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Abstract— Controllable and realistic traffic simulation is
critical for developing and verifying autonomous vehicles.
Typical heuristic-based traffic models offer flexible control to
make vehicles follow specific trajectories and traffic rules. On
the other hand, data-driven approaches generate realistic and
human-like behaviors, improving transfer from simulated to
real-world traffic. However, to the best of our knowledge, no
traffic model offers both controllability and realism. In this
work, we develop a conditional diffusion model for controllable
traffic generation (CTG) that allows users to control desired
properties of trajectories at test time (e.g., reach a goal or
follow a speed limit) while maintaining realism and physical
feasibility through enforced dynamics. The key technical idea
is to leverage recent advances from diffusion modeling and
differentiable logic to guide generated trajectories to meet rules
defined using signal temporal logic (STL). We further extend
guidance to multi-agent settings and enable interaction-based
rules like collision avoidance. CTG is extensively evaluated
on the nuScenes dataset for diverse and composite rules,
demonstrating improvement over strong baselines in terms of
the controllability-realism tradeoff.

I. INTRODUCTION

Simulation is crucial to comprehensively evaluate modern
autonomous vehicles (AVs). Due to the difficulty and danger
of running large-scale real-world tests [1], AV developers
rely on extensive testing in simulation to produce reliable
systems [2]. To be most useful, simulators must embody both
realism and controllability, especially for the models of traf-
fic. Realistic traffic allows developments made in simulation
to faithfully transfer to the real world, while controllability
enables constructing fine-grained traffic scenarios to analyze
specific AV behavior. Yet, developing realistic traffic models
is still an open challenge [3], [4], and little attention has been
devoted to making such models easily controllable.

Existing driving simulators commonly synthesize agent
behaviors by either replaying recorded driving logs or using
heuristic-based controllers [5]-[7]. Such behaviors can often
be controlled through a user-friendly high-level programming
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Fig. 1: Overview. CTG uses two key stages to enable controllable
simulation. (Left) a conditional diffusion model is trained to gener-
ate realistic trajectories. (Right) Guided model sampling uses STL
rules to meet desired objectives.

API [5], [6] or scenario editor Ul [7]. However, these meth-
ods lack realism as they either cannot react to other traffic
agents or are not expressive enough to appear human-like. To
address these issues, recent works propose to learn generative
models of traffic behavior from large-scale driving datasets
[31, [4]. While generated behaviors from these models appear
reasonable, they merely reflect the distribution of the training
data: they lack any mechanism to control the generated
traffic flow, making these methods less useful in practice.
For example, to test an AV against cut-in from a neighboring
lane, a user needs an interface to steer the vehicle to perform
the maneuver. Unfortunately, the opaque nature of neural
network models makes this difficult for current approaches.

We look to bridge the gap between realism and controlla-
bility by studying the problem of controllable traffic behavior
generation. We seek a model that can generate trajectories
to meet specific desirable objectives from a user at inference
time, which may differ from objectives used in training. This
is different from traffic models that aim to learn maximum-
likelihood behaviors, and therefore are not flexible to new
objectives. Moreover, controllable generation is an especially
challenging for learned approaches, which typically struggle
to produce samples outside of the training distribution.

To enable such flexible generation, we leverage recent
advances in diffusion modeling, which have achieved state-
of-the-art performance in several domains including images
[8], [9], audio [10]-[12], and pedestrian trajectories [13].
Importantly, diffusion models allow a notion of control at
generation time through so-called guidance, which has bene-
fited several tasks including conditional image generation [9],
language generation [14], and offline reinforcement learning
[15]. Inspired by these works, we propose a conditional
agent-centric diffusion model (Fig. that allows flexible



traffic behavior generation. Unlike prior diffusion models for
trajectories [13], [15], our model is conditioned on a holistic
context surrounding the vehicle including the local roadmap
and neighboring agents. Since traffic has an inherent ground-
truth transition function, we also enforce realistic vehicle
dynamics into the design of the diffusion model state space to
guarantee that generated trajectories are physically feasible.

