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Abstract—1t is crucial to address the following issues for
ubiquitous robotics manipulation applications: (a) vision-based
manipulation tasks require the robot to visually learn and
understand the object with rich information like dense object
descriptors; and (b) sim-to-real transfer in robotics aims to
close the gap between simulated and real data. In this paper,
we present Sim-to-Real Dense Object Nets (SRDONs), a dense
object descriptors that not only understands the object via
appropriate representation but also maps simulated and real
data to a unified feature space with pixel consistency. We
proposed an object-to-object matching method for image pairs
from different scenes and different domains. This method helps
reduce the effort of training data from real-world by taking
advantage of public datasets, such as GraspNet. With sim-to-
real object representation consistency, our SRDONs can serve
as a building block for a variety of sim-to-real manipulation
tasks. We demonstrate in experiments that pre-trained SRDONs
significantly improve performances on unseen objects and
unseen visual environments for various robotic tasks with zero
real-world training.

I. INTRODUCTION

Vision-based robotics reinforcement learning methods
have enabled solving complex robotics manipulation tasks
in an end-to-end fashion [1], [13], [12]. The ability to
understand unseen objects is one of crucial issues for robotics
tasks. Although object segmentation is helpful, object-level
segmentation ignores the rich structures within objects [7].
A better object-centric descriptor is critical for ubiqui-
tous robotics manipulation applications. Dense Object Nets
(DONSs) can learn object representation useful for robotics
manipulation in a self-supervision manner [7]. The learned
dense descriptors enabled interesting robotics applications,
such as soft body manipulation and pick-and-place from
demonstrations [5], [18]. DONs are trained with matching
and non-matching pixel coordinates in pairs of images.
However, in the data generation process in DONs, since
each pair of individual training images comes from the same
object configuration, this makes it hard to be used in different
object configurations. Object configuration is the setup of the
object’s positions in a scene. Thus, it becomes vital to learn
explicitly from different object configurations for reliable
object-centric descriptors.

Due to the difficulty of collecting a large amount of data
in the real-world, which is crucial for learning-based robotics
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Fig. 1: Object-to-object matching.

applications, we often train agents in the simulation and
migrate to the real-world, but this poses the sim-to-real gap
problem [10]. To successfully deploy learning-based robotics
tasks into the real-world, a good dense object descriptors
method needs not only to represent objects well but also rep-
resent simulation and real objects consistently. Prior works
focus on either solving the representation problem [7] or the
sim-to-real gap problem [9].

In this paper, we present SRDONs (Sim-to-Real Dense
Object Nets), a dense object descriptors with sim-to-real
consistency. To represent rich object structures with sim-to-
real consistency, we utilize object poses and object meshes
to automatically generate matching and non-matching pixel
coordinates for image pairs from different object configu-
rations (where the images come from different scenes) and
different data domains (simulation or real-world). Such data
generation process enables training SRDONSs using readily
available large-scale public dataset. SRDONSs explicitly learn
dense object descriptors from different object configurations
in the simulation and the real-world. The resulting dense
object descriptors can effectively represent simulation and
real-world object information in a pixel consistent manner.
Furthermore, SRDONs exhibit great generalization ability
from our experiments. And, SRDONs perform well on
unseen objects in unseen visual environments in simulation
and the real-world.

Contributions. The main contributions of this paper can
be summarized as follows: 1) We present SRDONS, a dense
object descriptors representation with sim-to-real consistency
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and generalization ability. 2) We propose the matching pixel
method for image pairs from different object configurations
and different data domains, which helps reduce the effort
of training data from real-world by taking advantage of
public datasets, such as GraspNet [6]. 3) In experiments,
we demonstrate the effectiveness of SRDONs in sim-to-
real transfer on several robotics tasks and achieve high
sim-to-real performances with unseen objects, unseen visual
environments, and zero real-world training.

II. BACKGROUND
A. Dense Object Descriptors

The ability to recognize and interact with unseen objects
is critical in robotics applications. Recent works have ex-
plored unseen object segmentation [19], [20]. However, the
segmentation objective disregards the rich information within
objects, e.g. curves and flat surfaces. Dense object descriptors
by [7] is a promising direction for providing such ability.

