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Abstract— Manipulation relationship detection (MRD) aims
to guide the robot to grasp objects in the right order, which is
important to ensure the safety and reliability of grasping in ob-
ject stacked scenes. Previous works infer manipulation relation-
ship by deep neural network trained with data collected from
a predefined view, which has limitation in visual dislocation
in unstructured environments. Multi-view data provide more
comprehensive information in space, while a challenge of multi-
view MRD is domain shift. In this paper, we propose a novel
multi-view fusion framework, namely multi-view MRD network
(MMRDN), which is trained by 2D and 3D multi-view data. We
project the 2D data from different views into a common hidden
space and fit the embeddings with a set of Von-Mises-Fisher
distributions to learn the consistent representations. Besides,
taking advantage of position information within the 3D data,
we select a set of K Maximum Vertical Neighbors (KMVN)
points from the point cloud of each object pair, which encodes
the relative position of these two objects. Finally, the features
of multi-view 2D and 3D data are concatenated to predict the
pairwise relationship of objects. Experimental results on the
challenging REGRAD dataset show that MMRDN outperforms
the state-of-the-art methods in multi-view MRD tasks. The
results also demonstrate that our model trained by synthetic
data is capable to transfer to real-world scenarios.

I. INTRODUCTION

Grasping is a basic and crucial skill for various robot
manipulation tasks. In object stacked scenes, the robot is
required to infer a proper grasping order for safe and reliable
manipulation, which introduces the problem of manipulation
relationship detection (MRD). Currently, the visual detection
of the grasp region in unstructured environment attracts many
efforts [1]. In unstructured environment, the visual dislo-
cation like the phenomenon shown in Fig.1(a) may occur,
which results in erroneous detection of MRD. Therefore, it
is significant to guarantee the correct identification of MRD
when visual dislocation is inevitable.

Recently, deep-learning-based methods have achieved
great success on MRD in single-view grasping. They encode
the objects and object pairs in rgb images and fuse the high-
dimensional features of them to infer manipulation relation-
ships. While, most deep learning-based MRD algorithms like
VMRN[2] and GGNN-VMRN[3] have limitations in MRD
from different views. For example, Fig.1(b) shows the heat
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Fig. 1. (a) Visual dislocation. (b) and (c)The feature GRAD-CAM heatmaps
of the model trained by VMRN[2] in the same scene from different views.
(d) The fundamental of our method. (e) and (f) the feature GRAD-CAM
heatmaps of our model in the same scene from different views.

maps of the VMRN[2], indicating that the representation of
manipulation relationships is different from different views.
Multi-view data are able to alleviate the above problem for
that more information can be obtained. Yang et al.[4] indicate
that the view consistency based on source data (training data)
is largely violated in the target domain (test data) due to the
distribution gap between different domain data. Therefore, a
challenge of multi-view MRD is the consistent representa-
tion learning of manipulation relationships between different
domains.

To address the problem above, we proposes a novel multi-
view fusion framework to strengthen the views’ consistency
by identifying the associations of domain-specific features
related to manipulation relationships from different domains.
First, from the definition of the manipulation relationships[2],
it can be known that the position information of objects in
space is crucial for MRD, so we define a set of K Maximum
Vertical angle Neighbors (KMVN) points from the point
cloud to represent relative position of each object pair. For
the 2D data, we project the features of images and objects
from different views into a common hidden space and fit
the embedings with a set of Von-Mises-Fisher distributions.
Such distributions are aligned to reduce the representation
variance of data from different domains. Finally, the features
of multi-view 2D and 3D data are concatenated to predict
the pairwise relationship of objects.

In summary, we have two main contributions in this paper:

• We propose a novel framework to detect manipulation
relationships from multi-view data in object stacked
scenes. Our framework is proved effective to alleviate
the problem of domain shift under different views.

• Experimental results show that MMRDN achieves state-
of-the-art performance on the REGRAD dataset (not
only the data from seen views but the data from unseen
views) and our model can be transferred into the real
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world data.

