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Abstract— Large language models (LLMs) have unlocked new
capabilities of task planning from human instructions. However,
prior attempts to apply LLMs to real-world robotic tasks are
limited by the lack of grounding in the surrounding scene. In this
paper, we develop NLMap, an open-vocabulary and queryable
scene representation to address this problem. NLMap serves as
a framework to gather and integrate contextual information into
LLM planners, allowing them to see and query available objects
in the scene before generating a context-conditioned plan. NLMap
first establishes a natural language queryable scene representation
with Visual Language models (VLMs). An LLM based object
proposal module parses instructions and proposes involved objects
to query the scene representation for object availability and location.
An LLM planner then plans with such information about the scene.
NLMap allows robots to operate without a fixed list of objects nor
executable options, enabling real robot operation unachievable by
previous methods. Project website: https://nlmap-saycan.github.io

I. INTRODUCTION

For robots to perform varied, real-world tasks, they must be
able to comprehend diverse human commands and then act on
these commands in the context of their environment. Imagine
a robot in a home environment tasked with “water the plants
in the living room”. It has to first identify relevant objects and
locations within the scene (e.g., the watering can, the sink, and
each potential plant) and then plan over these objects in sequential
order (get the watering can, then go the sink, and then fill it
up), conditioning on its affordances (e.g., can it carry a full
watering can), and conditioning on the scene (e.g., how many
plants there are, and where are they). Semantic representation and
downstream mobile manipulation planners capable of accessing
this representation emerge as critical challenges in such a pipeline.

Semantic understanding is crucial for a robot to achieve
long-horizon tasks in unstructured environments. Though a robot
can avoid building a semantic representation by finding objects
each time they are required, e.g., with Object Goal Navigation [1],
[2], this repeated exploration can be inefficient. A persistent scene
representation on the other hand avoids this exploration, but past
works are generally limited to locating object categories known
during the construction of the representation and may not encode
the open-vocabulary objects that arise from human queries, such
as in “bring me the purple unicorn plush toy”. Recent progress
in contrastively trained visual language models offers a promising
solution to open-ended scene presentation. Contrastive Language-
Image Pre-training (CLIP) [3] models are trained on image-
language associations and can provide open-vocabulary image
understanding and object detection [4]. They have demonstrated
impressive zero-shot classification performance and thus might
be used to build a semantic representation in a zero-shot manner.

Another challenge lies in connecting the semantic scene
representation to a planning algorithm that is capable of acting
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Fig. 1: NLMap + SayCan overview. We propose an open-vocabulary and
queryable scene representation for real-world planning. A queryable scene
representation is built from exploration. When the system receives a user query, it
uses an LLM-based object proposal module to propose relevant objects to query the
map. The returned object presence and location are used for LLM-based planning.
We benchmark the method on robots from Everyday Robots.

upon it. Recent progress in large language models (LLMs),
has shown impressive few-shot performance in language
comprehension, semantic understanding, and reasoning, as
well as application to robotics problems like planning [5]–[7]
and instruction following [8]. Using such models in embodied
settings can provide significant challenges, most critically because
LLMs are not grounded in the physical world. For example, [5]
pioneers in using LLMs for planning, but it has no grounding
in environmental context. In contrast, SayCan [6] showed how
value functions of learned skills can provide such a grounding
through selecting options scored highly by a language model
and an affordance model. However, this is limited by the options
provided and hardcoded knowledge of where objects exist.

In this work, we introduce Natural-Language Map (NLMap),
a flexible and language-queryable spatial semantic representation
based on visual-language models including ViLD and CLIP
and integrate with SayCan. We show that NLMap grounds
LLM-based planners in their environments, significantly improves
long-horizon planning via natural language instructions in the
open-world domain, and enables new tasks prior state-of-the-art
algorithms failed to address. To summarize, we make the
following contributions:
1) We propose an open-vocabulary, queryable semantic
representation based on ViLD and CLIP.
2) We integrate NLMap into a language-based planner to enable
grounding on the context.
3) We benchmark NLMap + SayCan in a real-world kitchen,
showing it is capable of performing 55 tasks at 61.8% success
rate. Notably, 35 of these tasks are impossible with previous
state-of-the-art planners that do not have access to NLMap.
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Context elements Query: napkin box Query: tap Query: apple Query: fruit

Fig. 2: Natural Language Queryable Scene Representation. The key design of NLMap is to establish a queryable map. First, the agent explores the scene and
provides a class-agnostic bounding box proposal based on objectness. We extract 512d CLIP features and 512d ViLD features of each bounding box and represent them as
a feature point cloud C={(φi,pi,ri)}i=1...N . When queried with a piece of text, we visualize the heatmap of matches based on the alignment of text and visual features.
Note that we can query with a single object name, or object families, such as “snack” or “fruit”.

II. RELATED WORK

Semantic Scene Representations. Scene representation is
a central theme in robot perception and planning. Semantic
SLAM [9]–[11] is an augmentation over traditional SLAM, it
assigns semantic features over geometric features provided by
SLAM (points, lines, planes). Many representations are proposed,
ranging from a faithful 3D recontruction [12] of the environment,
to more object-centric ones [13], [14], such as object detection
bounding boxes [15] and 3D bounding boxes [16]. Recently,
topological maps [17], [18] and scene graphs [19], [20] emerge
as an effective discrete representation of scenes.

One issue with those representations is that they cannot be
queried with natural language. Interfacing with those scene repre-
sentations requires reducing the object set to a closed set, indicating
that they are not as useful for LLM-based planners and that they are
limited in an open-vocabulary setting. In contrast, our work allows
the scene representation to be queried at test time with natural
language. Concurrent work VLMaps [21] also explores this
concept, by fusing pretrained visual-language model features into
a geometric reconstruction of the scene. The representation is then
used for visual-language navigation tasks via program synthesis.
Object Goal Navigation. There is also a significant body of
related work on object navigation, which focuses on flexible explo-
ration to find objects in unknown scenes. A few of these algorithms
construct a semantic map of the current region before planning in
that region [1], [22]–[24]. Map-based methods are modular and
interpretable and hence easier to deploy in the real world. Other
algorithms [25]–[30] do not require a map and can decide where
to go based directly on the current observations and memories,
without maintaining a global representation of the environment. Re-
cently, methods that leverage pre-trained image-text models can do
zero-shot Object Goal Navigation [31], [32]. CoW [32] performs
zero-shot object goal navigation by leveraging CLIP. LM-Nav [8]
uses three pretrained model to perform visual language navigation.
Our work differs from Object Goal Navigation since the eventual
goal is not purely finding objects, but using object presence and
location information for planning. Our work can use the represen-
tation from a single exploration for many downstream planning
tasks without the need to run Object Goal Navigation every time.
Planning with Scene Representations. In task and motion
planning, scene representations are often composed of predicates
compatible with symbolic planners [33], [34]. Recent progresses

attempt to build a symbolic and geometric scene graph to facilitate
task and motion planning [35]. However, they still require defining
the objects in the scene. Recently LLM-based planners are more
flexible [6], [7], [36] and do not require handcrafting predicates,
however, they do not handle the complexity of open-vocabulary
object proposal and require defining a set of objects involved
in planning. They also fail to integrate perception in real robot
experiments due to the difficulty of connecting unstructured
natural language instruction to perception algorithms that need
structured inputs.

