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Learning Augmented, Multi-Robot Long-Horizon Navigation in Partially
Mapped Environments

Abhish Khanal and Gregory J. Stein

Abstract— We present a novel approach for efficient and
reliable goal-directed long-horizon navigation for a multi-robot
team in a structured, unknown environment by predicting
statistics of unknown space. Building on recent work in
learning-augmented model based planning under uncertainty,
we introduce a high-level state and action abstraction that lets
us approximate the challenging Dec-POMDP into a tractable
stochastic MDP. Our Multi-Robot Learning over Subgoals Plan-
ner (MR-LSP) guides agents towards coordinated exploration of
regions more likely to reach the unseen goal. We demonstrate
improvement in cost against other multi-robot strategies; in
simulated office-like environments, we show that our approach
saves 13.29% (2 robot) and 4.6% (3 robot) average cost
versus standard non-learned optimistic planning and a learning-
informed baseline.

I. INTRODUCTION

We aim to navigate through an unknown environment us-
ing multiple robots to find an unseen point goal in minimum
expected distance: e.g., for package retrieval. To perform
well, the multi-robot team needs to collectively navigate the
unexplored region, seeking out promising routes to the goal
while avoiding regions that typically lead to dead-ends.

Planning well in an unknown environment requires making
inferences about unseen parts of the environment; in the-
ory, robots must envision all possible configurations of the
unknown space—including regions unlikely to lead to the
goal—to determine how to navigate so that they can most
quickly reach the unseen goal. Multi-robot planning under
uncertainty can be modeled as a Decentralized Partially
Observable Markov Decision Processes (Dec-POMDP) [1],
[2]. However, Dec-POMDP planning is computationally in-
tractable in general [3] and it requires access to a distribution
over possible environments, difficult to obtain in general.

Learning is often used to help make inferences about
unseen space needed to inform good behavior and is an
increasingly powerful tool for planning under uncertainty [4],
[5] and Dec-POMDP planning [6]. However, despite im-
pressive progress in this domain, particularly for model-free
approaches trained via deep reinforcement learning [7], [8],
[9], many such strategies struggle to learn effectively in
large-scale environments and can be brittle in practice [10].

So as to avoid the computational expense of planning
over the space of short-time-horizon primitive actions, many
approaches for multi-robot planning introduce a topological
action abstraction that simplify planning [11], [12], [13].
Such approaches typically constrain robot motion so that
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Fig. 1. Our Multi-Robot Learning over Subgoals Planner (MR-LSP)
uses learning to guide robots toward coordinated exploration of regions more
likely to reach the unseen goal.

each robot intends to leave known space through different
frontiers, each a boundary between free and unseen space,
or via paths constrained to belong to different relative ho-
mology [14], [15]. Though these action abstractions simplify
planning and coordination between robots, action selection
typically relies on simple, greedy heuristics to decide where
each robot should navigate next and do not alleviate the
challenges of predicting the impact of an action.

The recent Learning over Subgoals Planning abstraction
(LSP) [16] overcomes this limitation for single-robot plan-
ning. In LSP, learning is used to estimate the goodness
of high-level (frontier-associated) actions that enter unseen
space, including both the likelihood that such an action will
reach the goal and its expected cost. Learning augments a
model-based planning abstraction, affording performant and
reliable navigation under uncertainty. However, despite LSP’s
improved performance in single-robot planning under uncer-
tainty, the LSP state transition model is not straightforwardly
extended to support multiple robots, which must have the
capacity to concurrently explore different unseen regions.