II. RELATED WORK

A. Visual manipulation relationship detection

Visual manipulation relationship detection is proposed by
[2] and aims to infer a proper grasping order for safe and
reliable manipulation. [2] learn the relative positions between
objects through features of RGB images and constructed a
manipulation relationship tree through images inputting. [5]
added Condition Random Field in the process of relational
reasoning. [3] encode the global context information and
position information of object pairs by transformer. Then
Gated Graph Neural Network is applied to fuse the en-
coding features. [6] collect a large scale dataset in virtual
environment for robotic grasping. They verify the VMRN[2]
in multi-view data while they ignore the domains shift in
multi-view data. Also, spatial relationship can be applied in
MRD. [7] determines the relative position between object
pairs by xyz coordinates of the 3D point cloud of the object
in space. But the application scenarios of [7] are simple.

B. Multi-source domain adaptation

Domain adaptation assumes data comes from both a source
domain and a target domain, but different distributions are
hold in different domains. [8] and [9] work well to solve
the shift between source and target domains. Multi-source
domain adaptation (MSDA) considers a generalized case that
models generalization ability as more diverse data included
but more challenging since domain shift also exists among
source domains. [10], [11], [12], [13] handling this problem
through a weighted source combination to achieve target-
relevant prediction with rigorous theoretical analysis. [14]
dynamically aligns moments of feature distributions, which
consist of pairs of source and target domains and those of
source domains. Rather than explicit feature alignment, [15]
uses pseudo-labeled target samples for implicit alignment.
DMSN[16] introduce MSDA into object detection. It de-
velops feature alignment among sources and pseudo subnet
learning for their weighted combination. TRKP[17] aims
at preserving more target-relevant knowledge from different
source domains to facilitate multi-source DAOD.

C. Multi-view learning

Multi-view learning like co-training mechanism[18], sub-
space learning methods[19], and multiple kernel learning
(MKL)[20] as well as algorithm with deep learning aims
to integrate multi-view information from different views so
as to obtain more discriminative common representations.
It has been applied in the domain of video surveillance,
entertainment media, social networks and medical detection,
while it has not been in manipulation relationship detection.

III. METHOD

A. Overview

In multi-view MRD, we consider the scenario that there
are Ns labelled source domains S1,S2, · · · ,SNs and one un-
labelled target domain T . In the i-th source domain Si =

{(x j
ri ,x

j
di
,B j

i ,m
j
i ,y

j
i ,r

j
i )}

Ni
j=1, suppose x j

ri ,x
j
di
,B j

i ,m
j
i ,y

j
i ,r

j
i are

RGB images, depth images, bounding boxes, segmentation
mask, category labels and relationship labels respectively.
Note that Ni is the number of images in the i-th source
domain. In the unlabelled target domain T = {x j

rT }
NT
j=1, the

j-th image is represented by x j
rT , and NT denotes the images

of target domain. In this problem, our goal is to learn a
manipulation relationship detector that can correctly detect
the object and identify the manipulation relationship from an
arbitrary view based on multiple labelled source domain and
unlabelled target domain.

We propose a novel framework termed multi-view manip-
ulation relationship detection network (MMRDN) and the
pipeline is shown in Fig.2. It has the following distinct
characteristics. For that labelled real-world data are collected
costly, synthetic data containing RGB and depth images
from four different views and real-world data containing
RGB images from a single view are input into the network.
The consistent representation learning process is divided into
three parts. In the first part, we align image-level features for
all the domains. In the second part, instance-level features
in source domains are aligned by VMFML[21] and the
features from source domains and target domains are aligned
by cosine similarity measure between source domains and
target domain.In the third part, we construct the features
of the relative position between object pairs in the contact
point module. Finally, features from instance-level alignment
module and contact point module are fed into the classifier
to learn the manipulation relationships.

B. Image-level Alignment Module

We aim to learn domain-invariant features with shared
parameters. Considering the fact that low-level (image-level)
features are scarcely associated with high-level semantics,
and low-level features benefit to improve the localization
ability. Therefore, we conduct aligning local features in
lower layers using a cross-entropy loss to train the domain
discriminator Dl . A gradient reversal layer (GRL)[9] is
placed between the backbone and the domain discriminator
to implement adversarial learning. The cross-entropy loss is
formulized as:

Lgrl =−
Nl

∑
i=1

Ns+1

∑
j=1

K

∑
k=1

yi, j,k log(pi, j,k) (1)

where Nl denotes the number of layers of the final output
features. Ns and K denote the number of source domains and
classes, respectively. Ns + 1 denotes the number of source
domains and one target domain.