To achieve controllable generation, Diffuser [15] guides
each step of the denoising process in a diffusion model
by perturbing network outputs with the gradient of some
differentiable objective to encourage desired properties. For
traffic simulation, however, deriving and implementing ob-
jectives like collision avoidance, goal reaching, and road
rules is complex due to its spatio-temporal and multi-agent
nature. We propose to leverage the established syntax of
Signal Temporal Logic (STL) [16]. As a formal language
designed for specifying spatio-temporal constraints, STL
allows one to easily and scalably define driving rules; it also
incorporates a notion of robustness that measures how well
rules are satisfied. Concretely, we use this measure of rule
satisfaction as the objective function for guiding the diffusion
model (Fig.[T] right) by leveraging differentiable frameworks
[17], [18] to make STL compatible with guidance. Since
our diffusion model generates trajectories independently for
each agent in a scene, we further propose a joint guidance
procedure for rules involving multi-agent interactions (e.g.,
no collisions), which simultaneously denoises all agents in
the scene to mitigate interaction rule violations.

We evaluate Controllable Traffic Generation (CTG), on the
nuScenes [19] driving dataset, demonstrating the ability to
meet user constraints while maintaining realistic trajectory
generation. In summary, we contribute (1) the problem for-
mulation of controllable traffic generation, (2) a conditional
diffusion-based method to generate realistic traffic satisfy-
ing physical feasibility and user-specified STL rules, and
(3) extensive evaluation comparing CTG to several strong
baselines, demonstrating its superiority in terms of the trade-
off between controllability and realism. Demos can be found
at https://aiasd.github.io/ctg.github.io.

II. RELATED WORK AND BACKGROUND

A. Traffic Simulation

Traffic simulation approaches can be categorized into rule-
based and learning-based. Rule-based approaches rely on
analytical models such as cellular automata and intelligent
driver model [20]. These approaches typically have fixed
routes for vehicles to follow and separate longitudinal and
lateral motions of agents, thus having limited expressiveness
for behavior simulation. Learning-based approaches mimic
real-world driving behavior based on trajectory datasets [21]—
[23]. For example, TrafficSim [3] uses a trajectory prediction
model to perform scene-level traffic simulation. BITS [4]
decouples the problem into a high-level latent inference and a
low-level driving behavior imitation. However, none of these
methods allow a user to specify customized properties of the
generated traffic behaviors at inference time.

Recent work in adversarial or safety-critical scenario gen-
eration can be seen as one instance of controllable traffic
simulation, namely generating trajectories that cause an AV
to misbehave in some way [24]. STRIVE [25] generates
near-collision scenarios by searching in the latent space
of a trained trajectory prediction model via a test-time
optimization. Abeysirigoonawardena et al. [26] and Chen
et al. [27] use Bayesian optimization and reinforcement
learning, respectively, to generate adversarial trajectories for
vehicles in a specific scenario like intersection crossing or
lane changing. While these works focus specifically on ad-
versarial objectives, our approach is general and can generate
trajectories to meet several different objectives.

B. Diffusion Modeling

Controllable diffusion models have been explored with
classifier [9], classifier-free [28], and reconstruction [29]
guidance for image and video generation. Li et al. [14] use a
diffusion model with different pre-trained classifiers to guide
language generation on different natural language tasks.
Diffuser [15] uses a diffusion model to plan robot behavior
(state-action trajectories). Gu et al. [13] model pedestrian
trajectories for forecasting. Different from these works that
use no or limited context, we adapt conditional diffusion
to condition on decision-relevant information such as map
and state of nearby agents. Additionally, we leverage known
vehicle dynamics models to ensure physical feasibility of
the generated trajectories. Diffuser [15] also introduces test-
time guidance to generate trajectories that optimize a given
reward function. We build on this formulation to generate
controllable traffic trajectories, but rather than learning re-
ward functions we use analytical loss functions based on STL
rules that are easy and scalable for driving applications.

