a new fully convolutional deep neural
network architecture for semantic segmentation of traffic
scenes on the pixel level, which adopted RGB-D photos
as the input. [9] introduced a learning-based approach for
long-range vision that was capable of classifying complex
terrain at distances up to the horizon, thus allowing high-
level strategic planning.

Despite this hopeful trend, supervised deep-learning mod-
els in autonomous driving are data-thirsty, which, if not
addressed properly, would reduce the models’ precision and
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accuracy significantly. At the present stage, most, if not all,
input images and videos are human-annotated, and human
annotation is expensive, time-consuming, and contingent
upon the validity and trustworthiness of human evaluation.

The International Organization for Standardization [10]
has provided a framework on which human evaluation of
safe driving can be based, titled “Road Vehicles - Safety of
the Intended Functionality”. Under this framework, driving
scenarios were divided into four categories: known safe
(Area 1), known unsafe (Area 2), unknown unsafe (Area 3),
and unknown safe (Area 4). Increasing Area 1 and reducing
Areas 2 and 3 would supposedly increase driving safety for
an autonomous vehicle. For human annotators, however, it
could be unnatural to explicitly label a driving scenario as
unsafe if the unsafety is unknown (or absent from view). For
example, a blind spot is unsafe because unexpected objects
could appear from behind, but a driving scene featuring
a blind spot only might be labelled as safe. A scenario
involving a crash might be labelled as unsafe, but a near-
miss situation might be labelled as safe.

One possibility to get around this impasse would be to
utilize the annotators’ physiological signals and mark up
the unsafe scenarios implicitly. Previous studies have been
conducted analyzing the power spectral density features of
drivers’ EEG signals upon exposure to a hazard cue (oc-
clusion) during simulated driving, e.g., [11]. Power spectral
density analysis has also been widely used in studying fa-
tigue driving, distracted driving, and emotional driving [12].
However, power spectral density analysis does not provide
the precise time by which the drivers have detected a hazard.
On the contrary, event-related potentials (ERPs), known as
deflections in the EEG waveform with a positive or negative
polarity upon detection of the stimuli, are highly temporally
sensitive to the onset of traffic hazards [13], [14] and warning
signs [15], [16].

In this regard, we propose an annotation system that dif-
ferentiates between safe and unsafe driving scenarios based
on driver’s EEG signals, in particular, the P400 and N500
ERP components. The P400 component is a positive voltage
deflection that peaks around 400 ms post stimulus onset,
and the N500 is a negative voltage deflection that peaks
around 500 ms post stimulus onset. We focused on EEG
signals recorded by electrodes placed above the premotor and
motor cortex (lying in the frontal lobe), which are involved
in action planning and organization (i.e., the FPz, AF4, F4,
AF3, F3, and F1). The frontal P400 has been found triggered
by attention engagement, e.g., [17], and the N500 component
by unpredictability, e.g., [18]. The most prominent N500
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effect seems to occur over the frontal areas [19].
Towards this end, we conducted two experiments showing

participants real-life and animated recordings of driving
scenarios. We invited experienced driving instructors as
participants and instructed them to report danger whenever
they detected it while viewing the recordings (Fig. 1.).
We recorded the participants’ EEG activities as they were
performing the task. The results showed that drivers tended
to report danger only when a hazardous vehicle or pedestrian
was featured in the scene; they could either appear unex-
pectedly from behind an occlusion or were visible since the
beginning of the video clip, and the occlusion itself would
not suffice to trigger an explicit report. However, when we
fit single-trial ERP data to a deep-learning model (Time
Series AI, TSAI, [1]) designed for time-series classification,
the model successfully differentiated between driving scenes
that did and did not feature an occlusion, which means the
occlusion made a difference to the participants’ ERPs as
compared to when the road was unobstructed. Additionally,
the model successfully classified driving scenes that did and
did not feature an overt hazard (i.e., a pedestrian) as well. As
vehicles, pedestrians, and occlusions are all traffic hazards,
these results suggested the participants’ EEG signals were
more sensitive to hazardous scenes than their explicit report,
thus supporting the possibility of utilizing the drivers’ EEG
signals to annotate hazardous driving scenes implicitly at the
absence of explicit report.

The contributions of this study are: a) We identify two
ERP components, namely, the P400 and N500, which are
characteristic of a driver’s hazard detection in a driving
scenario. b) By fitting single-trial ERP data to a deep-
learning model, we provide evidence that hazardous and safe
driving scenes could be differentiated through Time Series
Classification (TSC) on the basis of the P400 and N500 ERP
components they elicit. c) We propose a new technique for
hazard annotation that utilizes drivers’ physiological signals,
particularly their ERPs; this technique would enable drivers
to annotate hazardous driving scenes during passive viewing
and mark up covert hazards implicitly, thus increasing the
efficiency of human annotation and expanding the pool of
known unsafe scenarios.