Dense Object Nets (DONSs) is a self-supervised method for
generating dense object descriptors useful for robotics appli-
cations. DONs learns from point to point correspondence,
and are able to provide rich information within objects.
Recent works demonstrated the effectiveness of DONs in
many challenging robotics applications. The work in [18]
presented a method for manipulating ropes using dense ob-
ject descriptors. Another work by [5] enforced an additional
object-centric loss to enable multi-step pick-and-place from
demonstration; while in [21] imposed an additional object
loss to achieve goal-conditioned grasping. Cao at el. [4]
proposed Cluttered Object Descriptors (CODs) to represent
the objects in a cluttered for robot picking cluttered objects.

B. Sim-to-Real Transfer

Training learning-based methods in the real-world are
costly for robotics applications. Hence, bridging the gap
between simulation and real-world is critical for ubiquitous
learning-based robotics applications. Recent works mainly
focus on domain randomization and domain adaptation.

In domain randomization, we randomize the simulation so
that the policies are robust enough to handle real-world data
[22]. Such methods include randomizing textures, rendering,
and scene configurations [9]. However, domain randomiza-
tion requires careful task-specific engineering in selecting the
kind of randomization.

In domain adaptation, we map simulation and real-world
data into a knowledge preserving unified space. We can
directly map simulation images to real-world images, where
GANs are commonly applied [2], [17], [9]. However, GAN-
based methods do not generalize well to unseen objects and
scenes [9], which is crucial for many robotics applications.
Prior works have also explored learning domain invariant
features [8], [16], [3]. The work in [11] employed the
temporal nature of robot experience. Another approach by
[8] separated task-specific and domain-specific knowledge
via adversarial training.

While many of these prior works for dense object descrip-
tors only used data in the same domain (only real data or

simulation data) for training, we train the descriptor to match
the pixels of the object between simulation and real-world
images. Therefore, our SRDONs not only learn the useful
object descriptors but also map the simulation and real-world
images into a unified feature space with pixel consistency,
addressing the sim-to-real problem.

III. SRDONS: SIM-TO-REAL DENSE OBJECT NETS
A. Object-to-Object Matching

Previous works [7], [5], [4], by using 3D TSDF (truncated
signed distance function) reconstruction, can only generate
matching pixels of static scenes in the same data domain.
Here, we proposed an object-to-object matching method with
object poses and 3D models, which can generate matching
points for images from different scenes and data domains.
Additionally, while other methods required collecting train-
ing data by running real robots, our method reduces time and
cost by taking advantage of public datasets.

As illustrated in we compute the pixel coordi-
nates corresponding to the 3D vertices on the same object
model in each image to find matching points. Suppose an im-
age contains a set of objects, O = (01,02, 03, ...,0,), and
pose annotations for each object, ® = (®1, Py, P3,...,D,).
The 3D model O; is given by a set of vertices V; =
(X,Y,Z)T. To associate 3D model vertices with 2D pixel
coordinates, we also need the projection matrix P; for each
object O;, where P; is computed from the intrinsic matrix,
K, and extrinsic matrix, F;. K deals with the camera
properties, and is known from the camera properties; E;
represents the translation, ¢;, and the orientation R; of object
O; with respect to the camera. E; is computed from the
object pose ®;. Note the pose annotations are in the camera
frame, so we do not need to consider camera transformations.

The projection matrix P; is:

We then project all 3D vertices V; of the object O; onto the

image coordinate system to get their 2D corresponding pixel

coordinates (u,v)7.
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Original DONs[7] Yes Yes (3) No
MCDONSs][5] Yes Yes (8) No
LE DONs[14] Yes No No
MODONS5[21] No Yes (16) No
Our SRDONs No Yes (28) Yes

TABLE I: Comparison of different datasets.



For a pair of images both containing some objects, we
randomly sample from the object models a subset of their
3D vertices and calculate their corresponding 2D pixel
coordinates in each image. The pixel coordinates in each
image corresponding to a 3D model vertex are considered
as matching pixel coordinates. To deal with occlusion, we
assign the pixel coordinate to the vertex closest to the camera
in Euclidean distance. Object-to-object matching enables
generating matching in a variety of scenarios: different
scene matching (dynamic scenes), sim-to-real matching, and
multiple matching (finding matching between one object in
an image with multiple of the same objects in another).