C. Instance-level Alignment Module

Spherical feature embedding retains the power of feature
learning because it only reduces feature dimension by one
but makes domain adaptation easier since differences in
norms are eliminated. Therefore, we utilize the Von-Mises-
Fisher (VMF) distribution, which is a unit spherical normal
distribution, to align the instance-level features in different
domains.



Fig. 2. Architecture of Multi-View Manipulation Relationship network (MMRDN). Orange and green arrows indicate forward flows for source domain
and target domain respectively. Black arrows indicates the forward flows of both source and target domains. Instance-level alignment module is designed to
align image features and object features from different domains. Contact point module (CPM) is designed to select KMVN from point cloud to represent
relative position of object pairs. The left dotted box shows the camera positions used during training process and the unseen views that appeared in Table.I

For that source samples are labelled and target samples
are unlabelled, Von-Mises-Fisher Model Loss (VMFML)
and EM algorithm are applied for source domains and
target domain, respectively, to fit the embeddings into VMF
distribution. The bounding box classification gain knowledge
of the target domain data via EM algorithm, but in the test
or inference phase, we inference a scene though the trained
classifier.

1) Von-Mises-Fisher Model Loss: A VMF distribution is
defined as:

p(z|µ,κ) =Cd(κ)exp(κµ
T z) (2)

Cd(κ) =
κ

d
2−1

(2π)
d
2 I d

2−1(κ)
(3)

where ||µ||2 = 1 represents the mean direction on the unit
sphere, κ ∈ R≥0 represents the concentration around µ , and
Iv is the modified Bessel function of the first kind and order
v.

Then the VMF Mixture Model (VMFMM) with M classes
is defined as [22]:

gv(zi|ΘK) =
K

∑
j=1

π j p(zi|µ j,κ j) (4)

where Θ = {(π1,µ1,κ1), · · · ,(πK ,µK ,κK)} is the set of pa-
rameters, π j is the mixing proportion of the jth class.

For fairness in each category, the concentration coefficient
κ of each category has been to the same. So, posterior
probability based on cross entropy guided by the VMFMM
can be rewritten as:

pi j
s =

exp(κ jµ
T
j zi)

∑
K
l=1 exp(κl µ

T
l zi)

(5)

where pi j
s is the probability of the ith sample in synthetic data

belongs to the jth classes. And zi =
hi
||hi|| , h denotes the latent

variable from fully-connect layer; µ j =
ω j
||ω j || , ω j denotes the

softmax weight of jth class; κ j denotes the concentration
parameter of jth class.

As written in VMFML[21], the loss function is :

Lvm f ml =−
N

∑
i=1

K

∑
j=1

yi j log(pi j
s ) (6)

where yi j is the one-hot label of ith in jth class.
2) EM algorithm of VMF distribution: The objective of

EM algorithm is to estimate model parameters such that the
negative log-likelihood value, i.e. −log(g(zi|ΘK)) is mini-
mized. The EM method estimates the posterior probability
in the E-step as[22]:

pi j
t =

π jCd(κ j)exp(κ jµ
T
j zi)

∑
K
l=1 πlCd(κl)exp(κl µ

T
l zi)

(7)

and model parameters in the M-step as[22]:

π j =
1
N

N

∑
i=1

pi j, µ̂ j =
∑

N
i=1 pi jzi

∑
N
i=1 pi j

,

r =
||µ̂ j||
Nπ j

,µ j =
µ̂ j

||µ̂ j||
,κ j =

rd− r3

1− r2

(8)

In order not to make the estimated parameter gap between
the source domain and target domain data too large, different
from the traditional EM algorithm which initializes the dis-
tribution parameters by means of spherical clustering during
initialization, we use the parameters trained from the source
domain data to initialize.

Finally, we minimize the gap between source and target
domains by cosine distance.

Lst =
K

∑
j=1

1

1+ cos(µ j
s ,µ

j
t )

(9)



D. Contact Points Module

Manipulation relationship should be the relative position
in the 3D space. Under the circumstance that the full point
cloud and shape of the object are unavailable, KMVN is
selected from the partially observable point cloud of objects
to guide the network to focus on contact part for object pairs.