II. METHODOLOGY

A. Participants

We invited 10 experienced driving instructors as partici-
pants according to the following criteria: a) having over 10
years of experience as a driving instructor, b) having a valid
Chinese driver’s license, c) having normal or corrected-to-
normal eye vision, and d) having no prior knowledge about
video annotation or EEG. All participants were right-handed
males with an age range between 30 and 51 (M = 42.91, SD
= 6.06). No participant reported a history of neurological
or psychiatric illness. The study was approved by Tsinghua
University’s Internal Review Board.

B. Experimental Design and Stimuli

The study comprised two experiments. The first exper-
iment aimed at investigating the scenarios in which the
participants would explicitly report danger, and the second
served to identify the ERPs characteristic of these scenarios.

The first experiment had a one-way within-subjects design.
The variable was the type of hazard a video featured, that
is, whether the videos featured an occlusion (the occlusion
condition) or a vehicle appearing from behind the occlusion
(the occluded hazard condition). We used recordings of real-
life driving situations obtained from [20] and YouTube; see
Appendix A for a link to the YouTube playlist. As in Fig. 2.,
videos in the occlusion condition featured a straight and level
pathway with an occlusion (e.g., an intersection, a turning
point, etc.) at the end of it, and the ego car was the only
automobile in view. Videos in the occluded hazard condition
featured an unexpected vehicle appearing from behind an
occlusion, and the hazard vehicle was the only automobile
aside from the ego car. Videos in the occlusion condition
were five seconds long, and those in the occluded hazard
condition lasted for a random length of time before the
hazard appeared and two seconds after.

The second experiment also had a one-way within-subjects
design. The variable was the same, but, this time, had four
levels: occluded pedestrian, occlusion, visible pedestrian,
and control (Fig. 3.). Videos in the occluded pedestrian
condition featured a pedestrian appearing from behind an
array of buses (i.e., the occlusion) on a crossroad. Videos in
the occlusion condition featured the buses on the crossroad.
Videos in the occluded pedestrian condition featured the
pedestrian crossing the crossroad. The control condition
featured the crossroad with an unobstructed view. The videos
were created using CARLA [21]. The colors of the buses
and the appearance of the pedestrian were randomized,
and the left-right position of the occlusion as well as the
walking direction of the pedestrian were counterbalanced
across trials. The occlusion (if featured) was visible since
video onset, and the pedestrian (if featured) appeared five
seconds post video onset. All videos were seven seconds in
length and had the same parametric setting.

In both experiments, the video clips were taken from the
driver’s first-person perspective, and the participants viewed
the clips in random orders.

C. Apparatus

1) Car Driving Simulator and Stimuli Presentation: Both
experiments took place in a Logitech G923 driving simulator,
which consists of a driving seat and a steering wheel (Fig. 1.).
The steering wheel had two shifter paddles positioned behind
the left and right wheel spokes. The stimuli were presented
on a flat, black 32-inch HPC monitor (710 * 420 * 80 mm)
with 1920 * 1080 pixels and a refresh rate of 75Hz. The
screen was placed 60 to 80 cm from the participants’ eyes.
During the experiments, the stimuli were presented using
the E-Prime 3.0 software [22] in a 16:9 aspect ratio with a
resolution of 1080 pixels. For the sake of signal quality, we



Fig. 1. This study provides initial evidence supporting implicit annotation of overt and covert traffic hazards based on drivers’ ERPs during passive
viewing of recordings of driving scenarios.

Fig. 2. Two conditions in the first experiment.

Fig. 3. Four conditions in the second experiment.

did not specify a fixed viewing distance or angle and ensured
the participants were comfortably seated.

2) EEG Acquisition: We recorded the participants’ EEG
signals continuously (1000 Hz sampling rate) during each ex-
periment using a 64-channel Ag/AgCl-electrode Neuroscan
SynAmps² Model 8050 Quik-Cap EEG cap and the CURRY
8 X Data Acquisition package. The EEG electrodes were
placed according to a modified International 10-10 system.
The EEG recordings were amplified using the Neuvo 64-
channel amplifier. The input impedance was 250 kΩ, and
we kept the electrode impedance below 10 kΩ during the
experiments. EEG was initially acquired using the REF
electrode as a reference and re-referenced to the M1 and
M2 electrodes during preprocessing.

D. Procedure and Experimental Task

The participants underwent the experiments one at a time
in a row; they were encouraged to take a break in between
and start the second experiment at will.