C. Signal Temporal Logic (STL)

STL [16] formulas are interpreted over signals, T =
St, ..., St+, an ordered finite sequence of states s; € R".
A signal represents a sequence of real-valued, discrete-time
outputs from a system. STL formulas are recursively defined
based on the following context-free grammar:

¢u= T | pe| ¢ dNY | dUap V. (1)

The grammar defines a list of expressions, each separated
by the pipe ( | ), that can be used to construct an STL
formula. In particular, a formula ¢ is generated by selecting
expressions recursively. We briefly summarize Eq. (I) here,
but refer readers to Leung et al. [17] (Section 2.2) for
a pedagogical introduction to STL. The core of an STL
formula are predicates p. of the form u(z) > ¢, where ¢ € R
and g : R™ — R is a differentiable function. These define
the desired properties/constraints of a signal. Additionally, T
means true, ¢ and ¢ are STL formulas, and [a,b] C R>¢ isa
time interval (assumed to be [0, 00) if omitted). The symbol
- is negation, while other symbols describe how to combine
multiple formulas: A (conjunction/and) and U/ (until), which
is a temporal operator. Other common logical connectives
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(Vv disjunction/or, = implies), and temporal operators (
eventually, [J always) can be derived from Eq. ().
Importantly, STL includes a formal notion of robustness,
which measures how much a signal satisfies or violates a for-
mula [16]. We use robustness formulas as guidance functions
for the proposed conditional diffusion model. In contrast
to Leung and Pavone [30] that focus on a single-controller
setting and rules fixed at training time, we consider a more
flexible inference-time guidance with multiple agents.

III. CONTROLLABLE TRAFFIC GENERATION

Next, we detail our approach CTG. Sec. formulates
the problem of controllable traffic generation. We then de-
scribe the two stages of CTG. The offline stage trains a
dynamics-enforced conditional diffusion model to capture
diverse behaviors from real-world driving data (Sec. [[II-B].
Then during online inference, CTG generates rule-compliant
behaviors by sampling the model using a novel iterative
joint STL guidance process (Sec. [[IlI-C). Taken together, the
conditional diffusion model and STL-based guidance enable
realistic and controllable generation of traffic trajectories.

A. Problem Formulation

For some target vehicle (tgt) that we would like to simu-
late, let the state at a timestep ¢ be s = (2}, 41, v;¥', 61,
including 2D location, speed, and yaw. Similarly, let the
action (i.e., control) be af' = (0¥, 60" with acceleration
and yaw rate. We denote ¢ = (I,S) to be decision-
relevant context for the target agent. This consists of a local
(agent-centric) semantic map I and the H previous states
of both the target agent and its M neighbors S;_pg.: =
{8 s st_pas -2 sM ., ). To obtain state s} for vehi-
cle m at time t 4+ 1, we assume a transition function f that
computes sy} = f(si",a;") given the previous state s;" and
control a;”. We use a unicycle dynamics model for f.

Our goal is to generate realistic and rule-satisfying traffic
behavior for the target agent given (1) the decision context
c and (2) a function 7 : R*T x R?T — R to measure rule
satisfaction of a state and action trajectory. A model should
generate a future trajectory for the target agent s;g; L over
the next 7' time steps. Ideally, this trajectory maximizes
satisfaction 7(sy, 1, a5, ) to avoid violating the given
rule. However, in many cases there is an inherent tradeoff
between rule satisfaction and trajectory realism: e.g., if a user
seeks a simulated vehicle with a speed much slower/faster
than the speed limit, this is naturally “unrealistic” in the
context of city streets. Therefore we must strike a balance
between meeting user-specified constraints while still main-
taining realistic behavior. As described next, our method does
this by first training a rule-agnostic traffic generation model
on real-world data to capture realism, which is then guided
for rule-specific compliance only during inference.