K Maximum Vertical Neighbors point set Given two
objects, Oi = {o1

i ,o
2
i , · · · ,on

i } and Oi′ = {o1
i′ ,o

2
i′ , · · · ,o

m
i′ },

where o j
i = (x j

i ,y
j
i ,z

j
i ) is the coordination of the j-th point

of the i-th object and another analogy. The vertical angle
of all direction vectors between two objects can be denoted
as V p

ii′ = π− arccos(Oi−Oi′ ,z) where z denotes the vertical
axis in the coordinate System and p∈Rn×m. if Ok

i ⊆Oi and
Ok

i′ ⊆ Oi′ satisfy

V k
ii′ = topkV

p
ii′ (10)

V k
ii′ = π− arccos(Ok

i −Ok
i′ ,z) (11)

Then Ok
i of object i and Ok

i′ of object i′ is called K Maximum
Vertical Neighbors point set.

Based on the above analysis, KMVN is the top k points
with the maximum vertical angle between the direction
vector and the z-axis between all points in the two objects.
We take an example in Fig.3. If two objects are stacked,
then their KMVN will be closer to “up and down”, on the
contrary, if two objects are gradually moving away, then the
KMVN between them will be closer to “left and right”. That
is to say, KMVN can well represent the relative position of
object pairs.

Fig. 3. Explain of vertical angle and examples of KMVN. The blue points
denote the KMVN in object pairs. (a) The explanation of vertical angle,i.e.
the angle between the sight line and its horizontal line of sight. (b) Scene
to show KMVN, where the “bottle” is above the “mailbox” and the “car” is
above the “airplane”. (c) KMVN between “bottle” and “mailbox” which are
stacked. (d) KMVN between “bottle” and “airplane” which are unstacked.

Then the relative position containing direction and distance
of object pairs can be represented as follows.

Zop1 =
1
k ∑

k
cos(Ok

i −Ok
i′ ,z) (12)

Zop2 =
1
k ∑

k
||Ok

i −Ok
i′ ||2 (13)

ZU = Zop1 ⊕Zop2 (14)

where Zop1 and Zop1 denote the representations of object
pairs, ‘⊕’ denotes the concatenate. Zop1 and Zop2 represent
the complementary angle of maximum vertical angle be-
tween object pairs and distance of KMVN respectively.

E. Overall Objective

The supervised learning loss for the detection of labelled
source samples is denoted as Ldet , which is composed of
classification and regression error for RPN and RCNN. Com-
bining detection loss and our introduced losses for multi-
view MRD, the final loss function of MMRDN is written
as:

L = λ1Ldet +λ2Lvm f ml +λ3Lst +λ4Lgrl +λ5LDrel (15)

where LDrel is cross entropy loss for manipulation relation-
ship classification.

IV. EXPERIMENTS

A. Training Details

Mask RCNN[23] is applied to segment and classify the
instance. The learning rate is 0.01, the batch size is 5 and
the momentum is 0.9. And κ in Eq.5 and Eq.7 is set to
20. λ2 is set to 10 and all of others are set to 1. The
REGNet algorithm[24] is applied to auxiliarily demonstrate
the effectiveness of MMRDN in real robot experiments.

B. Dataset and Metrics

Dataset We implement the experiments both on REGRAD
dataset[6] automatically collected in the virtual environment
and a few real-world data. The marginal distribution of
the simulated data and real-world data is different, but
the distribution of labels remain the same. The REGRAD
dataset[6] has nine camera views data in the “train” part of
which we use four views, and we evaluate our method on
“seen val” part. The camera views of training and validate
process are shown in Fig.2

Metrics 1) Precision and Recall: Similar to most clas-
sification tasks, we test the class precision and recall of
three classes. Obj. Rec. and Obj. Prec. proposed by Zhang[2]
will be dominated by the number of unrelated object pairs.
2) Scene Accuracy (SA): this metric tests the accuracy
based on the whole scene. In this setting, the scene is
considered correct only when all possible stacked object
pairs are predicted correctly. We evaluate the performance
on scenes with different numbers of objects to demonstrate
the performance on scenes of varying complexity.