On the day of the experiments, the participants signed the
consent form and filled in some demographic information,
then seated themselves in the driving simulator (Fig. 1.) after
washing and drying their hair.

Each condition in each experiment had 12 practice trials
and 20 experimental trials. Each trial (Fig. 4 and Fig. 5.)
began with a black cross presented at the center of the
screen, and the participants were instructed to focus their
attention at the intersection of the bars. Each cross lasted
800 to 1000 ms at random before the video clip started
to play. The participants pressed the right shifter paddle to
indicate detection of a hazard in a video clip. The video clip
would stop playing as soon as the shifter paddle was pressed;
otherwise, it would keep playing until its full length. Then
the participants saw an empty screen that lasted 1000 ms,
after which the subsequent trial would begin. Whenever a
hazardous vehicle or a pedestrian was featured in a video



Fig. 4. Procedure of the first experiment using real-life driving scenes.

Fig. 5. Procedure of the second experiment using animated driving scenes.

clip, the ego vehicle would hit them if the participant did
not press the shifter paddle.

E. Data Analysis

1) Behavioral Data: In each condition, we counted the
number of trials in which the participants pressed the shifter
paddle. Then, for each experiment, we used SPSS 27 to
conduct Chi-square analysis to test the hypothesis that par-
ticipants were more likely to report detection of danger when
it was overt than when it was covert or absent. Overt danger
was a vehicle or pedestrian who either appeared from behind
the occlusion (i.e., the occluded hazard condition in the
first experiment and the occluded pedestrian condition in
the second experiment) or were visible since the beginning
of a video clip (i.e., the visible pedestrian condition in the
second experiment). Covert danger was an occlusion from
behind which a vehicle or pedestrian might or might not
appear (i.e., the occlusion conditions in the two experiments).
The control condition in the second experiment featured no
danger in the scene.

2) EEG Preprocessing: We used EEGLAB [23] for EEG
data preprocessing. We re-referenced the data to the M1 and
M2 electrodes and band-filtered them at 0.1 to 40 Hz. We
then interpolated the bad channels identified for each par-
ticipant, respectively. We conducted independent component
analysis (ICA) and removed signal noises resulting from eye
movements, channel noise, heartbeat, and limb movement.
Finally, we extracted epochs for each time-locking event type
in the second experiment at -500 to 600 ms in relation to
video onset. For each epoch extracted, we subtracted the 500-

millisecond pre-stimulus interval (-500 to 0 ms) from each
post-stimulus time point to correct for baseline differences.

3) Time Series Classification Algorithm: For epochs ex-
tracted from conditions in the second experiment, we fit the
data into Time Series AI (TSAI, [1]) to classify a) the P400
ERP component as from either the control condition or the
occluded pedestrian and the occlusion conditions combined
and b) the N500 component as from either the control or
the occluded pedestrian condition. We used 320 (16 per
condition per participant) time series (i.e., wave amplitudes
sampled at a rate of 1000 Hz from 351 to 450 ms for the P400
component and from 451 to 550 ms for the N500 component)
as the training dataset. The trained model was then applied
to the test dataset, which included the remaining 80 time
series (four per condition per participant) to see how well it
could correctly classify different types of EEG signals.

We trained the model separately for each electrode of
interest. For the P400 component, we trained the electrodes
FPz, AF4, and F4, and for the N500 component, we trained
the electrodes AF3, F1, and F3.

III. RESULTS

A. Behavioral Results

According to the results of a Chi-square test, in the
first experiment, the way participants pressed the shifter
paddle differed between the occlusion and occluded hazard
conditions (χ2(1, N = 440) = 361.69, p < .001). When a
hazard was present, the participants pressed the shifter paddle
217 times out of 220 trials. By contrast, when a hazard was
absent (and only the occlusion was present), the participants
pressed the shifter paddle 18 times out of 220 trials.

A similar result was obtained in the second experiment
(χ2(3, N = 880) = 571.81, p < .001). When a video featured a
pedestrian appearing from behind an occlusion and crossing
the road, the participants pressed the shifter paddle 220 and
219 times out of 220 trials, respectively. When no pedestrian
was present, that is, when only the occlusion was present and
when no occlusion or pedestrian was present, the participants
pressed the shifter paddle 59 times and 35 times out of 220
trials, respectively.

B. Characteristic ERP Components

Fig. 6. shows waveforms of the electrodes FPz, AF4, F4,
F3, AF3, and F1 during the window of 50 ms before and
550 ms after video onset. We picked the time windows of
351-450 ms and 451-550 ms, respectively for the P400 and
N500 components.