III. PROBLEM STATEMENT

In this work, we aim to efficiently fulfill high-level, natural-
language instructions, such as “Bring me a snack” or “I spilled
my coffee, can you help?”. This requires a robotic system to solve
problems at the intersection of natural language comprehension,
scene understanding, task planning, navigation, and manipulation.
Recent work, SayCan [6], has shown how large language models
can be applied to such problems through world-grounding
affordance functions, allowing LLMs to understand what a robot
can do from a state. However, SayCan did not provide scene-scale
affordance grounding, and thus cannot reason over what a robot
can do in a scene. To that end, we address two core problems (i)
how to maintain open-vocabulary scene representations that are
capable of locating arbitrary objects and (ii) how to merge such
representations within long-horizon LLM planners to imbue them
with scene understanding.

IV. NLMAP + SAYCAN

We provide a high-level description of our algorithm in
Listing 1. The design of each component is described below:

A. Scene Representation

The scene representation is generated from an exploration phase
of the unstructured scene, which our approach is agnostic to, but
could be for example frontier exploration [37] or pre-determined
waypoints. During this exploration, NLMap runs a class agnostic
region proposal network as in ViLD [4] on all the observed RGB
images. For each proposed region of interest (ROI) Ii∈I1...N , our
method uses an ensemble of VLM image encoders Φ1...M [3],
[4] to extract image embeddings φi = [Φj(Ii)| j ∈ 1...M ]. As
shown in Fig. 2, such embedding can be queried with text at
plan time since VLMs are capable of estimating the correlation



between texts and images. In our setup we leverage CLIP [3] and
ViLD [4] as visual encoders φi = [Φclip img(Ii),Φvild img(Ii)],
where image-text-alignment is scored with inner product of image
feature and CLIP text feature. We also extract the estimated
location pi = (xi,yi,zi) using depth at the center of the image
as well as estimated size ri of the object in Ii. Defining the
tuple ci = (φi, pi, ri) as a context element, the collection
C={ci}i=1...N forms our scene representation.

B. Querying the Representation

To complete a task specified by human instruction, the robot
will query the scene representation for relevant information. This
is achieved by first parsing natural language instruction into a list
of relevant object names, then using the names as keys to query
object locations and availability. Finally, we generate executable
options based on what’s found in the scene, then plan and execute
as instructed.

Listing 1: High-level description of NLMap + SayCan algorithm. Note
we only need to build scene representation once for each scene.
Input: instruction
if is_new_scene():

# construct queryable scene representation
rgbd_images = robot.scene_explore()
bboxes = roi_proposal(rgbd_images)
positions, sizes = extract_3d(rgbd_images, bboxes)
phi = VLM.encode_image(rgbd_images, bboxes)
nl_map = Context(phi, positions, sizes)
save_nl_map(nl_map)

else:
nl_map = load_nl_map()

# extract relevant objects via LLM
objects = LLM.object_proposal(instruction)
# extract text features
queries = VLM.encode_text(objects)
# query the nl_map
object_scores = queries.dot_product(nl_map.Phi)
object_presence, locations

= multiview_fusion(object_scores, nl_map)
scene_objects = objects.filter_by(object_presence)
# planning with scene objects information
LLM.plan(instruction, scene_objects)

1) Object proposal: The core challenge of querying scene
information is bridging unstructured natural language input and
structured representations. In order to decide what objects to look
up in the scene representation, we use few-shot prompting to
let LLM actively propose required objects given an instruction.
Different from previous work [8] that uses LLM to extract names
from a sentence, our object proposal is much more demanding
in four different ways as we will discuss in Sec. V-B.

In order to achieve a reliable object proposal that addresses four
requirements, we introduce example prompts for each case and
use the few-shot prompting technique of LLMs to propose them.
The few-shot examples can be found on our project website.

2) Object Query: Given a list of object names {yi}i=1...O,
we then query the scene representation for object locations and
availability. This is achieved by finding top k nearest neighbor
elements in C followed by a clustering algorithm to fuse multi-
view information. A threshold on a cluster’s score determines if
the queried object is found.We first define a metricD :C×Y→R
where Y is the set of possible object names. We use the maximum

ensemble of both CLIP and ViLD for the metric D defined below:

D :(φi, pi, ri), yi 7→max(Dclip,Dvild), where
Dclip =〈Φclip img(Ii),Φclip text(Ii)〉
Dvild =〈Φvild img(Ii),Φclip text(Ii)〉

Here we use both CLIP embedding and ViLD embedding because
the former detects out-of-distribution objects better while the latter
is more robust to common objects as shown in Fig. 5. We can
directly take the maximum over the two inner products because
both of them are normalized vectors designed to be queried by
the inner product CLIP text encoder. Given metric D, the top
k nearest neighbor elements for object name yi can be found in
the scene representation C. We note that based on the value of
D(ci,yi), we can impose a threshold to filter out low-confidence
detections. These top context elements are associated with ROIs,
multiple of which may correspond to the same real-world 3D
object instance. We then run a multi-view fusion algorithm to
aggregate these context elements into 3d object locations and
filter out objects that don’t exist according to an aggregated score.
Details of the algorithm can be found in Sec. VI-B.

C. Combining NLMap and SayCan
Our method constructs a scene representation queryable by

natural language. Such representation can be connected with LLM-
based planners to enable robots to operate in a truly uncontrolled
environment. Previously, SayCan [6] presents a framework that al-
lows robots to plan and execute in the real world following human
instructions. We highlight the difference between our work and
SayCan in Fig. 3. SayCan work as follows: with few-shot prompt-
ing, SayCan uses the scoring of a language model to break down a
high-level instruction like “Bring me an apple” to “1. Find the ap-
ple, 2. Pick up the apple, 3. Bring it to you, 4. Put down the apple”.
Each option from a pre-defined list is scored by an LLM and an
affordance prediction module. However, SayCan relies on a hard-
coded list of object names, locations, and executable options so its
capability is largely limited by the lack of contextual grounding.