C. Main results

We compare the performance of MRD with previously
state-of-the-art algorithms. The header in them with seen,
unseen and real-world denote views same with training,
views different from training and random views in the real
world, which are shown in Fig.2. The header in them with



TABLE I
RECALL AND PRECISION OF VMRD BASED ON REGRAD DATASET

Metric Recall
Perspctives seen unseen real-world

parent child no-rel parent child no-rel parent child no-rel
VMRN 16.47 8.23 96.08 4.34 3.69 98.60 17.5 5.00 97.21

GGNN+VMRN 21.30 14.13 95.00 12.17 10.22 98.68 17.50 12.50 96.99
[7] 28.57 25.00 95.03 37.50 28.57 95.03 12.25 11.36 98.35

only CPM 38.98 38.82 95.84 37.71 37.70 95.77 15.46 15.20 84.42
CPM+VMFML 41.84 43.90 95.99 40.22 40.32 96.12 18.89 17.31 82.28

ours 43.48 44.93 96.08 46.33 41.74 96.02 22.76 19.29 81.80
Metric Precision

Perspctives seen unseen real-world
parent child no-rel parent child no-rel parent child no-rel

VMRN 11.43 8.25 97.50 10.05 11.64 95.47 17.83 7.92 90.92
GGNN+VMRN 12.81 10.80 97.49 20.97 20.61 96.34 20.29 16.95 90.52

[7] 0.44 0.44 99.94 0.66 0.44 99.94 20.56 19.91 92.41
only CPM 21.56 12.85 98.64 19.43 12.88 98.77 52.60 49.35 14.94

CPM+VMFML 21.79 19.61 98.59 21.35 20.27 98.26 37.66 37.66 50.69
ours 21.79 22.22 98.61 22.05 19.87 98.66 39.61 38.96 56.32

TABLE II
RECALL OF MRD BASED ON DIFFICULTY

Metric Recall
Perspctives simple middle hard

parent child no-rel parent child no-rel parent child no-rel
VMRN 22.89 13.25 95.94 24.8 13.2 95.43 14.79 7.03 96.02

GGNN+VMRN 30.24 20.15 97.08 13.20 10.01 98.68 12.50 11.548 97.98
[7] 47.50 50.82 96.05 42.49 39.59 94.34 39.61 41.67 92.84

only CPM 38.76 43.62 96.73 49.80 49.77 94.99 42.51 41.79 92.94
CPM+VMFML 44.44 42.48 96.82 52.24 49.89 95.03 42.44 41.59 92.88

ours 44.14 47.02 96.79 58.90 57.96 95.08 50.21 48.11 92.79

“parent”, “child” and “no-rel” denote the “parent-child”
relationship, the “child-parent” relationship and the “no
relationship” respectively. The inference time of each scene
is about 0.865s where the process of point cloud processing
is about 0.682s.

Results on different views Table.I have shown the Recall
and Precision on MRD under different views. The results
show that the performance of MRD have been improved
under both seen views data and unseen views data and
even in real-world data. Fig.5(c) shows the distribution of
Zop1 and Zop2 of object pairs in a scene from different
views, where different colors represent different object pairs,
and different points of the same color represent data from
different views, indicates that views have little effect on Zop1
and Zop2 between the same object pair.

The increase in Recall of the “parent” and “child” re-
lationship is more pronounced than Precision, since many
negative samples (unstacked object pairs) will be predicted
as positive samples (stacked object pairs). We explain this
phenomenon in Fig.5 where colored dots denote the stacked
object pairs and light dots denote the unstacked object pairs.
Fig.5(a) shows that the distribution of Zop1 and Zop2 of
unstacked object pairs is close to it of stacked object pairs.
This happens because some objects unstacked to each other
are very close together and they have obvious differences in
size. For example in Fig.7(a), the “can” is taller and bigger
than the “bus” and they are close in space but unstacked;

and in Fig.7(b), the “basket” and the “car” is stacked, but
the direction and distance distributions of KMVN between
the two object pairs are propinquity.

Besides, we divide the test dataset according to the number
of objects. Table.III shows the SA of MMRDN in different
parts. The results show that SA improves in most scenarios
and the mean in all scenarios is improved by 5.6% compared
to the previous state-of-the-art algorithm. We show some
detection examples in Fig.4

Fig. 4. Result examples. Examples for scenes in synthetic data and real-
world data from different views and the red numbers denote the scores.