FPz showed an enlarged amplitude of the P400 component
upon detection of occlusion as compared to the control
condition (t(9) = 3.51, p = .007, d = 1.11). This difference
was non-significant for the electrodes AF4 (t(9) = 1.59, p =
.147, d = 0.50) and F4 (t(9) = 1.06, p = .316, d = 0.34).
AF3 showed an enlarged amplitude of the N500 component
upon detection of a pedestrian as compared to the control
condition (t(9) = 2.64, p = .027, d = 0.84). This difference
was borderline significant for the electrodes F3 (t(9) = 2.28,
p = .049, d = 0.72) and F1 (t(9) = 2.31, p = .046, d =



Fig. 6. The P400 and N500 components upon detection of a driving hazard.

0.73). These results suggested that, on a statistical level, the
participants’ brain activity was enhanced at FPz, AF3, F3,
and F1 when they detected overt and covert danger in a
driving scene.

C. Algorithm for EEG Time Series Classification

Based on the P400 component recorded at the FPz, AF4,
and F4 electrodes, the TSAI classified the driving scenes
in the second experiment as featuring an occlusion vs.
control with an accuracy of .61, .63, and .61, respectively.
Based on the N500 component recorded at the AF3, F3,
and F1 electrodes, the TSAI classified the driving scenes in
the second experiment as featuring a visible pedestrian vs.
control with an accuracy of .74, .64, and .68, respectively.

IV. DISCUSSION

The study set out with the aim of proposing an automated
system that annotates hazardous driving scenes based on
drivers’ ERPs while they passively view recordings of driv-
ing scenarios. We identified two ERP components, namely,
the P400 and N500, that EEG devices could capture 400 and
500 ms after the onset of a hazardous scene. At the electrode
FPz, the participants’ P400 amplitudes increased when they
detected an occlusion in the driving scene as compared to
when the scene was unobstructed, and at the electrodes AF3,
F3, and F1, their N500 amplitudes increased when they saw
a pedestrian crossing the road as compared to when the road
was empty. We then fit single-trial EEG data to TSAI, a
deep-learning model designed for time series classification.
The model successfully differentiated between driving scenes
that did and did not feature an occlusion based on the P400
component recorded at the electrodes FPz, AF4, and F4

respectively, as well as those that did and did not feature
a pedestrian based on the N500 component recorded at the
electrodes AF3, F3, and F1 respectively.

Note that we hereby define a hazardous scenario as
including both overt and covert hazards. In this study, overt
hazards were vehicles and pedestrians either crossing the
road or appearing unexpectedly from behind an occlusion,
and covert hazards were buildings, trees, arrays of buses, etc.,
serving as the occlusion. Thus, increased N500 amplitudes
would suggest enhanced brain activity upon detection of an
overt hazard, and increased P400 amplitudes would suggest
enhanced brain activity upon detection of a covert hazard.

By contrast, on the behavioral level, the participants tended
to only report their detection of overt hazards and not covert
hazards. In this sense, the participants’ EEG signals seemed
more sensitive to hazardous driving scenarios than their
explicit report.

These results are of particular importance in near-miss
scenarios where injuries and damages are avoided by a slight
shift in space or time. The hazards in near-miss scenarios
are covert, but the situations are as dangerous as actual
accidents. To ensure driving safety, it would be critical for
autonomous driving systems to detect near-miss scenarios
and react accordingly. In terms of databases of near-miss
scenarios for autonomous driving, [24] and [25] provided
two of the first databases consisting of near-miss incidents,
but due to the inherent rarity of near-miss cases and the
difficulty of capturing abnormal visual features (e.g., those
in avoiding movements) [25], these datasets have yet to reach
the scale of databases comprising normal real-world traffic
such as KITTI [26] and CitySpaces [27] (which, on the other
hand, do not contain near-miss scenarios).



Utilizing drivers’ ERPs during passive viewing would help
capture near-miss scenarios as well as other dangerous driv-
ing scenarios characterized by covert hazards that are previ-
ously unknown. It would also help reduce, if not spare, the
workload of manual annotation of such recordings because
ERP data is in the form of time series and could be captured
automatically by time series classification algorithms.

However, to materialize the technique in real-life driving
situations, many remaining questions must be answered. First
and foremost, would the P400 and N500 effects hold in
other driving scenarios, for example, when the driving scene
were complicated and composed of multiple vehicles and
pedestrians? Second, would the effects hold if the drivers
adopted a more natural pattern of response to hazards,
for example, by steering, braking, or releasing the throttle
in response to an emergency? Third, how to increase the
accuracy of EEG time-series classification when the signals
are noisy, especially when the recordings feature real-life
driving scenarios and TSAI might no longer be suitable?