NLMap makes up this missing component in SayCan. Our
object proposal, combined with the object query, generates the
relevant object names and locations conditioned on the instruction
and the scene. There are two major remaining challenges.

1) Generate executable options: Vanilla SayCan [6] provides
a list of skills associated with either 1) navigation policies to
hard-coded locations 2) manipulation policies (pick and place) of
objects, specified by object names. Given a detected object and its
location, we can create a new skill “find the [object name]” bound
to a navigation policy to that location. This means we can expand
a small fixed set of navigation options to infinitely many options.
On the other hand, although training manipulation policies for
infinitely many objects is beyond the scope of our work, we can
still augment the manipulation capability of SayCan by binding
all possible references to a manipulable object with the available
manipulation policies. This is achieved by finding CLIP nearest
neighbor of object names. For example, given discovered objects,
we can generate executable options like “pick up the red can” and
“pick up a tin of coke”. Our method will bind both of them to the
closest manipulation policy “pick up coke can” with CLIP. This
nearest neighbor query is similar to that used with BERT in [5].
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2) Ground LLM planner with context: Unlike the setup in
SayCan, which assumes all objects in the hard-coded list are
present, our method is expected to tackle infeasible instructions,
such as instructions involving objects that aren’t present. SayCan
weakly addresses this problem by grounding plans with local
affordance, which is only conditioned on what’s directly visible
in the field of view rather than what’s available in the entire scene.
NLMap gives us a list of available objects so we can add the
missing global contextual grounding to SayCan. This is achieved
by modifying the original few shot prompts in SayCan to also
condition the plan on discovered objects, expressed in templates
like “Scene: apple, coke can.” We include both positive examples
when necessary objects are all present and negative examples
when available objects cannot fulfill the instruction. In the former
case, LLM is prompted to plan just like in vanilla SayCan; In the
latter case, LLM is prompted to output the terminate signal “done”
directly, indicating the task is infeasible.

With these components, we can ground SayCan with context
awareness. After exploring the scene, when a human gives the
robot an instruction, the robot will propose potentially involved
objects in the scene and query the gathered scene representation for
their locations and availability. NLMap then generates executable
options, plans with LLM conditioned on what’s found and finally
executes the plan in the real world under the SayCan framework.

V. EXPERIMENTS

In this section, we evaluate NLMap and its individual com-
ponents with real-world robotics tasks. We test a robot running
NLMap in a real office kitchen, as shown in Fig. 4. We test the
entire system in an end-to-end setting such that the robot attempts
to accomplish tasks specified by humans with natural language.
We list a subset of the manipulable objects in Fig. 4(a) receptacle
locations in Fig. 4(b). The robot is a mobile manipulator from
Everyday Robot, which has a mobile base and a 7-degree-of-
freedom arm, as shown in Fig. 4(c). The main sensor is an RGBD

coke can 7up can pepsi can lime soda redbull can
multigrain 

chips

rice chipstea jalapeno 
chips

water bottle apple

Frontal view, 
Pre-manipulation pose

RGBD image, 640 x 512

sink First-aid station

Woven basket Coffee machine

(a) (b)

(c) (d)

Fig. 4: (a) a representative subset of objects that are used in manipulation (b) a
representative subset of objects used as receptacles (e.g. for the task putting the
cup next to the coffee machine) (c) a robot from Everyday Robots used in the
experiment (d) The scene where we run the experiments, it is a kitchen in an office
building.

camera, which returns 640×512 RGBD images. Similar to Say-
Can, we use a set of manipulation policies trained from imitation
learning and PaLM 540B [38] as the LLM for all experiments, due
to its good performance on new tasks with few-shot prompting.
Throughout this section, all experiments share the same set of
hyper-parameters and LLM prompts unless specified otherwise.
A full list of test instructions can be found on the project website.

A. Benchmarking NLMap + SayCan as a system

In this section, we demonstrate our natural language queryable
representation can be combined with LLM planners to significantly
augment the capability of real robot operation. We choose to
combine NLMap with SayCan, a recent work that uses LLM plan-
ners to let robots plan and execute according to natural language
instructions. One of the biggest limitations of SayCan, as stated in
Sec. III, is that it has no global context awareness. By combing our

https://everydayrobots.com/


method with SayCan using the method described in Sec. IV-C, we
free SayCan from a fixed, hard-coded set of objects, locations, or
executable options. With NLMap, SayCan can now perform a great
number of previously unachievable tasks. In addition, we demon-
strate that our method allows SayCan to plan with the global con-
text to identify infeasible tasks. We quantitatively evaluate the real
robot performance of NLMap + SayCan in Table I with three sets
of benchmarks. We compare our method with a privileged version
of SayCan, which uses ground truth perception results in the scene.

1) SayCan tasks: We hope to understand how much perfor-
mance will be lost compared to SayCan due to the addition of
perception and context-aware planning. Therefore, we benchmark
18 tasks adopted from 6 of the 7 task families from the original
SayCan paper with 3 random tasks from each family (except
for Embodiment family). Our method achieves a success rate
of 66.7% among these tasks compared to the 84% of privileged
SayCan. We also tried 2 tasks with deliberate typos ‘ppsi” ‘chpis”.
Our method failed in both instructions with typos, with one failure
during object proposal and one failure due to policy binding.
With these two typo experiments included, our method achieves
an overall success rate of 60% compared to 65% in real robot
experiments compared to privileged SayCan that has hard-coded
object locations. This shows our NLMap maintains a reasonable
overall success rate even if multiple components like object
proposal, perception, and context-conditioned planning are added.

2) Novel objects: SayCan relies on a hard-coded list of object
names, locations, and executable options. Since the hard-coded set
of objects and executable options are finite, SayCan is incapable
of performing tasks that involve objects or skills outside these
small sets. However, since NLMap can propose and detect objects,
and generate executable options itself, NLMap can be combined
with SayCan to execute infinitely many tasks that involve such
novel objects as described in Sec. IV-C. As shown in Table I,
SayCan fails to plan nor execute any of these tasks while our
method achieves a success rate of 80% in the end-to-end execution
experiment. It even succeeds in some very out-of-distribution
instructions such as “I want to watch TV, can you get a bottle of
tea and put it there” or “Show me where is the first aid station”. We
note that manipulation policies used in this project are still limited
to be with the objects that are visually similar to training objects
in [6] and rely on the generalization to slightly out-of-distribution
data. Therefore, the novel object names in this experiment are
either used for navigation only, or for describing objects that are
visually similar to training objects in [6]. Such constraint can be
lifted in the future when a general text-conditioned manipulation
policy is available but lifting it is beyond the scope of the project.