B. Conditional Diffusion for Traffic Modeling

Diffusion models [8], [31] pose data generation as an
iterative denoising process by learning to reverse a forward
diffusion process. As shown in Fig. |2l our diffusion model

operates primarily on a (future) trajectory of states and
actions [15], but is conditional as it receives the context as
input at each step of denoising. Starting from Gaussian noise,
the diffusion model is applied iteratively to predict a clean,
denoised trajectory of states and actions.

Trajectory representation. In this section, we denote the
(future) trajectory that the model operates on as:

T, :=lag ... ar_1], T, :=[s1 ... sT].

a
Unlike [15] which directly predicts states and actions jointly,
our model only predicts actions 7, and we leverage the
known dynamics f to infer states 7, via rollout starting at
the initial state sg (included in the past context). In other
words, in the following formulation, 7, always refers to a
state trajectory resulting from actions, or, more formally:
T, = f(so,T,). This ensures physical feasibility of the state
trajectory throughout the denoising process.

Formulation. Let 7% be the action trajectory at the kth
diffusion step where k& = 0 is at the original clean trajectory.
The forward diffusion process acting on 70 is defined as:

K

CARE AR || CAEm
k=1 (2)
q(rilrd ™) = N (s /1= Bery ™ B,
where (31, B2, - - Bk are a fixed variance schedule that con-

trols the scale of the injected noise at each diffusion step.
As noise is gradually added, the signal is corrupted into an
isotropic Gaussian distribution.

For trajectory generation, we seek to reverse this diffusion
process using a learned conditional denoising model (Fig. [2)
that is iteratively applied starting from sampled noise. Given
the context information c, the reverse diffusion process is:

Hp

1; MB(T s kv C), EQ(Tkv kv C))v
3)
where p(TX) = N'(0,1) and 6§ denotes the parameters of the
diffusion model. Note that at each step, the model receives
both actions T and the resulting states 7% = f(sg, 7F) as
input. Following [8], [13], the variance term of the Gaussian
transition is fixed as % = Zy(7% k, c) = 021 = ;L
Training. At each training iteration, the context c¢ and
ground truth clean trajectory 70 are sampled from a real-
world driving dataset and the denoising step k is uniformly
sampled from {1,..., K}. We compute the noisy input "
from 70 by first corruptlng the action trajectory 7% =
VarTd + VT —age, € ~ N(0,1) with @, = [[/_,1

Bi, and then computing the corresponding state TF =

pe( Och k 1|T C)

G

p9(1'571|7'k,c) =

f(s0,TF). The diffusion model indirectly parameterizes ftg
in Eq. (EI) by instead predicting the uncorrupted trajectory
70 = [70: f(s0,70)] where 70 = (7% k,c) is the

direct network output (see [14], [15], [32]). Fmally, we use
a simplified loss function to train the model:

L(O) =E g roe [|I7° = 7°|7] . 4)
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Fig. 2: Single test-time denoising step. Given current noisy
actions and states along with encoded context, the diffusion model
predicts the mean of the next-step distribution which is then
perturbed according to the desired guidance function.

Note that both the action and state trajectories are supervised
by this loss since we found that the additional state trajectory
information improves generation quality.

Implementation details. The input context c containing
agent-centric map information and past trajectories is repre-
sented in a rasterized format. This context is processed by a
ResNet [33] encoder Fy before being passed to the diffusion
model. Similar to Diffuser [15], we use a diffusion model
architecture like U-Net containing several blocks of temporal
1D convolutions over the input trajectory. We incorporate
conditioning information by first concatenating with the dif-
fusion step input k and then adding this conditioning feature
to the convolutional features at each block of the U-Net. The
diffusion process uses a cosine variance schedule [15], [32]
and K = 100 diffusion steps for all experiments.