To answer the first two questions, according to the Inter-
national 10-10 System of the placement of EEG electrodes,
the electrodes analyzed in this study were placed over the
participants’ prefrontal cortices. Specifically, the FPz was
placed over the anterior prefrontal cortex (also known as the
frontopolar prefrontal cortex and the rostrolateral prefrontal
cortex), the AF4 and the AF3 were placed over the dorso-
lateral prefrontal cortex, and the F4, the F3, and the F1 over
the frontal eye fields.

Neuroscience researchers have proffered many hypothe-
ses for the functions of the anterior prefrontal cortex. For
example, one of the major hypotheses [28] is that the
anterior prefrontal area performs a domain-general function
in coordinating multiple simultaneous cognitive processes
implicated in complex behaviors. A similar argument in [29]
contends that the anterior prefrontal cortex is involved in
working memory and multi-task coordination. Thus, activity
in the anterior prefrontal cortex should increase when drivers
comprehend and assess recordings of more complicated
driving scenarios.

The dorsolateral prefrontal cortex is widely involved in
various cognitive processes. Of special interest is its role
in planning [30] and intention attribution [31], [32]. In
the second experiment, When the participants saw a covert
hazard (i.e., the occlusion), they must get ready to press the
shifter paddle as soon as the overt hazard (i.e., a pedes-
trian) appeared. When the overt hazard, a pedestrian, was
visible since the beginning, the participants must infer the
pedestrian’s intention to decide how likely the car might hit
them. Thus, action planning and intention attribution seemed
independent from the way that participants responded to the
hazards, that is, planning and intention attribution would
take place regardless of whether the participants pressed the
shifter paddle, steered, braked, or released the throttle.

Finally, activity in the frontal eye fields correlates with
the level of uncertainty one must cope with [33]. In the
second experiment of this study, covert traffic hazards were
the source of uncertainty, as the participants did not know

whether or not an overt hazard (a pedestrian) would appear
at the end of the covert hazard (the occlusion), nor could
they predict the consequence of an overt hazard as soon as it
appeared on the screen. As real-life driving situations would
involve more diverse types of uncertainty, we would expect
the frontal eye fields to be more activated if drivers were
exposed to more complicated driving scenes.

In this sense, it seems the anterior prefrontal cortex, the
dorsolateral prefrontal cortex, and the frontal eye fields are
implicated in the detection of and response to covert as well
as overt hazards in general, which falls in line with previous
findings employing functional Magnetic Resonance Imaging
(fMRI) [34]. Thus, it is reasonable to argue that the P400 and
N500 effects in the detected prefrontal areas should hold in
complicated driving scenarios in real life and regardless of
the driver’s way of responding.

However, to acquire more solid evidence, more laboratory
EEG studies shoud be conducted employing finer-grained
real-life driving recordings as well as more realistic anima-
tions. The participants should also be allowed to respond
as they would on the road. This would inevitably increase
the noise captured by EEG, for example, signals resulting
from sudden movements. In this case, one possibility to
increase the accuracy of EEG time-series classification would
be to collect multi-modal data during the experiment, for
example, drivers’ hand and foot movement, eye-fixation,
electrodermal activities, etc., which would also provide a
temporal reference against which researchers could carefully
select the sections of EEG data to analyze.

V. CONCLUSIONS

When it comes to annotating hazardous driving scenarios,
annotators’ physiological signals (e.g., EEG) are sensitive to
covert hazards which are hard to extract manually. We thus
propose a novel annotation technique utilizing annotators’
EEG signals, specifically, the P400 and N500 ERP compo-
nents captured in the prefrontal electrodes. In a controlled
experiment, the annotators’ (driving instructors) P400 and
N500 amplitudes increased upon perception of covert and
overt hazards as compared to safe conditions. The increase
was successfully detected by a deep-learning model (i.e.,
the TSAI) designed for time-series classification. More data
would be needed to increase the ecological validity of the
ERP effects as well as the algorithm’s classification accuracy.
We argue that this technique would help avoid human
behavioral biases during annotation and reduce the cost and
workload of human annotation.
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APPENDIX

Appendix A: Playlist of driving scenarios in the Occlusion
and Occluded Hazard conditions in the first experiment
obtained from YouTube
https://www.youtube.com/playlist?list=

PLvmIQa5eOlV-GJTlL1JS3jNluSWKbTuuw

https://www.youtube.com/playlist?list=PLvmIQa5eOlV-GJTlL1JS3jNluSWKbTuuw
https://www.youtube.com/playlist?list=PLvmIQa5eOlV-GJTlL1JS3jNluSWKbTuuw
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