Leveraging insights from multi-robot topologically con-
strained planning and the recent Learning over Subgoals
Planning (L.SP) abstraction, we introduce a multi-robot gen-
eralization of the LSP model: Multi-Robot Learning over
Subgoal Planning (MR-LSP). Our approach supports multi-
robot planning, is reliable, and leverages learning to inform
where robots should navigate next. Each robot’s high-level
(topologically-constrained) actions correspond to navigation
to a subgoal—associated with a frontier—and then naviga-
tion beyond in an effort to reach the goal. We introduce a new
state abstraction and transition model that allows our high-
level planner to envision how the robot team will redistribute
effort once each robot finishes their respective exploratory
action, a key feature of coordinated multi-robot planning.
Our abstraction lets us approximate the challenging Dec-



POMDP as a stochastic MDP and solve it via sample-based
tree search. Learning is used to estimate the goodness of
each action and informs planning via a Bellman Equation
for our model-based planning abstraction.

We demonstrate the effectiveness of our approach in a
simulated office floorplan environment, showing that our ap-
proach reduces cost by 13.29% (two robots) and 4.6% (three
robots) versus standard non-learned optimistic planning and
a competitive learning-informed baseline of our own design.

II. PROBLEM FORMULATION

Our multi-robot team is placed in a partially-mapped
environment and tasked to find a point-goal located in unseen
space in minimum expected cost (distance). Each robot
is equipped with a planar laser scanner, which it uses to
localize and build an accurate map of its local surroundings,
a problem setting recently coined by Merlin et al. [17] as
a Locally Observable Markov Decision Process (LOMDP).
We assume lossless communication between robots so that
all robots have an up-to-date partial map represented as an
occupancy grid, as revealed by all members of the team
and the poses of each robot—collectively, the team’s belief
b;. Planning is centrally coordinated, and so at each time
step, the team’s collective action a; specifies how each robot
should move so as to make progress towards the unseen goal
in an effort to minimize the expected cost.

Formally, we represent this problem as a Partially Ob-
servable Markov Decision Process [18], [19] (POMDP). The
expected cost () under this model can be written via a belief
space variant of the Bellman equation [20]:

Q(bs, as) = Z P(bi111bs, az) [R(bt+1abt;at)
Q(biy1,ai11)] (1)

beta + min
ar+1€A(b+1)
Where R(bit1,0b,at) is the cost accumulated by reaching

belief state b,y from b, by taking action a;.

III. PRELIMINARIES: SINGLE-ROBOT PLANNING IN A
PARTIAL MAP VIA LEARNING OVER SUBGOALS

Even for single robot planning, planning via the POMDP
model in Eq. (1) requires both enormous computational effort
and also access to a distribution over possible environments,
difficult to obtain in general. So as to mitigate the complexi-
ties of single-robot navigation in a partial map, the Learning
over Subgoals Planner (LSP) [16] introduces an abstraction
in which actions correspond to navigation through subgoals
placed at boundaries between free and unknown space,
simplifying the process of imagining the impact of actions
that enter unseen space. Under the LSP abstraction, model-
based planning is augmented via predictions from learning,
allowing for both reliability and good performance.

For the LSP abstraction, temporally-extended actions cor-
respond to subgoals, each associated with a contiguous
boundary between free and unseen space. A high-level action
a; consists of (1) navigating to the subgoal and then (2)
exploring the unknown space beyond in an effort to reach the
unseen goal. Planning is done over an abstract belief state:

a tuple b; = (my, Sy, q:), where m; is the (partial) map of
the environment, S,, is the set of unexplored subgoals, and
g is the robot pose. Each high-level action a; € S, has a
binary outcome: with probability Pg(a;), the robot succeeds
in reaching the goal or (with probability 1 — Ps(ay)) fails to
reach the goal.

Upon selecting an action a, the robot must first move
through known space to the boundary, accumulating a cost
D(my, qi,at). If the robot succeeds in reaching the goal,
it accumulates a success cost Rg(at), the expected cost for
robot to reach the goal, and navigation is complete. If it fails
to reach the goal, the robot accumulates a cost associated
with exploring the region and needing to turn back Rg(a;)
and the state is updated to reflect that the robot has moved
(to position g(a;)) and that the subgoal associated with a;
is explored: b;41 = (my, Su\{a:}, q(ar)). Upon failing to
reach the goal, the robot must subsequently select another
action from the set of unexplored subgoals: a; 1 € S, \{a:}.