3) Missing Objects: Vanilla SayCan isn’t grounded by what’s
available in the scene. If a necessary object is removed from the
scene, there is no way for SayCan’s LLM planner to tell the task
is infeasible. With NLMap, we can use the method in Sec. IV-C
to condition SayCan planning on what’s actually detected. In this
benchmark, we ask NLMap + SayCan to perform tasks that require
objects not present in the scene. Instructions in the benchmark
consist of size 15 subset of all instructions in the “novel object”
benchmark since we cannot remove objects like “first aid station”
from the wall. In a successful run, the robot is expected to not de-
tect an object doesn’t exist and output a termination signal immedi-

Task Family NLMap+SayCan SayCan∗

Planning Execution Planning Execution

SayCan Tasks 0.8 0.6 0.8 0.65
Novel Objects 0.9 0.8 0.0∗ 0.0
Missing Objects 0.67 0.4 0.0∗ 0.0

TABLE I: Planning and execution success rate. NLMap +SayCan
shows comparable performance as SayCan on instructions from [6] while
enabling new tasks SayCan cannot do before due to its lack of contextual
grounding. Planning success rate for NLMap + SayCan refers to that of
generative planning. (∗SayCan uses privileged ground truth perception
information, thus not able to handle objects out of the pre-defined list.)

Task Family PaLM540B [38] PaLM62B PaLM8B

Instruction implication 0.92 0.84 0.72
Crowd-sourced 0.96 0.96 0.72
Detailed description 0.72 0.8 0.6
Proper granularity 0.6 0.2 0.133

TABLE II: Object proposal achieves a very high success rate for all task
families except the hardest set “proper granularity”. The performance on
task family “proper granularity” sharply declines when we use smaller
models while other tasks families witnessed minor decline.

ately in its plan. Our method achieves a success rate of 40% in the
missing object setting, where 56% of the total failure cases are due
to false positive detections. Although vanilla SayCan will achieve
a success rate of zero in comparison, this benchmark still indicates
false positive detection is a challenge for context-aware planning.

B. Benchmarking Object Proposal

Object proposal is a foundational component in our framework
to parse unstructured instructions into structured object names.
We investigate the robustness and generalization capability of
object proposal from four perspectives:
• Infer objects from implication of the instruction: e.g. “Heat up
the taco” (taco, microwave)
• Unstructured crowd-sourced instructions: e.g. “Redbull is my
favorite drink, can I have a one please?” (redbull, human)
• Objects with fine-grained description: e.g. “turn off the
macbook with yellow stickers” (macbook with yellow stickers)
• Decomposition to proper granularity: e.g. “check out what
types of ingredients are available to cook a luxurious breakfast”
(milk,eggs,bacon,bread,butter,cheese,ham,sausage...)
A summary of result of each perspective can be found in Table II.

1) Infer objects from implication of the instruction: In previous
work [8] that use LLM to extract object names from language, all
object names are nouns that are directly present in the language
input. However, in the real world, humans frequently give instruc-
tions that involve objects that have to be inferred from the implica-
tion of the task. We test object proposal on 25 such instructions and
evaluate whether proposed objects would complete the task. Object
proposal achieved a success rate of 92% in 25 test cases including
“season the steak (salt, pepper)”, “fillet the fish (fish, knife)”.

2) Unstructured crowd-sourced instructions: Object proposal
module is expected to take in instructions from a variety of highly
unstructured formats. We evaluate the robustness of our object pro-
posal on a set of 25 test instructions adopted from crowd-sourced
instructions for SayCan. Object proposal achieved a success rate
of 96% in this study, including multi-step tasks like “Move an



multigrain chips to the table and an apple to the far counter”. Object
proposal succeeded in all 8 out of 9 multi-step tasks in this study.

3) Reference to objects with fine-grained description: Human
instructions often involve reference to objects with fine-grained
descriptions. Such descriptions are often important to visually
identify a particular instance in the scene. Thus it’s important for
the object proposal to keep these fine-grained descriptions in its
output. We evaluate object proposal on 25 test instructions that
involve fine-grained descriptions by adjectives or clauses. The
model attains a success rate of 72% in this experiment. The model
even succeeded in some complicated descriptions like “mug in
the shape of a donut”.

4) Decomposition to proper granularity: Many instructions
require a different level of object proposal granularity. Certain
tasks can only be accomplished if the object proposal is more
fine-grained. We evaluate object proposal on 15 tasks that require
expanding a category mentioned in the instruction. Overall,
the object proposal achieves a success rate of 60% in this set,
indicating that proper granularity is still a hard challenge for LLM
due to its multi-modality nature.

C. Benchmarking Object Queries to NLMap

In this section, we evaluate the open-vocabulary object query
module on a list of 50 common objects in our testing kitchens. We
run robot exploration and object query in two different kitchen
scenes, each with some object deliberately missing. Our method
uses both maximum ensemble metric D and multi-view fusion
described in Sec. IV-B with k=4. We compare this choice with
alternative embeddings and metrics likeDclip orDvild. Maximum
ensemble metricD without multi-view fusion is also evaluated as
a baseline. We have k= 1 in the above three baselines since no
multi-view fusion is happening. As shown in Table III, ViLD and
CLIP embedding alone achieves a very low success rate in both
environments. As illustrated in Fig. 5, we observe that ViLD em-
bedding detects common objects like cans or apples more reliably
while suffering from false negative detection of out-of-distribution
objects such as “first aid station”. On the other hand, CLIP embed-
ding gives us better results on uncommon objects but is less robust
for basic objects. Additionally CLIP embeddings better captures
features of text and signs. Our method uses multi-view fusion in
addition to the maximum ensemble. Multiview fusion leads to
a slight 2% accuracy increase in scene 1 but a significant 17%
increase in the second scene. This shows that multi-view fusion
can help remove outlier observations that produce high likelihood
scores but are actually noise by noticing a lack of detection of it
from different views. Overall, the perception success rate for our
method is 82% and 64% respectively in the two kitchens. Such
accuracy is limited by the low resolution and exposure of our robot
camera. However, since instructions don’t always contain visually
ambiguous objects like many in these test queries, perception is still
reliable enough as we see in the real robot experiments Sec. V-A.