Results on different degree of occlusion Table.II shows
the Recall on different degrees of occlusion. We define the
simple scenes where the number of the stacked object pairs
is less than or equal to 5, middle scenes where the number of



the stacked object pairs is in [5,10], and hard scenes where
the number of objects is more than 10. First three lines of
the Table.II are previous algorithms, and last three rows are
our method. The results show that our algorithm performs
better in complex scenes with more stacked objects.

TABLE III
IMAGE-WISE TRIPLET ACCURACY OF VMRD BASED ON

DATESET REGRAD

Alog. Total Two Three Four Five
VMRN[2] 15.30 1.00 1.00 55.38 43.75
GGNN[3] 19.20 1.00 1.00 63.08 58.04

[7] 20.60 1.00 1.00 67.69 57.14
ours 26.20 1.00 1.00 70.77 61.61
Alog. Six Seven Eight Nine Ten

VMRN[2] 25.21 15.19 11.67 1.10 0.0
GGNN[3] 32.77 22.78 15.83 1.10 0.0

[7] 33.61 31.65 13.33 1.10 0.0
ours 45.38 37.97 20.83 6.59 6.78
Alog. Eleven Twelve Thirteen Fourteen Fifteen

VMRN[2] 0.0 4.92 0.0 0.0 0.0
GGNN[3] 0.0 6.56 1.39 0.0 0.0

[7] 0.0 6.56 13.89 7.69 0.0
ours 0.0 13.11 6.94 12.82 0.0

Fig. 5. The distribution of representation from KMVN for MRD. (a) The
distribution of Zop1 and Zop2 of different relationships. (b) The distribution
of Zop1 and Zop2 for different object pairs under different views, where
different colors denote different object pairs, and different points of the
same color represent data from different views.

Ablation study We show the results of the ablation
experiments in the last three rows of Table.I, each of
which denotes the contact point module only (CPM only),
contact point module and instance-level alignment module
in instance feature among source domains with no target
data (CPM+VMFML), and the total MMRDN (ours), to
demonstrate the superiority of each part of the MMRDN.
The results show that the representations from KMVN play
a key role and the instance feature is a blessing.

Comparison between KMVN and another special point
The centroid is a kind of special point on the object. Many
researches using 3D point clouds will focus on the centroid,
while we select the KMVN. Because in some stacked scenes,
the relative positions of the centroids can not correctly
represent the relative positions between stacked objects pairs.
Although object pairs are stacking, the coordinates of the
centroid of the object above are not necessarily higher than
those of the object below. For example, the scene is shown
in Fig.6, where “computer keyboard” is supported by “mug”,

but the Z coordinate of “computer keyboard” is lower than
it of “mug”.

Fig. 6. Comparison between KMVN and centroid. The values in the second
column denote the difference in z between the centroid coordinates of the
two objects, and the third column denotes Zop1.

Fig. 7. Limitation of KMVN. (a) The KMVN of “can” and “bus” which
are unstacked. (b) The KMVN of “basket” and “car” which are stacked.

Label error correction In theory, when an object pair
is “child-parent” relationship, Zop1 > 0 should be satisfied.
However, the result from Fig.5b shows that there are some
object pairs whose Zop1 < 0 where green dots and red
dots denote the “child-parent” and “parent-child” relationship
respectively. Therefore, we check some scenes based on Zop1
and find a few relationship labels of some object pairs are
wrong. We show some mislabeled data in Fig.8.

Fig. 8. Example scenes that has wrong labels. In the left image, there are
redundant relationships. In the right image, they reverse the relationships
between object pairs within “parent-child” and “child-parent”.

V. CONCLUSIONS
Multi-view MRD suffers from the domain shift due to

occlusion difference in different views. In this paper, we
propose a novel multi-view fusion framework to learn the
consistent representations among multiple views for MRD
in object stacked scenes. Our approach models the relative
relationship of object pairs by KMVN and align instance
feature from different views by VMF distribution. Experi-
ments are conducted to evaluate our approach in scenarios
from multiple views. The experimental results show that our
approach outperforms the previous methods and achieves the
state-of-the-art performance on multi-view MRD.
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