The expected cost of a high-level action a; can be written
as a Bellman Equation:'

Q(bs,a; € Sy) = D(my, qr,a¢) + Ps(ar)Rs(ag)+

(1= Ps(a) | Rp(ar) +  min - Qlbiss,aes))
ar+1€S,\{at}
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The terms Pg, Rg, and Rp—too difficult to compute
exactly—are estimated from images collected on board the
robot via learning.

IV. MULTI-ROBOT LEARNING OVER SUBGOALS
PLANNING (MR-LSP)

For single robot planning, the Learning over Subgoals
planning paradigm (LSP) has demonstrated state-of-the-art
performance under uncertainty and reliability-by-design, de-
spite its reliance on learning. Here, we extend the LSP state
and action abstraction to support multi-robot planning.

While the LSP action abstraction is designed for single
robot planning, generalizing the space of high-level actions
to incorporate multi-robot planning is straightforward—the
collective high-level action assigns each robot a subgoal for
it to navigate towards and explore beyond. As such the
collective action for an N-robot team can be written as a
list of subgoals: a; = [01,02, -+ ,0N].

However, generalizing the LSP model to support multiple
robots is made complicated by the fact that different robots
are executing their respective subgoal-actions concurrently
and therefore may finish exploration at different times; when
one robot has finished exploration beyond one subgoal, the
others may not yet be done and may not even have reached
the unseen space they seek to explore. Moreover, whenever
one robot completes a subgoal-action, the planner has the
capacity to reassign the actions of each robot and thus
where they should travel next. If planning is to take into

IThe statistics of belief (Pg, Rg, and Rg) are used as input to the
planner for planning, instead of the belief b¢, in order to transform the
challenging POMDP in Eq. (1) into a simpler stochastic MDP in Eq. (2).
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Fig. 2. Schematic of MR-LSP multi-robot expected cost calculation A schematic showing how the cost of collective-action under a policy is calculated
using the Multi-Robot Learning over Subgoals (MR-LSP) abstraction. For action a;, the robot-team concurrently explores multiple subgoals until one of
the robot discovers whether its assigned subgoal leads to the goal, leading to a transition in the abstract belief state.

account the impact of concurrent action execution, we must
augment the LSP state abstraction and state transition model
to incorporate these effects.

In this section, we introduce our Multi-Robot Learning
over Subgoals Planner (MR-LSP), which introduces a new
state and state transition abstraction to model concurrent
action execution, an essential component of multi-robot
coordination. Key to our approach is the recognition that
estimates of the expected time to complete an action (the
costs of success Rg and failure Rg) tell us which robot
is expected to complete its exploration first, knowledge we
can use to simplify the process of imagining the future
during planning. We introduce a Bellman Equation for our
new multi-robot planning abstraction (Sec. IV-A), which
we use in combination with a Monte-Carlo Tree Search-
based approach to compute the expected cost of multi-robot
collective action (Sec. V).

A. Expected Cost of Multi-Robot High-Level Actions

Under the MR-LSP model, the abstract state of the envi-
ronment is a tuple by = (my, Sy, Sy, ¢:), Where my is the
map, S, is the set of unexplored subgoals, S, is the set of
subgoals that are known to lead to the goal and ¢; is a list
of the robot poses. A high-level collective action a; assigns
each robot a subgoal to explore. For an abstract state b;, the
set of high-level actions A(b;) specifies all collective-actions
for the robot team: A(b;) = @),;(Su U Sy), constrained
such that no two robots can explore same subgoal whenever
possible. A collective-action a; is thus a list of subgoals, that
specifies to which subgoal each robot will next navigate to
and explore beyond in an effort to reveal the goal.