C. Guided Generation with Signal Temporal Logic (STL)

To enforce desired rules on realistic samples from the
trained diffusion model, we introduce an iterative guidance
algorithm with rules specified as STL formulas.
Conditional guidance formulation. Diffuser [15] introduces
the notion of guidance to sample trajectories from an uncon-
ditional diffusion model to meet some pre-defined objective.
We can do the same for our conditional diffusion model
by defining a binary random variable O that indicates if a
trajectory is optimal, with p(O = 1) = exp(r(1,, T,)) based
on the rule satisfaction “reward” r. To approximately sample
from the distribution of optimal trajectories, the steps of the
denoising process can be modified to [15], [31]:

po(TE 1|78 c,O) = N(F L iu+ 3¢, %), (5

where p = py, ¥ = Xy as in Eq. (@), and the added
gradient is computed from a guide J based on satisfaction:
g= VJ(IJ’) = VIL T(f(So, I"’)7 l"’) (6)

The process of perturbing the predicted means from the
diffusion model using gradients of a specified objective is

Algorithm 1 Guided Sampling

1: Require encoder Fy, conditional diffusion model ¢, transition function f, guide
J, scale «, covariances Zk, diffusion steps K, inner gradient descent steps M,
number of actions to take before re-planning I.

2: while not done do

3: Observe state sg and context ¢

4 Initialize trajectory 75 ~ N(0,I); 75 = f(so, 75); 7 =[5 +X]

5: fork=K,...,1do

6: B = po(t* k, Fo(c))

7. H(U) =pu

8: forj=1,...,M do

0 1) 2 R0 1 avg(ui-)y

10: Ap = |p9) — p O Ay« clip(Ap, —Br, Br)

11: pP e p® LAy

12: T e N (D B e = f(so, i)
I

13: Execute first  actions of trajectory 70

summarized in Alg. E} Different from Diffuser [15], an
iterative inner gradient descent with clipping using the Adam
optimizer is incorporated rather than using a single-step
gradient update. This gives flexibility to trade off rule com-
pliance and realism by adjusting learning rate and the number
of optimization steps. When generating a future trajectory in
practice, we guide several samples from the diffusion model
and choose the one with the best rule satisfaction according
to J at the end of denoising. We refer to this as filtration.
STL as guidance. Instead of training a classifier or reward
function for [J as in prior works [14], [15], our guidance
functions are implemented analytically based on STL. For
each rule we wish to apply through guidance, the grammar
in Eq. (I) is used to generate a corresponding STL formula
describing how the trajectory should be constrained. Exam-
ples of various STL rules used are shown in Tab. [I; note the
formulas are relatively simple despite the complex behavior
they describe. By construction, every STL formula admits a
robustness formula measuring the degree of rule satisfaction,
which is used as the guide J. Since it is necessary to
compute a gradient through this function, STL formulas are
implemented using differentiable frameworks [17], [18].
Multi-agent guidance. A particular challenge is applying
scene-level rules that involve multiple agents (e.g., no col-
lisions). For this purpose, guided sampling is performed
in a batched fashion over all agents in the same scene
simultaneously. This way guidance can be computed across
all trajectories, and the corresponding gradients are collected
and propagated back to agents as needed.

Simulating traffic. To perform closed-loop traffic simulation
of a scene with many agents, the same model is used for
each agent in a standard control loop: for each agent at each
step of simulation, a guided sample is generated from the
model and the first few actions are taken before re-planning
at a prescribed frequency. In all experiments (Sec. [[V]), each
scene is rolled out for 20 seconds starting from a ground
truth driving log, and the re-plan rate is 2 Hz as in [4].

IV. EXPERIMENTS

We conduct experiments to validate that: (1) CTG can
generate controllable traffic behaviors that satisfy user-
specified rules, and (2) compared to strong baselines, CTG
achieves better rule satisfaction while maintaining realism.



TABLE I: Definition of rules. For each rule, the STL formula and corresponding metric used for evaluation are shown.