B. Contrastive Loss

We employ the contrastive loss from [7] to enable self-
supervised learning for SRDONs. Given an image I €
RWxHxd where d can be either 3,4 depending on whether
the input is RGB or RGBD, we map I to a dense descriptor
space RW*H*D Each pixel in I has a corresponding D-
dimensional feature vector. Given a pair of images, the
matching pixels coordinates, and the non-matching pixels
coordinates, we optimize the dense descriptor network, f, to
minimize the L2 distances between descriptors of matching
pixels, and keep descriptors of non-matching pixels M
distance apart.
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4)
L(1a,Iy) = Lm (Lo, I) + Lom (Lo, Ip) (5)

where “m” is matching, and ”"nm” is non-matching; Ny, is
the number of matches, and N, is the number of pairs
of non-matching pixels ; f(I)(u) is the descriptor of I
at pixel coordinate u; Ngyicenm 1S the number of pairs of
non-matching descriptors within M distance to each other,
namely the number of non-zero terms in the summation term

in
C. Data Collection and Training SRDONs

Previous works [7], [5] required the use of a real robot
arm to collect data. In contrast, as described in Subsection
[T-A] our proposed matching method enables to use real data
from public datasets and simulated data generated from the
simulation. By this approach, we not only have easy access
to diverse objects but also reduce the time and cost of real
training data collection. Table [[] compares our dataset with
other works.

Real Data. In this paper, we mainly use the real data from
GraspNet [6]. The dataset provides 97,280 RGBD images of
88 objects over 190 cluttered scenes. Each scene contains
9-10 objects placed at random positions on a tabletop. They
capture 256 images per scene with different view poses
and recorded the camera pose, the 6D pose of each object

Sim-Sim matching

Real-Real matching

Fig. 2: Different pairing types for training the descriptors. (a)
Real-Real pairing. (b) Sim-Sim pairing. (c) Sim-Real pairing
without (left) and with texture randomization (right). Green
lines indicate pairs of match points; while red lines indicate
pairs of non-match points.

corresponding to each image. However, to make the view
of each scene sufficiently different, we downsampled the
number of images to 50 images per scene.

Simulation Data. We use V-REP simulator to generate
the simulation image. For each scene, we randomly drop 9
to 10 objects on a table. We then use a camera to capture
the RGBD images and record the camera poses and object
poses with the same format as GraspNet dataset. We also
apply texture randomization and background randomization
for generalization purpose.

Pairing Images. With the proposed object-to-object
matching in [subsection III-Al we can generate matching
pixel coordinates for any pair of images independent of data
domain (simulation or real-world). We have 3 different types
of pairing: (a) Sim-Sim: a pair of images is sampled from
simulated images. (b) Real-Real: a pair of images is sampled
from real images. (c) Sim-Real: one image is sampled from
simulated images, and the other comes from the real images.
shows some examples of different pairing types.

Training. During each training step, we uniformly sample
pairing types (Sim-Sim, Real-Real, and Sim-Real). Once a
type has been sampled, we then choose whether the two
images are from the same scene or different scenes (with
the probability of 30% and 70%, respectively). For Sim-Sim
and Real-Real matching, two images may come from the
same or different scenes, while for Sim-Real matching, two
images have to come from different scenes, since they come
from different data domains. For each pair of images, we
sample 1000 pairs of matching points, and 5000 pairs of
non-matching points (object to object, object to background,
background to background). More details about collecting
data and training are provided in the accompanying video.

D. SRDONs for Robotics Learning Tasks

We want to use SRDONSs to serves as a building block for
robotic tasks. The work in [4] proposed a network structure
that can use the intermediate layers of the descriptor network
for training a reinforcement learning task. We adopt their
method, and extend to supervised learning method.