Key to defining our state transition model is the idea
that the multi-robot team can select a new collective-action
whenever a single robot reveals whether or not a subgoal
will lead to the goal; the high-level state is updated when the
first of the robot’s subgoal-actions is completed. As in the
LSP model, under our multi-robot abstraction we estimate
how long it will take a single robot to either reach the
goal (D + Rg) or to explore (D + Rg) beyond a particular
subgoal s. Given estimates of the costs of success Rg and

exploration Rg, we can determine which of the robots is
expected to complete its high-level action first, yielding both
(i) the subgoal ¢’ that the team will first discover either does
or does not lead to the goal and (ii) how long this discovery
will take D’. Mathematically,

D' (b, ay) = vrc?ei{llt(D(bt7 o) +min(Rgs(0), Re(0)))

Dby, o) + min(Rs (), Ru(o)))

o' (by, ay) = argmin(
VYo€ay

Under our model, the outcome of a collective action ay
reveals only whether ¢’ leads to the goal or not, and so
the outcome of that high-level collective action is binary.
After the execution of collective action (a;), with probability
Ps(c’) the state transitions to an abstract success state (bg)
where the robots can reach goal from subgoal ¢’ or with
probability 1 — Ps(c’) the state transitions to an abstract
failure state (bp) where the robots cannot reach the goal
from subgoal ¢’. Under both success and failure, the subgoal
o’ becomes explored, and so is removed from S,, and
the robot have traveled a distance D’ towards completing
their respective high-level subgoal-actions, ending up at new
poses g:(at, D'). The tuple representation of abstract states
associated with success (bg) and failure (br) to find a path
to the goal is:

bs = <mt,S'

bF = <mf,;

=S8N0}, 8, =8, U{o'}, qu(ay, D))
= 5.\M0'}.S) = Sy, ailar, D)) “)

Given our state and action abstraction and state transition
model, we can write a Bellman Equation that defines the
expected cost @) for a collective action a; (see also Fig. 2):

Q(bt, Q¢ S .A(bt)) = D/ + PS(O'I> min Q(bs,at+1)
ar+1€A(bs)

+[1 = Pg(o’ min br,a 5

I s(0”)] ameA(bF)Q( mraiy)  (5)

Difficult to compute exactly, the terms Ps, Rg, and Rg are
estimated via learning from images collected on the robot;
see Sec. VI for a discussion of our neural network structure
and training process. Owing to the combinatorial explosion
of possible actions, we cannot tractably plan while including



all subgoals in the set of candidate actions. Following the
example of LSP [16], we limit the number of subgoals under
consideration to seven for all MR-LSP experiments.

We note that when a single robot is used, our MR-LSP
equation reduces to the single-robot LSP model of Stein et
al. [16], and so our approach extends the original LSP model
to support multi-robot planning.?

B. Navigation via MR-LSP

The high-level collective action defines the long-horizon
robot behavior. Upon selecting a collective action a; via
Eq. (5), each robot makes progress towards each subgoal. We
use an A* plan cost computed over the observed grid to select
motion primitives for each robot that make progress towards
their assigned subgoal. The robots (i) move according to
these primitive actions, (ii) observe their surroundings, (iii)
update the partial map and the set of subgoals, and (iv)
compute a new collective action based on this newly-updated
map. This process repeats until the goal is reached.

V. CoMPUTING MR-LSP EXPECTED COST VIA
SAMPLE-BASED TREE SEARCH

Despite our action abstraction to simplify planning, the
space of collective actions can become large in practice, mak-
ing calculating cost via Eq. (5) computationally intensive.
Instead, we rely on sample-based high-level planning and
use a Partially Observable UCT (PO-UCT) [21]—a variant
of Monte-Carlo tree search. PO-UCT is an anytime planning
algorithm and allows us to approximate the expected cost
without the need to exhaustively simulate all states.