D. Benchmarking Context Grounded Planing

Failures from perception or object proposal are coupled
with planning in real robot experiments. In this section, we
ablate context-aware LLM planning as a standalone component,
assuming correct object proposal and detection. We test LLM

Method Scene 1 Scene 2

ViLD embedding 0.6 0.47
CLIP embedding 0.58 0.44
Maximum Ensemble 0.8 0.47
Maximum Ensemble + Multiview fusion 0.82 0.64

TABLE III: We ablate different object query methods in two real-world
scenes. Both ViLD and CLIP achieve low query success rate but the
ensemble of their maximum score as well as our multi-view fusion
algorithm provides a significant boost to the query success rate.

CLIP embedding

ViLD embedding

Ensemble

landfill napkin box
jar of 

white candy
jar of 

dried fruit tap box of teaQueries:

Fig. 5: Comparison of different RoI retrieval method. We ablate using different
features to retrieval RoIs with natural language and found there are unique failure
cases with either CLIP or ViLD features, while maximum ensemble of features
provide the best results.

planning in a generative way. A generated plan is considered
correct if it will accomplish the instruction, is consistent with the
available objects, and is executable. We benchmark generative
planning with 80 test cases consisting of 40 instructions with 2 set
of available objects for each. One set is a positive set that contains
all needed objects for the task while the other set is a negative set
with some necessary objects missing. To be considered successful,
the planner should behave like Vanilla SayCan in the positive set
while outputting the terminal signal immediately in the negative
set. Our LLM planner, conditioned on available objects using
the method described in Sec. IV-C, achieves a success rate of
85% and 60% on the 40 instructions with positive object set
and negative set respectively. The performance gap is expected
because negation is known to be a hard problem for LLM.

Query: apple

Query: compost

Compost the apple, please.

“compost” query heatmap
“apple” query heatmap

Robot trajectory

Find an apple Pick up the apple

Find a compost Put down the apple

User

Fig. 6: Execution trajectory of proposed method on task “Compost the apple”.
Note CLIP features allow the robot to understand the sign on the compost bin. The
images are from the onboard camera of a robot from Everyday Robots.

VI. CONCLUSIONS

We integrate NLMap, a flexible and queryable spatial semantic
representation based on visual-language models including ViLD
and CLIP with SayCan. We show that NLMap is a flexible
scene representation that grounds LLM-based planners in their
environments, significantly improving long-horizon planning via
natural language instructions in open-worlded domain, enabling
new tasks prior state-of-the-art algorithms failed to address.

https://everydayrobots.com/


Future work. Currently, NLMap only handles a static scene
representation without dynamic objects and human, which we
will leave this for future work. All the modules used in NLMap
+ SayCan is pre-trained and deployed zero-shot. It is a great
advantage but we hope to fine-tune them for better performance.
Additionally, we will look into efficient exploration algorithms
to speed up the creation of scene representation.
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[27] A. Mousavian, A. Toshev, M. Fišer, J. Košecká, A. Wahid, and J. Davidson,
“Visual representations for semantic target driven navigation,” in 2019
International Conference on Robotics and Automation (ICRA), 2019.

[28] T. Chen, S. Gupta, and A. Gupta, “Learning exploration policies for
navigation,” in International Conference on Learning Representations, 2019.

[29] S. K. Ramakrishnan, D. S. Chaplot, Z. Al-Halah, J. Malik, and K. Grauman,
“Poni: Potential functions for objectgoal navigation with interaction-free
learning,” in Computer Vision and Pattern Recognition (CVPR), 2022 IEEE
Conference on, 2022.

[30] A. Wahid, A. Stone, K. Chen, B. Ichter, and A. Toshev, “Learning object-
conditioned exploration using distributed soft actor critic,” CoRR, 2020.

[31] A. Majumdar, G. Aggarwal, B. Devnani, J. Hoffman, and D. Batra, “Zson:
Zero-shot object-goal navigation using multimodal goal embeddings,” arXiv
preprint arXiv:2206.12403, 2022.

[32] S. Y. Gadre, M. Wortsman, G. Ilharco, L. Schmidt, and S. Song, “Clip on
wheels: Zero-shot object navigation as object localization and exploration,”
arXiv preprint arXiv:2203.10421, 2022.
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APPENDIX

A. Context-aware SayCan Algorithm

Our context-aware SayCan algorithm is similar to [6],
it expands the last line LLM.plan(instruction,
scene objects) in Listing 1. Compared to the original
SayCan [6], our context-aware version needs a list of detected
object namesM, along with a list of template functionsF as extra
input. A template function maps an object name to an option name
such as x−→“pick up [x]′′. We note that the template function
is used here because training manipulation policies beyond
pick-and-place are beyond the scope of our project. If we have
a language-conditioned policy in the future, we don’t need to use
template functions anymore. Trusting LLM for new options will
suffice in that case. A full pseudo-code can be found in Algo 1.

Alg. 1 Context-Aware SayCan

1: Input: A high level instruction i, a list of detected scene object
namesM, a list of template functions F, state s0, and a set
of skills Π and their affordance functions VΠ along with their
language descriptions dΠ.

2: lA← [“done”]
3: translate←{}
4: for o ∈M do
5: for f∈F do
6: `A.append(f(o)) . Create executable options
7: πnn←argmaxπ∈Π〈clip(dπ),clip(f(o))〉
8: translate[f(o)] = πnn . Bind options to policies
9: n←1

10: while `An−1
6=“done” do

11: Q=∅
12: for a∈A and `a∈`A do
13: π= translate[`a]
14: qLLM

a =p(`a|i,M,`an−1
,...,`a1) . LLM score

15: qaffordance
a =Vπ(sn) . Affordance

16: qcombined
a =qaffordance

a qLLM
a

17: Q=Q∪qcombined
a

18: an=argmaxa∈AQ
19: πn= translate[`an]
20: Execute πn(sn) in the environment, updating state sn+1

21: n=n+1

B. Multi-view fusion algorithm

In this section, we describe details of the multi-view
fusion algorithm mentioned in Sec. IV-B. In the gathered scene
representation C, multiple context elements may be associated with
the same object. Each context element ci contains an estimation
of object centroid pi and along with a object width ri. To simplify
formulation, we use cylindrical bounding volumes to model 3d
objects. We create such bounding boxes with center pi and radius
ri in an upright position. Given each queried object name yi, we
can quickly narrow down bounding box candidates by finding the
top k nearest neighbors with metricD. We now have a problem
similar to post-processing in object detection - for each real object
instance, we may have overlapping bounding box predictions,

which are supposed to be aggregated together. In computer vision,
this is achieved by the NMS algorithm that group predictions
based on the intersection over union(IOU) of the bounding box
followed by keeping only the bounding box with the highest
confidence in each group. We made three major changes to the
NMS algorithm by noticing the special structure of our problem.