Tnput Sim-Sim Real-Real Sim-Real Sim-Real

Rd-100 Rd-0 Rd-100
Original DONs[7] RGB | 0.155/0.265 | 0.430/0.203 | 0.143 / 0.281 | 0.140 / 0.289
MODONSs[21] RGB | 0.157/0.267 | 0.947 / 0.027 | 0.189/ 0.264 | 0.164 / 0.279
CODs [4] RGBD | 0.939 / 0.063 | 0.256 / 0.238 | 0.424 / 0.216 | 0.389 / 0.230
SRDONSs - Rd-0 RGB | 0.248 /0.241 | 0.935/0.063 | 0.695/ 0.140 | 0.258 / 0.264
SRDONSs - Rd-80 RGB | 0.857/0.095 | 0910/ 0.085 | 0.915/0.092 | 0.908 / 0.098
SRDONSs - Rd-100 | RGB | 0.899 / 0.082 | 0.904 / 0.084 | 0.915/0.086 | 0.936 / 0.088
SRDONSs - Rd-0 RGBD | 0.248 / 0.248 | 0.941 / 0.059 | 0.684 / 0.140 | 0.247 / 0.269
SRDONSs - Rd-80 RGBD | 0.908 / 0.079 | 0.917 / 0.082 | 0.925 / 0.084 | 0.941 / 0.086
SRDONSs - Rd-100 | RGBD | 0.911 /0.077 | 0913 /0.076 | 0.911 /0.089 | 0.933 / 0.090

TABLE II: Evaluate matching results with different methods (in accuracy/error distance). For fairness, we use the same
descriptor dimension (D=8) for all models. The above results are also visualized as in the accompanying video.
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Fig. 3: The architecture of using SRDONSs in grasping tasks.

To use SRDONSs for training the reinforcement learning
(RL) task, we simply apply the same structure as proposed
in [4] (further details in the accompanying video), which
is based on actor-critic RL, namely PPO. In the supervised
learning task, we slightly modify the network structure. We
first remove the critic head, and then, change the actor
head which originally is fully convolutional layers to fully
connected layers. Specifically, in our experiment, we use the
grasping task to demonstrate the use of SRDONs with su-
pervised learning. Grasping task requires the agent to predict
the grasping position (x, y) and the top-down grasping pose
(0) to grasp the object. Therefore, the output of the network
in this task is the pose (z, y, 6) € R3. shows how
we combine the intermediate layer of SRDONSs and the depth
stream in a U-Net structure.

IV. EXPERIMENTAL RESULTS

We conduct experiments to evaluate SRDONs perfor-
mances on providing good sim-to-real object descriptors in
Subsection Then we use a pre-trained SRDONSs as the
building block for solving two robotic manipulation tasks:
two-fingered grasping in Subsection and picking clut-
tered objects with suction in Subsection The robotic
tasks are both trained entirely in the simulation, and directly
tested in the real-world with zero real-world training.

A. Evaluation of Sim-to-Real Object Descriptors

We evaluate the performance of descriptors by finding
matching interest points, as in [7]. We employ two evalu-

ation metrics: the accuracy of matching correct objects, and
the matching error distance normalized by image diagonal
distance. Given a pair of source and target images and a point
p on the source image that belongs to an object O, let p*
indicate the true match point in the target image (disregarding
the case of occlusion as described above), and p’ indicate the
best match point by using a given descriptor. For the former,
the object matching accuracy of matching the correct objects,
i.e., p’ and p* are on the same object in the target image. For
the latter, the matching error distance is the average distance
between p* and p'.

In the experiments, we use the following methods as
the baselines: (a) The original DONs [7]. (b) The Multi-
Object DONs (MODONSs) [21]. (c) The Cluttered Object
Descriptors (CODs) [4]. When training the original Dense
Object Nets, we use Real-Real in the same scenes; for the
Multi-Object DONs, we use Real-Real pairing in both the
same and different scenes; for the CODs, we use Sim-Sim
in both the same and different scenes; and our proposed
SRDONs uses Sim-Real paring only. We also evaluated
the effects of randomizing object textures by randomizing
0%, 80%, and 100% of the object textures when training
SRDON:Ss, denote as Rd-0, Rd-80, and Rd-100, respectively.
Additional training details and matching results are reported
in the accompanying video.