Rule ‘ STL Formula ‘ Evaluation Metric

speed limit Dspeediimit = N\; D(vi ¢ — Viimit;) < € hspeediimit := 3 2¢ max (0, vi,¢ — Vlimi; )

target speed Drargetspeed = /\1 ¢ |vi¢ — vldwe(l t | <e Pargetspeed 1= 23 3¢ |Vi ¢ — Utarget; ¢ |

no collision Peollision := D Nicei (@i, yie) — (x4,6,95,0)]] > € heottision 1= iz L[| [(za, ¢, yie) — (@56, y5,¢) || < €]

no off-road Poffroad = 5\\ (@i,t5Yi,t) — (Toftroady, » Yoft-roady, ) || > € Poftroad 1= 2L [mine |[(@4,¢, Yi,t) — (Toff-roady » Yoff-roady ) || < €]
goal waypoint Pwaypoint 1= /\ <>||(z7 t5Yit) — (Teoaly s Ygoul; )| < € huaypoint 2= i ming ||(zi,¢, Yi,t) — (Tgoal; » Yoal; )|

stop sign Bstopsign = /\; O(i in stop region = OD[O,m] (@4 in stop region A Pstop)) Pstopsign *= 4 NG in stop region |V ¢

stop sign + no off-road
goal waypoint + target speed

Bstopsign A Poffroad
<15waypoin[ A ¢mrgeupeed

Pitopsign s Poffroad
h Lwaypoint 5 h Utargetspeed

TABLE II: Quantitative results (Single Rule). The top two methods for each metric are highlighted.

speed limit target speed no collision no off-road goal waypoint
rule real fail rule real fail rule real fail rule real fail rule real fail
SimNet 0.739  0.898  0.353 1989 0.898 0353 | 0.137 0.898 0353 | 0453 0900 0353 | 7.543 0900 0.353
SimNet+opt 0.038 0.770 0470 | 0.630 1.234  0.593 | 0.045 1.149  0.398 | 0.427 1242 0416 1.947 1.162  0.467
TrafficSim 0.737 1362 0.443 1.922 1.346  0.440 | 0.140 1.542 0416 | 0.485 1.564  0.401 7.733 1.574  0.458
TrafficSim+opt 0.042 1444 0325 | 0.610 1.634  0.404 | 0.075 1.063  0.265 | 0.423 1.836 0413 | 2414 1.766  0.532
BITS 0.188 1.068  0.256 1.054 0968  0.246 | 0.038 1.220 0314 | 0432 1.131  0.296 | 4.493 1.152 0.332
BITS+opt 0.033 1.190  0.487 | 0.681 1.434 0542 | 0.028 1.617 0354 | 0435 1.261 0.343 1.533  1.280  0.442
CTG (w/o f+g) 1.380  0.396  0.301 2,662 0396  0.301 0.172 0396  0.301 0369 039 0301 | 7.052 0396 0.301
CTG 0019 0359 0.165 | 0.150 0.855 0.179 | 0.040 0.569 0.271 0.341  0.501 0455 1.943  0.564 0.387

TABLE III: Quantitative results (Multiple Rules).

stop sign + no off-road goal waypoint + target speed

rulel rule2 real fail rulel rule2 real fail
SimNet 2.282 0.454 0.898 0.353 3.803 1.610 0.898 0.353
SimNet+opt 1.527 0480  0.796 0.443 3.238 0.980 1.189 0.659
TrafficSim 2.670 0.484 1.605 0.409 1.583 4.544 1.369 0.450
TrafficSim+opt 0.849 0.405 1.577 0.281 2.817 0.995 1.398 0.529
BITS 2.023 0.434 1.032 0.254 2.677 1.077 0.919 0.286
BITS+opt 1.299 0.471 1.083 0.399 3.171 1.019 1.455 0.601
CTG (w/o f+g) 2.573 0.369 0.396 0.301 3.868 2.202 0.396 0.301
CTG 0.528 0.338 0.288 0.326 1.205 0.231 0.738 0.329

As discussed in Sec. there is often a trade-off between
realism and rule compliance; ideally a method will strike a
reasonable balance and achieve good performance for both.
After describing the experimental design (Sec. [[V-A), we
compare to baselines in single-rule (Sec. and multi-
rule (Sec. settings both quantitatively and qualitatively,
and finally conduct an ablation study (Sec. [[V-D).