First, since our bounding volumes are not cubes, IOU is hard to
compute. We instead use KL divergence of Gaussian distributions
to model. For each cylindrical bounding box (pi, ri) with a
circular projection on the 2d plane, define Gaussian distribution
Gi =N (pi,α · ri). The 2d Gaussian will have its center at the
estimated centroid and standard deviation proportional to the
width of the object. KL divergence measures how different two
distributions are so it acts like the IOU for gaussian distributions.
When estimations have very different centers or sizes, they will
be considered to correspond to two different object instances
by our algorithm. Second, different from the setup in 2d object
detection, different estimations of the same object in our problem
are considered valid, independent data points that contribute
to a better estimation of object location. Therefore, we don’t
discard non-maximum estimations in each clustered group, but
rather use their score as importance weights to derive the final
estimation through weighted average. Third, bounding boxes are
directly filtered out based on a threshold on confidence score in
2d detection. In our setup, we give confidence scores a bonus
based on how many elements there are by noticing available
objects should be detected from multiple view points.

We then offer a formal algorithm box for multi-view fusion
in Algo 2. Given object name y, we can use metric D to score
each context element in C and find the top k ones. Denote the
indices of top k context elements as K, sorted in descending
order by score. For each context element ci=(φi, pi, ri) , define
Gaussian distributionNi=N (pi,α·ri). In our experiments, we
choose the monotonic increasing function f to be in the form
f(x)=1+t− t

x where t is some hyper-parameter.

Alg. 2 Multi-view Fusion in NLMap

1: Input: Sorted indices K, Scores S for context elements,
Gaussian distributions for context elementsN , KL threshold
λ, score threshold β, monotonic increasing function f .

2: Groups← [[K[0]]]
3: for i ∈K do
4: for j ∈K do
5: if ∀ G ∈ Groups, ∀z∈ G , i 6=z∧j 6=z then
6: ifKL(Ni,Nj)>λ then
7: Groups[−1].append(j)
8: else
9: Groups.append([i])

10: P← []
11: for G ∈ Groups do
12: ifG[0]·f(|G|)>β then
13: P.append(

∑
i∈Gpiexp(Si)∑
i∈Gexp(Si)

)

14: return P

The algorithm then outputs clustered locations for objects



queried by name y.

C. Prompt used for object proposal and for planning

Listing 2: Object proposal prompt in NLMap + SayCan.
The task ’hold the snickers’ may involve the following

objects:snickers.
The task ’wipe the table’ may involve the following objects:

table, napkin, sponge, towel.
The task ’put a water bottle and an oatmeal next to the

microwave’ may involve the following objects:water
bottle, oatmeal, microwave.

The task ’place the mug in the cardboard box’ may involve
the following objects:mug, cardboard box.

The task ’go to the fridge’ may involve the following
objects:fridge.

The task ’put a grapefruit from the table into the bowl’ may
involve the following objects:grapefruit, table, bowl.

The task ’can you open the glass jar’ may involve the
following objects:glass jar.

The task ’heat up the taco and bring it to me’ may involve
the following objects:taco, human, microwave oven,
fridge.

The task ’hold the fancy plate with flower pattern’ may
involve the following objects:fancy plate with flower
pattern.

The task ’put the fruits in the fridge’ may involve the
following objects:fridge, apple, orange, banana, peach,
grape, blueberry.

The task ’get a sponge from the counter and put it in the
sink’ may involve the following objects:sponge, counter,
sink.

The task ’empty the water bottle’ may involve the following
objects:water bottle, sink.

The task ’i am hungry, give me something to eat’ may involve
the following objects:human, candy, snickers, chips,
apple, banana, orange.

The task ’go to the trash can for bottles’ may involve the
following objects:trash can for bottles.

The task ’put the apple in the basket and close the door’
may involve the following objects:apple, basket, door.

The task ’help me make a cup of coffee’ may involve the
following objects:cup, coffee, mug, coffee machine.

The task ’check what time is it now’ may involve the
following objects:clock, watch.

The task ’let go of the banana’ may involve the following
objects:banana, trash can.

The task ’put the grapes in the bowl and then move the
cheese to the table’ may involve the following objects:
grape, bowl, cheese.

The task ’find a coffee machine’ may involve the following
objects:coffee machine.

The task ’clean up the spilled coke’ may involve the
following objects:spilled coke, towel, mop, napkin,
sponge.

The task ’bring me some soft drinks’ may involve the
following objects:human, pepsi, coke, sprite, fanta, 7
up.

The task ’boil some water’ may involve the following objects:
water, kettle, sink, tap.

The task ’wash the dishes’ may involve the following objects:
sink, tap, mug, plate, bowl, fork, spoon, knife.

The task ’place a knife and a banana to the table’ may
involve the following objects:knife, banana, table.

Listing 3: Task planning prompt in NLMap + SayCan.
Robot: Hi there, I’m a robot operating in an office kitchen.
You can ask me to do various tasks and I’ll tell you the

sequence of actions I would do to accomplish your task.
Human: Hold the snickers
Available objects are: snickers.
Explanation: Hold

on means to pick it up. I will pick up the snickers.
Robot: 1. pick up the snickers
2. done.
Human: Put the trailmix here
Available objects are: trailmix.
Explanation

: This is a single action of puting down the trailmix.
Robot: 1. put down the trailmix
2. done.

Human:
Put a water bottle and an oatmeal next to the microwave

Available objects are: water bottle, oatmeal, microwave.
Explanation

: I will find and move a water bottle to the microwave
, then find and move an oatmeal to the microwave.