During expansion of the planning search tree in PO-
UCT, we maintain a rollout history associated with each
node: Hp, = [[ao,n0,Qo], "+ ,[ak, nk, Qk]], that retains
each node’s history of (i) executed high-level actions a; and
their outcomes, (ii) the number of times the node has been
visited, and (iii) the accumulated expected cost J; up to that
node. By simulating a collective action a, from the abstract
state b;, finding the subgoal ¢’ via Eq. (3), we expand the
tree stochastically, where the outcome of a particular action
is sampled from a Bernoulli distribution parametrized by the
estimated Ps(c’). After the action outcome is sampled, the
belief transitions to a node either corresponding to a success
(bg) or failure state (br), as defined in Eq. (4).

Rollouts proceed similar to other Monte-Carlo Tree Search
approaches. The cost of each node corresponding to belief
state (bg or bg) is the sum of cost accrued to reach the
current belief state from the initial belief state (b;) and a
search heuristic corresponding to the lower bound cost for
the team to reach the goal if unseen space were assumed
to be unoccupied. After each node is visited, its count is
incremented, which is used to control the rate of exploration
during traversal. In all our experiments, we use 15,000
samples at each planning step.

20wing to a change in how exploration is treated during concurrent action
execution in our MR-LSP model—see Eq. (3)—the single-robot exploration
cost Rp of Eq. (2) becomes Rp < min(Rg, Rg), a slight deviation from
the original LSP definition. With this (small) change, one-robot MR-LSP
via Eq. (5) is equivalent to single-robot LSP planning via Eq. (2).

VI. TRAINING DATA GENERATION AND LEARNING
SUBGOAL PROPERTIES

To compute the expected cost during MR-LSP planning,
we require the subgoal properties Ps, Rg, and Rg for all
subgoals. We train a convolutional neural network, similar
to that of [22], to estimate these properties from images
collected by the robot.

The convolutional neural network (CNN) takes a 128 x 512
RGB panoramic image aligned towards subgoal, egocentric
position of the subgoal and goal as inputs. The image
is passed through 4 convolutional layers, after which the
relative-distance features are concatenated, passed through
an additional 9 convolutional layers, and finally 5 fully
connected layers, which output the subgoal properties. Our
CNN estimates the subgoal properties for all subgoals and,
with distances D computed from the occupancy grid, are
used to compute cost of a collective-action via Eq. (5).

To generate training data, we use a non-learned optimistic
planner to navigate previously unseen environments. Obser-
vations (images) and are collected from every step and labels
of for each subgoal for Psg, Rg, and Rg are computed from
the underlying known map. Ps = 1 if the subgoal leads to
the goal, for which Rg is the distance to reach the goal, and
Pg = 0 if it does not, where Rg is the distance the robot
would travel before reaching a dead end and turning around.

VII. EXPERIMENTAL RESULTS

We conduct simulated experiments in two different
environments—our own guided maze and office floorplan
environments—in which the robot navigates from a randomly
generated start location to a randomly generated point goal
in unseen space. We evaluate the following approaches:
Multi-Robot Learning over Subgoals (MR-LSP) Our ap-

proach, in which the expected cost of a collective action
is computed via Eq. (5). When only one robot is used,
this approach corresponds to LSP planning via Eq. (2).

Non-Learned Optimistic Planner We assume that all un-
seen space is unoccupied and compute paths through
each subgoal to reach the goal. The optimistic plan
cost is computed for each subgoal and linear sum
assignment [23] is used to ensure that robots pursue
different subgoals (a topological constraint on their
plans similar to [14]) while minimizing net optimistic
plan cost to reach the goal. This planning strategy serves
as a non-learned baseline.

Linear Sum Assignment using LSP (LSA-LSP) This
planning strategy also uses linear sum assignment to
enforce that robots select different subgoals to pursue,
yet the expected cost associated with each subgoal is
computed via the single-robot LSP approach Eq. (2).
This planning strategy serves as a learning-informed
baseline. When one robot is used, this approach
corresponds to LSP planning via Eq. (2).

Known-Space Planner Planning in the fully-known map
(no uncertainty), providing a lower bound on possible
cost. Since the shortest path is known, this planner has
the same performance for any number of robots.