A. Experimental Setup

Datasets. nuScenes [19] is a large-scale real-world driving
dataset, which consists of 5.5 hours of accurate trajectories
across two cities with diverse scenarios and dense traffic. We
train all models on scenes from the train split and evaluate
on 100 scenes randomly sampled from the validation split.
In the current work, we focus only on vehicle simulation and
defer other types (e.g., pedestrians, cyclists) to future works.
Metrics. Our evaluation focuses on controllability, realism,
and stability (i.e., avoiding collisions and off-road driving).
We consider rule-specific violation metrics (rule), detailed
in Tab. [l to evaluate controllability. Metrics are computed
for each scene (¢ denotes each vehicle in the scene), then
averaged across all testing scenes. To evaluate realism, we
follow [4] and compare data statistics between generated
traffic simulations and ground truth trajectories in the dataset.
This comparison is computed via the Wasserstein distance
between the normalized histograms of the driving profiles
for the simulated and recorded trajectories. We define an
aggregated metric — realism deviation (real) — as the mean
of the realism for three properties from [4]: longitudinal

acceleration magnitude, latitudinal acceleration magnitude,
and jerk. We further provide failure rate (fail) to evaluate
the stability of generated trajectories. This is measured as
the average fraction of agents experiencing a critical failure,
i.e. collision or road departure, in a scene.

Baselines. Since there are no comparable works on rule-
compliant traffic generation, we augment state-of-the-art
traffic simulation models by adding a test-time optimization
to meet specified rules. For a fair comparison, this optimiza-
tion uses the same loss function as used for guidance in
CTG. SimNet [34] is a deterministic behavior-cloning model.
We apply an optimization on its output action trajectory
(SimNet+opt). TrafficSim [3] is a CVAE-based trajectory
generation method. We consider a variant with filtration
(TrafficSim) using our loss function, and another with both
filtration and latent space optimization (TrafficSim+opt).
BITS [4] is a bi-level imitation learning model and we
adapt its sampling ranking function to use our loss function
(BITS). We also use a variant that employs optimization on
the output action trajectory (BITS+opt). Finally, we compare
to CTG without filtration and guidance (CTG w/o f+g), i.e.
random samples from the diffusion model.

B. Single Rule Evaluation

We first evaluate how well methods satisfy a single spec-
ified rule, which is crucial for applications such as traffic
scene editing. We apply five STL rules formulated in Tab. [T}
speed limit, target speed, goal waypoint, no collision, and
no off-road. For rules that require specific parameters to be
set (e.g., the goal waypoint location), we select reasonable
values based on the ground truth log in the dataset to avoid
setting out-of-distribution values (e.g. off-road waypoints).
Speed Limit. Vehicles should not exceed a speed limit
threshold. Since the speed limit of each road is not available
in the dataset, we set the limit per scene to be the speed at
the 75% quantile of all moving vehicles in that scene.
Target Speed. Vehicles should follow a specified speed at
each time step. For each vehicle, the speed is set to 50% of
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Fig. 3: Target speed (a)-(c) and goal waypoint (d)-(f) rule results.
Rule violations are in parentheses (m/s and m, respectively).

its speed in the ground truth scene, similar to a traffic jam.
Goal Waypoint. Vehicles should reach a specified waypoint
at any time in the future. We set waypoints to be the position
at 15s along the ground truth data trajectory for each vehicle.
Hitting a waypoint from ground truth data is not trivial since
sampled trajectories often greatly deviate from the dataset.
No Collision. Vehicles should not collide with each other.
No Off-road. Vehicles should not leave the drivable area.
Quanitative results are shown in Table @ In general, CTG
achieves lower values for rule violation, realism deviation,
and failure rate than the baselines. Among all five settings,
CTG has the lowest rule violation in three and is competitive
in the others. For realism deviation and failure rate, CTG is
usually top two. Fig. 3] shows qualitative results for target
speed and waypoint rules. Compared to TrafficSim-+opt and
BC+opt, the strongest baselines for target speed, CTG has
the lowest rule violation using more realistic trajectories. For
the waypoint example, although BC+opt provides better rule
satisfaction than CTG, both BC+opt and BITS+opt predict
curvy, unrealistic trajectories resulting in multiple collisions.