Sim-to-Real Finding Matching Points. To evaluate the
matching performance, we select 500 unseen image pairs
for each type of pairing. For each pair of images, we
sample 1000 matching points and evaluate the matching
performances. [Table IIf shows the experimental results of
finding matching points of objects in the same domain
(Sim-Sim Rd-100, Real-Real) and different domains (Sim-
Real Rd-0 and Rd-100). (Note that Sim-Sim Rd-0 is less
interesting so ignored in the table.) We can see that the
original DONs method (in the second row), which trained
with same scenes only, fails to represent multi-object scenes.
In different domains like Sim-Real, our SRDONs shows
the best performance in the rightmost two columns. In
the same domains like Sim-Sim and Real-Real, the result
of our SRDONs are close to other methods which are
trained with these specific types of paring, while our method



used Sim-Real pairing only. We visualize the descriptors of
different methods in which shows that SRDONs
can represent objects in simulation and real-world images
with pixel consistency. Furthermore, texture randomization
enables SRDONSs to focus on the object geometry rather than
color, as shown by the consistent object representation under
texture randomization.

For training the descriptors, we leverage public datasets
like GraspNet, however, our SRDONSs also works with un-
seen objects. shows the result of our SRDONs when
performs testing on unseen objects. We can see that DONs
fails to represent and find the matching points with unseen
objects in a multiple-object scene. In contrast, our SRDONs
is able to represent objects in the images consistently in the
representation space and perform better matching. Moreover,
the matching performance of our method is improved by
adding texture randomization and depth information, which
are not considered in other DONs-based methods.

Sim-to-Real Multi-Object Consistent Evaluation. We
conduct the experiment to verify that SRDONs are able to
represent objects in simulation and real-world images with
object consistency. We use 100 unseen images from both
simulation and real images. Each image contains 9 to 10
objects. We feed these images through the SRDONSs, and
randomly select 1000 pixel-descriptors per image. Then, we
use t-SNE to project the selected pixel-descriptors into two-
dimensional for visualization, as shown in and
[b] In particular domain, the descriptors of the same objects
are clearly distinguishable from the other objects. While, in
different domains, the descriptors of the same object from
the real-world and the simulation reside in similar regions.

Inputs

Original DONs CODs Our SRDONs

MODONSs

Fig. 4: Evaluate sim-to-real descriptor translation. (i): differ-
ent inputs: real image (top), simulated image without tex-
ture randomization (middle) and with texture randomization
(bottom). (ii)-(v): descriptors generated by different methods
Our SRDONS is able to represent the objects consistently in
different inputs. The colors of these descriptors are produced
in a similar way to t-SNE.

(a) Original DONs - RGB.

(b) SRDONs - RGBD - Rd-80.

Fig. 5: Compare performances on unseen objects between (a)
the original DONSs trained with RGB input and (b) SRDONs
trained with RGBD input with Rd-80 setting. In each sub-
figure, the top two images are inputs from different scenes,
and the bottom two images are the corresponding descriptors
of the above inputs. Green lines indicate match points based
on the descriptors.
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Fig. 6: Clustering by t-SNE of object pixel-descriptors pro-
duced by SRDONSs in simulation (a) and real (b) images. The
points from the same object are marked in the same color.

B. Object Grasping

We used SRDONSs as a building block in a robotics two-
fingered grasping task to grasp an object that placed at
randomly pose on the table. We use the supervised learning
(described in Subsection to predict the grasping pose,
though applying reinforcement learning with continuous
action spaces (DDPG [15]) or discretizing the continuous
action space will also work in this task.

In the simulation, we use Mean Square Error (MSE)
between the ground-truth and the predicted grasping poses
angle in radiance as the evaluation metrics in training and
testing. In the real-world experiments, we do a real grasping
by the robot and measure the success grasp rate.

We use the following methods as baselines: (a) Domain
randomization methods with RGB and RGBD as the inputs,
denoted by RGB and RGBD respectively. The model is
similar to however, we replace the SRDONS stream
by RGB stream, which is a trainable ResNet34_8s. (b) The
model is similar to in [Figure 3] but we remove the SRDONs
and using depth only, denoted by Depth. (¢) The method
proposed by [4] for picking cluttered objects in simulation,
denoted by CODs. (d) Our supervised learning method



proposed in Subsection denoted by SRDON .