Robot: 1. find the water
2. pick up the water
3. go to microwave
4. put down the water
5. find the oatmeal
6. pick up the oatmeal
7. go to the microwave
8. put down the oatmeal
9. done.
Human: Put the mug in the cardboard box
Available objects are: .
Explanation: There is no

mug nor cardboard box available so I will do nothing.
Robot: 1. done.
Human: Put a grapefruit from the table into the bowl
Available objects are: grapefruit, bowl, table.
Explanation: I will find and pick up the grapefruit

, then find the bowl and put the grapefruit in it.
Robot: 1. find the grapefruit
2. pick up the grapefruit
3. go to the bowl
4. put down the grapefruit
5. done.
Human: Get a sponge from the counter and put it in the sink
Available objects are: sponge, sink.
Explanation: I will find a sponge first. Then

I will pick up the sponge and put it down in the sink.
Robot: 1. find the sponge
2. pick up the sponge
3. go to the sink
2. pick up the sponge
3. go to the sink
4. put down the sponge
5. done.
Human: Move the water from the table to the counter
Available objects are: water, table, counter.
Explanation: The user has

requested moving the water to the counter. I will find
the water and pick it up, then put it on the counter.

Robot: 1. find the water
2. pick up the water
3. go to the counter
4. put down the water
5. done.
Human: Bring me some snacks
Available objects are: human, twix.
Explanation: The user has requested some snacks, twix

is a type of snack. I will bring the user some twix.
Robot: 1. find the twix
2. pick up the twix
3. find the human
4. put down the twix
5. find the dried fruit
6. pick up the dried fruit
7. find the human
8. put down the dried fruit
9. done.
Human: Bring me an orange
Available objects are: human.
Explanation

: There is no orange available so I will do nothing.
Robot: 1. done.
Human: Give me something to drink
Available objects are: human, pepsi, 7 up, milk, juice.
Explanation: The user has requested some drinks, pepsi

is a type of drink. I will bring the user some pepsi.
Robot: 1. find the pepsi
2. pick up the pepsi
3. find the human
4. put down the pepsi
5. done.
Human: Put the apple in the basket
Available objects are: basket.
Explanation

: There is no apple available so I will do nothing.
Robot: 1. done.
Human: Deliver a can of coke to me
Available objects are: coke can.
Explanation: The user has requested



a coke, I will find a coke and bring it to the user.
Robot: 1. find the coke
2. pick up the coke
3. find the human
4. put down the coke
5. done.
Human: I finished my drink

, can you throw it away and bring me a mountain dew
Available objects are: coke can, mountain dew.
Explanation: The user has requested to throw his drink

(which appears to be a coke) away. I will put the coke
in the trash, and then bring the user a mountain dew.

Robot: 1. find the sprite
2. pick up the sprite
3. go to the trash
4. put down the sprite
5. find the mountain dew
6. pick up the mountain dew
7. find the human
8. put down the mountain dew
9. done.
Human: Let go of the banana
Available objects are: banana.
Explanation: Let go

simply means to put down. I will put down the banana.
Robot: 1. put down the banana
2. done.
Human: Put the grapes

in the bowl and then move the cheese to the table
Available objects are: grape, bowl, cheese.
Explanation: This is a query

with two parts. The first part requires finding grapes
and then moving them to the bowl. The second part
requires finding the cheese and moving it to the table
. I will make sure to finish both parts of the task.

Robot: 1. find the grapes
2. pick up the grapes
3. go to the bowl
4. put down the grapes
5. pick up the cheese
6. go to the table
7. put down the cheese
8. tell you I’m done.
Human: Pick up the peanuts
Available objects are: human, peanut.
Explanation: This is a simple

task of a single step, I will just pick up the peanuts.
Robot: 1. pick up the peanuts
2. done.
Human: Pick up the water bottle
Available objects are: .
Explanation: There

is no watter bottle available so I will do nothing.
Robot: 1. done.
Human: Bring me the peanuts
Available objects are: peanut.
Explanation: The user has requested peanuts

, I will find peanuts and bring them to the user.
Robot: 1. pick up the peanuts
2. find the human
3. put down the peanuts
4. done.
Human: Throw away a coffee cup
Available objects are: coffee cup, trash can.
Explanation: The user has

requested me to throw away a coffee cup. Throwing away
means putting something in the trash can. I will find a
coffee cup, pick that up and then put it in the trash.

Robot: 1. find the coffee cup
2. pick up the coffee cup
3. go to the trash
4. put down the coffee cup
5. done.
Human: Place a knife and a banana to the table
Available objects are: knife, table.
Explanation

: There is no banana available so I will do nothing.
Robot: 1. done.
Human: Throw away the fruits
Available objects are: apple, orange, banana, lime.
Explanation

: The user has requested me to throw away the fruits.
Throwing away means putting something in the trash can
. Banana is a type of fruit that’s available. I will
find banana, pick that up and then put it in the trash.

Robot: 1. find the banana
2. pick up the banana
3. go to the trash
4. put down the banana
5. done.

D. Object proposal experiment task list

Listing 4: Object proposal task list, where robot needs to infer objects
from tasks
make lasagna
cook chicken tikka masala
make a sandwich
recycle the coke can
freeze the ice cream in the shopping bag
blend pineapples and mangos to make some smoothies
fillet the fish
find some container to serve the steak
compost the apple
water the plant
slice the sausages and put them into a bowl
microwave the to go box
give me something to brush my teeth
light up the room
season the steak
cook an egg
bake the apple pie
fill the paper cup with water
cut the paper in half
wash away the dusts on the cutting board
drain the rice
stir fry the bok choy
steam the dumplings
sharpen the knife
throw away the yogurt cup

Listing 5: Object proposal task list, where the robot needs to understand
complex human language inputs
I opened a pepsi earlier. bring me an open can
I spilled my coke, can you bring me a replacement
I spilled my coke, can you bring me something to clean it up
I accidentally dropped that jalapeno chips after eating it.

Would you mind throwing it away
I like fruits, can you bring me something I would like
There is a close counter, a far counter, and a table. visit

all the locations
There is a close counter, a trash can, and a table. visit

all the locations
Redbull is my faviorite drink, can I have a one please
Would you bring me a coke can
Please, move the pepsi to the close counter
Can you move the coke can to the far counter
Would you throw away the bag of chips for me
Put an energy bar and water bottle on the table
Bring me a lime soda and a bag of chips
Can you throw away the apple and bring me a coke
Bring me a 7up can and a tea
Move an multigrain chips to the table and an apple to the

far counter
Move the lime soda, the sponge, and the water bottle to the

table
Bring me two sodas
Move three cokes to the trash can
Throw away two cokes
Bring me two different sodas
Bring me an apple, a coke, and water bottle
I spilled my coke on the table, throw it away and then bring

me something to help clean
I just worked out, can you bring me a drink and a snack to

recover



Listing 6: Object proposal task list, where reference to objects contains
fine grained descriptions

put the red can in the trash bin
put the brown multigrain chip bag in the woven basket
find the succulent plant
pick up the up side down mug
put put the apple on the macbook with yellow stickers
use the dyson vacuum cleaner
bring me the kosher salt
put the used towels in washing machine
move the used mug to the dish washer
place the pickled cucumbers on the shelf
find my mug with the shape of a donut
put the almonds in the almond jar
fill the zisha tea pot with water
take the slippery floor sign with you
give me my slippers that have holes on them
find the mug on the mini fridge
bring me the mint flavor gum
find some n95 masks
grab the banana with most black spots
fill the empty bottle with lemon juice
throw away the apple that’s about to rot
throw away the rotting banana
take the box of organic blueberries out of the fridge
give a can of diet coke
open the drawer labelled as utensils