Guided Maze Environment

Planner 1 robot 2 robots 3 robots
Non Learned Optimistic ~ 207.50 144.88 144.44
LSP-LSA (Learned) 162.46 133.12 132.66
MR-LSP (Ours) 162.46 134.22 132.3
Known-Map Planner 130.55 130.55 130.55
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Fig. 3. Navigation in maze environment results The table shows the
average cost (in meters) accrued in 100 experiments for each planner. The
scatter plot each shows the performance of our approach versus the baselines
for two robots. The result shows planners which use learning (MR-LSP and
LSP-LSA) outperform the non-learned planner. The performance of learned
baseline (LSP-LSA) is similar to MR-LSP (slightly better for two robots)
in a relatively simpler environment.

A. Guided Maze Environment Results

We first perform experiments in our “guided” maze en-
vironment, in which a green path on the ground connects
the goal to another point in the maze. Initially, the robot
team is placed at the center of this path so that two green
routes extend from its location, only one leading to the
goal. The maze is simply connected—i.e., there exists only
a single path to the goal—and so a single robot, even one
that understands the significance of the green path, must
get lucky to reach the goal quickly by choosing the correct
path. However, a two robot team can divide-and-conquer,
following both green paths simultaneously and reaching the
goal quickly with high reliability.

We evaluate our planners in 100 guided maze environ-
ments, and show that our MR-LSP and the LSA-LSP learned
baseline perform near-optimally in this environment for 2-
and 3-robot experiments, outperforming both the 1-robot
trials and the non-learned optimistic baseline. Fig. 3 shows
the average cost for each planner in this environment. Both
MR-LSP and LSA-LSP planners use learning to evaluate
goodness of paths and understand the importance of splitting
the team to follow both green paths for reaching the goal. In
contrast, the non-learned optimistic planner explores many
unlikely paths due to a lack of understanding of the green
path’s significance. These behaviors are evident in Fig. 4(b)
and (c), highlighting the significance of using learning to
prioritize the green path and follow multiple promising routes
simultaneously.

B. Office Floorplan Environment Results

We conduct experiments in our simulated office floorplan
environments. These environments are designed to mimic a
typical office building, with multiple hallways intersecting
and connecting many offices, including some corner rooms.
Clutter in each office simulates furniture and obstructs view
from the hallway. We evaluate our planners in 100 proce-
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Fig. 4. Navigation under uncertainty in maze (a) Images taken on

board robot used as inputs to learning. (b) Generally learned planner knows
to follow green path to reach goal quickly. (c) Occasionally, MR-LSP with
single robot (LSP) explores alternative route, whereas with multiple robots
MR-LSP guides coordinated exploration.

durally generated office environments—distinct from those
seen during training—with varying numbers of robots and
report the effectiveness of our MR-LSP planning approach
in Fig. 5.

Our MR-LSP approach seems to both understand the
utility of following hallways until the goal can be reached
and how to effectively allocate exploratory actions to differ-
ent team members, improving performance over both LSA-
LSP and Non-Learned Optimistic planners. The LSA-LSP
learned baseline, which uses the same subgoal estimator as
the MR-LSP planner, tends to follow hallways and avoid
exploring rooms. However, due to a lack of coordination
among the team, it only moderately improves over the
non-learned baseline. Fig. 6b shows an example of this
behavior. The LSA-LSP planner can only coordinate two
robots myopically, resulting in poorer behavior compared
to the MR-LSP planner, which quickly explores promising
routes to the goal.

In the office floorplan environments, 3-robot MR-LSP
experiments show increased average cost compared to 2-
robot MR-LSP experiments in the same space. Fig. 7 shows
a scenario where 2-robot MR-LSP outperforms 3-robot MR-
LSP planning. Additional experiments increasing the number
of samples for PO-UCT from 15k to 100k showed improved
performance, indicating that the slight degradation is owed
to a limited computational budget and should not be seen as
a limitation of the approach itself. In future work, we will
explore this relationship in more depth and reimplement our
planner in a faster, compiled language.