In the simulation, we generated the ground truth grasping
orientations, e.g., we place objects on the table in such a
way that the grasping orientation is zero, where the robot
can grasp the objects with zero z-rotation. We captured
observations from different camera poses, and calculated the
grasping location and the z-rotation (z,y,0) labels via camera
poses. For training data, we captured 50 RGBD images for
each 28 objects from the GraspNet train slipt. We then test
the grasping methods with 15 objects from the GraspNet
test splits. In the real-world, we use a parallel gripper to
grasp a single object that is placed on the table at random
position and orientation. Each model performs 20 grasping
trials (repeat twice with 10 objects collected from our lab).

shows the results for grasping orientations predic-
tion in both simulation and real-world environments. In the
simulation, SRDONs achieve the minimal average error of
0.15 radiance (8.59 degrees) on unseen objects. Furthermore,
the agent with SRDONSs also outperformed others in the
real-world by achieving 90% success grasp rate without any
further training. We can see that the models with depth
information performed better than the others that use RGB
input only. Training details and real experiment videos are
provided in the accompanying video.

Method Sirn' train Sim test Real

(radiance) | (radiance) | world
RGB 0.09 0.49 65%
RGBD 0.061 0.35 85%
Depth 0.08 0.36 85%
CODs 0.071 0.39 50%
SRDONs 0.035 0.15 90 %

TABLE III: Result of grasping in simulation and real-world.

C. Picking Cluttered General Objects

Now, we used SRDONSs as a building block for a more
complex robotics picking task. Similarly as [4], we train an
agent with reinforcement learning to pick cluttered objects
with a suction pad. We have two metrics for evaluating the
performance. The first is the rate of completion for all runs.
A run is completion if all objects are picked before the
episode terminates. The second is the average number of
objects picked in all runs. In this picking cluttered objects
task, we use the similar baselines to those in grasping task
in Subsection but with reinforcement learning version.

In the simulation, we train each method in with 10 random
objects sampled from GraspNet train split. We then test
with 20 and 30 objects from GraspNet test splits, and novel
household objects. In the real-world, we directly use the
trained policy in the simulation to pick 10 novel household
objects without any fine-tuning.

The experimental results in the simulation are shown in
[Table TV] and [Table V] Our method with SRDONSs clearly
out-performed other methods on all of the metrics, and are
also efficient to be generalized to more cluttered scenarios

with unseen objects. When directly applying the trained
policy in the simulation to the real-world testing, our method
can successfully pick all 10 objects within 12.81 steps
(78.1% success pick rate), which is better than other methods
(as shown in [Table VI). Training details and real experiment
videos are provided in the accompanying video.

Grasp- | Grasp- | Novel

Dataset Net Net objects
#obj 20 30 20

RGB 33.8% | 24.5% | 16.1%
RGBD 392% | 25.1% | 43.6%
Depth 89.2% | 77.6% | 68.3%
CODs 953% | 92.9% | 95.1%
SRDONs | 97.8% | 94.1% | 97.5%

TABLE IV: Picking completion rates in simulation.

Grasp- | Grasp- | Novel

Dataset Nef Nef objects
#obj 20 30 20

RGB 15.8 19.5 12.9
RGBD 16.9 23.4 16.1
Depth 18.9 25.5 18.1
CODs 19.1 28.3 18.9
SRDONs 19.7 29.6 19.2

TABLE V: Average number of picked objects in simulation.

Method Completion | Success | Average
rate rate step
RGB 63.63% 61.12% 16.36
RGBD 90.9% 70.97% 14.90
Depth 72.72% 62.15% 16.09
CODs 72.72% 61.8% 16.18
SRDONSs 100% 78.1% 12.81

TABLE VI: Result of picking objects in real-world.

V. CONCLUSION

This paper presents SRDONSs, a dense object descriptors
representation with sim-to-real consistency. Our method ad-
dresses both of the object representation problem and the
sim-to-real gap problem. Through experiments, we demon-
strated that our method can provide useful object information
while representing simulation and real-world objects with
pixel consistency. We showed that SRDONs enabled zero-
shot sim-to-real transfer in robotic manipulation tasks on
unseen objects and unseen visual environments. With the
representation power of SRDONs, we expect to accelerate
the sim-to-real deployment process for robotics applications.
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