Listing 7: Object proposal task list, where robot needs to infer objects
from categories and decompose it to the right granularity
list some different types of masks in the house
find out what types of pastries are there in the kitchen
tell me what type of spices we have in the kitchen
find some appropriate storages for mugs
what are some protein rich food
check out what types of ingredients are available to cook a

luxurious breakfast
bring me a bunch of flowers
find me some different types of Chinese dumplings in the

freezer
give me a bunch of different flowers
put different kinds of common cheeses in the fridge
list all available vegetables in the fridge
give me some sweet snacks
give me some savory snacks
give me some first-aid items
mix all types of wines in the cabinet

E. Robot experiment task list

Listing 8: Task List used in experiment. The scene setup is the same as in
SayCan [6].
put the coke can in the your gripper
let go of the coke can
come to the table
deliver the red bull to the close counter
throw away the water bottle
put the apple back on the far counter
bring me something to quench my thirst
bring me a fruit
bring me a bag of chips from close counter
pick up the 7up and bring it to me
pick up the water bottle and move it to the trash
pick up the apple and move it to the far counter
Please, move the pepsi to the close counter
Would you throw away the bag of chips for me
Redbull is my favorite drink, can I have one please
Can you throw away the apple and bring me a coke
How would you bring me an apple, a coke, and water bottle
I just worked out, can you bring me a drink and a snack to

recover?
Please, move the ppsi to the close cuonter
Would you throw away the bag of chpis for me

Listing 9: Task List used in experiment, the scene set up is an office
kitchen full of objects, plus testing objects: multigrain chip, basket, plant,
sink, apple, first aid station, coke, sink, rice chip bag, coffee machine,
water bottle, paper cup, lime sparkling water(green), yellow sign, snack
jars of nuts, snack jar of dried fruits, snack jar of gums, snack jar of candy,
mug, water fountain machine, tv, tea bottle, box of tea, energy cup, paper
bowl, clip board, compost bin.
Put the brown multigrain chip in the woven basket
Water the potted plant
Wash the apple
Move a can of soda to the first aid station
Put the red can in the sink
Put the green chip bag in front of the coffee machine
Help me put bottled water near the paper cup
Compost the apple
Show me where is the first aid station
Put the green can besides the yellow sign
Go to the snack jar of nuts
Microwave the apple
Moisterize the green plant
I want to watch TV, can you get a bottle of tea and put it

there
Place the plastic bottle next to the snack jar
Put the chip bag in front of the box of tea
Move the apple to the plant and water the plant
Find a disposable cup
Please help me put the energy bar in the paper bowl
Can you help me find where my clipboard is

Listing 10: Task List used in experiment. The scene setup is an office
kitchen full of other common objects but without coke, green can, protein
bar, green chip bag, bottle of tea, apple, coke can, multigrain chip.
Put the brown multigrain chip in the woven basket
Water the potted plant
Wash the apple
Move a can of soda to the first aid station
Put the red can in the sink
Put the green chip bag in front of the coffee machine
Help me put bottled water near the paper cup
Compost the apple
Put the green can besides the yellow sign
Microwave the apple
Moisterize the green plant
I want to watch TV, can you get a bottle of tea and put it

there
Put the chip bag in front of the box of tea
Move the apple to the plant and water the plant
Please help me put the energy bar in the paper bowl

F. Additional qualitative experiment results

We show additional qualitative experiment results in Fig. 7,
Fig. 8 and Fig. 9.



Human: Compost the 
apple.
Object proposal:
Compost, apple
Robot: I would 
1. Find the apple
2. Pick up the apple
3. Find the compost
4. Put down the apple
5. Done

(a)

Human: Wash  the 
apple.
Object proposal:
Tap, sink, apple
Robot: I would 
1. Find the apple
2. Pick up the apple
3. Find the tap
4. Put down the apple
5. Done

(b)

Fig. 7: Examples execution of of NLMap + SayCan on two tasks. (a) The robot is able to find apple and compost, based on CLIP and ViLD features,
and plan a sequence to put the apple in the compost. (b) Based on the instruction “Wash the apple”, the robot is able to bring the apple to the tap.
Turning on the tap is out of scope of this project and left for future work. The images are from the onboard camera of a robot from Everyday Robots.

https://everydayrobots.com/


Human: Move the 
apple to the plant and 
water the plant
Object proposal:
Apple, water, plant
Robot: I would 
1. Find the apple
2. Pick up the apple
3. Find the plant
4. Put down the apple
5. Find the water
6. Pick up the water
7. Find the plant
8. Put down the water
9. Done

(a)

Human: Can you 
throw away the apple 
and bring me a coke
Object proposal:
Apple, trash, coke, 
human
Robot: I would 
1. Find the apple
2. Pick up the apple
3. Find the trash
4. Put down the apple
5. Find the coke
6. Pick up the coke
7. Find the human
8. Done

(b)

Fig. 8: Examples execution of NLMap + SayCan on long horizon tasks. The proposed method is able to propose objects and plan a sequence for
long horizon tasks ((a) has 9 steps and (b) has 8 steps). The images are from the onboard camera of a robot from Everyday Robots.

https://everydayrobots.com/


Query: sink

(a)

Query: tap

(b)

Query: napkin box

(c)

Query: coffee machine

(d)

Query: water bottle

(e)

Query: paper cup

(f)

Query: apple

(g)

Query: paper bowl

(h)

Query: socket

(i)

Query: espresso machine

(j)

Query: orange

(k)

Query: poster

(l)

Fig. 9: More examples of NLMap queries. Similar to the visualization in Fig. 2, We show the query word as title of each plot, and the heatmap of
matches overlayed on the map. The top 4 RoI matches are shown below the map.
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