VIII. RELATED WORKS

Multi-robot navigation in unknown environment is often
modelled as a Decentralized POMDP (Dec-POMDP) [1],
[2], [3]. Owing to computational challenges in Dec-POMDP
planning, dynamic programming [24] and heuristic search



Office Floorplan Environment

Planner 1 robot 2 robots 3 robots
Non Learned Optimistic ~ 206.90 167.56 156.25
LSP-LSA (Learned) 159.84 161.96 158.23
MR-LSP (Ours) 159.84 145.28 149.10
Known-Map Planner 129.48 129.48 129.48
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Fig. 5. Navigation in office floorplan results The table shows the
average cost (in meters) accrued in 100 experiments for each planners. The
scatter plot each shows performance of our approach versus the baselines
for two robots. In a simulated office floorplan, MR-LSP outperforms both
non-learned and learned baselines.

approaches [25] are limited to comparatively short-horizon
planning tasks.

Learning for Multi-Robot Planning Learning is fre-
quently used to address the difficulties of planning under
uncertainty. Many learning-informed approaches in this do-
main (e.g., [4], [5]) focus on single-robot planning and do not
scale to larger and more complex environments. Multi-agent
reinforcement learning has a long history in this domain [26],
[27], yet only with recent advances in deep reinforcement
learning has it become possible to navigate in somewhat
realistic environments [7], [8], [9], [10]. Still, though these
approaches work well for small environments, they are often
brittle to change [28] and struggle to scale to large-scale
environments at the scale of buildings.

Action Abstraction for Multi-Robot Planning To
mitigate computational challenges, many approaches in this
domain rely on a state or action abstraction to simplify
planning. Temporally-extended macro-actions are one such
action abstraction that help to scale planning under un-
certainty [29], [30], [31]. However, these approaches have
not proven scalable to building sized environments. Some
strategies [32], [33] use variants of Monte Carlo tree search
for faster computation in POMDP for long-horizon planning,
yet without direct access to a distribution over environments
are limited in their ability to reason far into the future. Other
approaches to multi-robot planning introduce fopological ac-
tion abstractions to simplify planning [11], [12], [13]. Under
these approaches, each robot is constrained to leave known
space through different frontiers, boundaries between known
space and unknown space [34], or via paths belonging to
different relative homology [15], [14]. Works on navigation
using this abstraction generally uses greedy heuristic to select
where the robot should navigate next and do not take into
account the impact of an action over the longer horizon.

The Learning over Subgoals Planning (LSP) approach [16]
uses both a model-based topological abstraction and super-
vised learning to improve navigation performance, yet is
designed only with a single robot planning in mind.
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3 Robots MR-LSP
Planner cost = 187.20
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Fig. 6. Navigation under uncertainty with two robots in the simulated
office floorplan (a) Images from office used as inputs to learning (b)
Learned planner improves cost compared to the non-learned planner. MR-
LSP performs better over non-learned and learned baselines. (¢) MR-LSP
generally improves cost as the number of robots increase.
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Fig. 7. Increasing the number of PO-UCT samples improves performance
for three robots.

IX. CONCLUSION

In this work, we present Multi-Robot Learning over
Subgoals (MR-LSP): a novel method for performant and
reliable, learning-informed multi-robot navigation through
partially-mapped environments. Using learning to estimate
the goodness of individual exploratory actions that enter
unseen space, our multi-robot team is able to envision the
expected long-horizon impact of each robot’s actions and can
thus coordinate behavior far into the future to quickly reach
the unseen goal, outperforming both learned and non-learned
strategies. However, the number of multi-robot actions grows
rapidly with the number of robots, imposing a practical
limitation on team size. In future work, we would like to
extend our model to support more complex and multi-stage
tasks, effectively extending the model of Bradley et al. [22]
to the multi-robot planning domain.
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