C. Multiple Rules Evaluation

Stop Sign and No Off-road. Vehicles should stop if they
enter a stop sign region and not go off-road. The expression
for this rule (Tab. [I) is relatively involved using “Implies”
and “Eventually” operators, making it a good test for our
STL-based approach. Stop regions are 20 x 20 m boxes with
centers set to be 5s along the ground truth data trajectories.
Goal Waypoint and Target Speed. Vehicles should reach
their goal following the specified target speeds. Waypoints
are set 10s along the ground truth trajectories, and the target
speeds at each time step are the same as the ground truth
scene. This setting is similar to a “reactive replay” use case
in AV testing, where a user reconstructs a driving log using
the traffic model, which allows agents to realistically react
to any subsequent changes to AV behavior or environment.

Results are shown in Table [l For both settings, CTG

TABLE IV: Ablation study of CTG features: dyn (dynamics
enforced), f (filtration), g (guidance), a (action trajectory post-
optimization), and op (number of inner optimization steps).

Features Loss Metrics

dyn f g a op \ action only? rule real fail
V4 v vV 1 \ \ 0.0189  0.3588  0.1647
v 1 1.3802  0.3964  0.3011
Vv Vv 1 0.0387 04336  0.2227
Vv Vv 1 1.3268  0.3869  0.2942
Vv v Vv 1 0.019 0.447 0.1879
VA VARV ARERVA 1 0.0132  0.4431 0.1845
vV V4 Vv 1 0.0329  0.4591 0.1881
v VA 1 0.0819 04339 0.2117
vV v vV 3 0.0158 04591  0.2017
V4 v WV 5 0.0156 0.456 0.1966
V4 v @  V 1 v 0.018 0.2057  0.2824
v vV 0.0525  3.4204 0.612
1.2797  3.3251  0.7523

variants achieve the top two lowest rule violation and realism
deviation, with only slightly higher failure rates.

D. Ablation Study.

To analyze design choices, we conduct an ablation study
under the speed limit rule setting. Results are shown in
Table [IV] where the top row is our proposed version of
CTG. The first section compares different combinations of
guidance (g) and fitration (f). Without guidance, rule viola-
tion increases greatly. Filtration is more effective paired with
guidance than by itself, as it can choose the best from several
already-guided samples that may satisfy rules to differing
degrees. In the next part of the table, variants using an addi-
tional output action optimization (a) are evaluated. Replacing
guidance with optimization is worse on all metrics, while
combining guidance with optimization reduces rule violation
at the cost of higher realism deviation and failure rate. Next,
more inner optimization steps (op) are used in guidance,
improving rule violation but giving worse realism and failure
rate. Finally, in the bottom section, we evaluate a variant
that only supervises the action trajectory, and variants where
unicycle dynamics (dyn) are not enforced. Supervising only
actions (instead of states and actions) gives more faithful
accelerations resulting in lower realism deviation, but failure
is more frequent without state supervision to regularize.
Additionally, we find that enforcing dynamics using the
unicycle model is key: all metrics degrade without this.

V. CONCLUSION

We proposed CTG, a conditional diffusion model for the
task of controllable traffic simulation, which opens several
exciting future research directions. Currently, we have only
used CTG to model vehicles, but cyclists and pedestrians
are also important agents to simulate for AV interactions.
Additionally, using collision and off-road guidance to enable
very long-term, robust traffic simulation is an important
application. Outside of AV, the proposed guidance framework
may benefit many tasks where learned models in-the-loop
must be reactive and follow novel objectives online.
Acknowledgments. The authors thank Or Litany, Sanja Fi-
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