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Abstract— Ultrasound is a vital imaging modality utilized for
a variety of diagnostic and interventional procedures. However,
an expert sonographer is required to make accurate maneuvers
of the probe over the human body while making sense of
the ultrasound images for diagnostic purposes. This procedure
requires a substantial amount of training and up to a few years
of experience. In this paper, we propose an autonomous robotic
ultrasound system that uses Bayesian Optimization (BO) in
combination with the domain expertise to predict and effectively
scan the regions where diagnostic quality ultrasound images can
be acquired. The quality map, which is a distribution of image
quality in a scanning region, is estimated using Gaussian process
in BO. This relies on a prior quality map modeled using expert’s
demonstration of the high-quality probing maneuvers. The
ultrasound image quality feedback is provided to BO, which is
estimated using a deep convolution neural network model. This
model was previously trained on database of images labelled for
diagnostic quality by expert radiologists. Experiments on three
different urinary bladder phantoms validated that the proposed
autonomous ultrasound system can acquire ultrasound images
for diagnostic purposes with a probing position and force
accuracy of 98.7% and 97.8%, respectively.

I. INTRODUCTION

Ultrasound is the most frequently used imaging modality
for diagnostic and surgical interventions due to its low
cost, non-ionizing nature, portability and real-time feedback.
Ultrasound offers several advantages over other imaging
modalities, like Magnetic Resonance Imaging (MRI) and
Computed Tomography (CT), however, the diagnosis by
ultrasound is a highly operator-dependent modality [1]. This
is because of the skills required for manual control of the
probe and quality assessment of acquired images. Sonogra-
phers employ both directed as well as random explorations
strategies to search for diagnostic-quality images. The ultra-
sound probe is moved within the region of interest through
hand maneuvers initially and fine adjustments to the probe’s
translational and rotational motion later. These maneuvers
also include the safe and precise adjustment of the pressure
through the probe while simultaneously analyzing the quality
of acquired images. Such an intricate procedure requires a
great deal of skill, focus, experience and manual effort from
sonographers. In rural settings, skilled sonographers avail-
ability is limited [2], and alternative solutions are required.

This work was supported in part by SERB (India) - OVDF Award
No. SB/S9/Z-03/2017-VIII; PMRF - IIT Delhi under Ref. F.No.35-
5/2017-TS.I:PMRF; National Science Foundation (NSF) USA under Grant
#2140612; Daniel C. Lewis Professorship and PU-IUPUI Seed Grant.

1Indian Institute of Technology (IIT), Delhi, India ({deepak.raina,
saha}@mech.iitd.ac.in); 2Purdue University (PU), Indiana, USA ({draina,
rvoyles, jpwachs}@purdue.edu); 3All India Institute of Medical Sciences
(AIIMS), Delhi, India (drchandruradioaiims@gmail.com).

∗Corresponding author is Deepak Raina

UR5e 6-DoF 
Robot Arm

Ultrasound
 Machine

Ultrasound 
Probe

Fig. 1: Robotic ultrasound system with probe attached to its
end-effector [3], conducting a urinary bladder ultrasound.

In order to reduce the burden on experts, a Robotic Ultra-
sound System (RUS) is introduced. RUS consists of a dex-
terous robotic arm and an ultrasound machine with its probe
attached to the end effector of the robot, as shown in Fig. 1.
RUS can help ensure the accuracy, safety and consistency of
the ultrasound procedures. Recently, in order to address the
aforementioned needs, several telerobotic or human-assisted
ultrasound systems have been proposed [3]–[7]. Compared
to these systems, a fully automated ultrasound system offers
various potential benefits, including shorter procedure time, a
shorter learning curve, minimal communication delays and a
reduced cognitive load [8]. However, there are key challenges
for effective autonomous RUS. One of the most important
challenge has to do with the hand motions for ultrasound
images acquisition. Such images exhibit considerable inter-
and intra-subject variability and the image quality is highly
dependent on the precise position, orientation and pressure
of the ultrasound probe. With incorrect probe maneuvers, the
resulting image presents noise, artifacts, blurred boundaries
and poor visibility, thereby making it unacceptable for di-
agnosis. Sonographers rely on visual and haptic feedback,
anatomical information, and diagnostic expertise from prior
medical education to rapidly acquire the high-quality images.
Therefore, the RUS must locate the regions with acceptable
diagnostic image quality for inter- and intra-patient proce-
dures in the fewest exploration steps.

In this paper, we present an autonomous robotic ultrasound
system that uses the domain-expertise in Bayesian Opti-
mization (BO)-based search to scan the anatomical regions
for acquiring diagnostic quality ultrasound images, thereby
eliminating the need to thoroughly scan the entire region.
The key contributions of our work are as follows:

1) We proposed a prior in BO, gleaned from the expert’s
demonstration of high image quality probing poses,
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termed as expert’s prior. BO then estimates the re-
gion’s unknown image quality as a semi-parametric
Gaussian process model with expert’s prior.

2) A novel image quality metric is proposed, trained using
a dataset of ultrasound images labelled for diagnostic
quality by expert radiologists, which provides image
feedback of the region to the BO.

3) We experimentally validated using three urinary blad-
der phantoms requiring different probing maneuvers
for acquiring high image quality. The results show that
our systems consistently and autonomously acquire
high-quality ultrasound images in all phantoms.

We believe that the use of BO combined with domain
expertise to perform autonomous ultrasound scanning will
lead to less reliance on expert availability and a wider
application in remote and underserved populations.

A. Related Work

Autonomous Robotic Ultrasound Systems: In recent years,
a range of autonomous robotic ultrasound systems has been
proposed to minimize human intervention. Earlier works
used image features for ultrasound image-based visual ser-
voing [9]–[11]. Later, various systems used pixel-based con-
fidence map methods [12] and segmentation of structures for
optimizing the probe poses and forces [13]–[16]. However,
these image feature- and pixel-based approaches are modality
specific, computationally expensive and do not consider the
significance of diagnostic aspects. Hennersperger et al. [17]
developed the autonomous system using the pre-operative
MRI scan, however, MRI is quite expensive to acquire. Ma
et al. [18] proposed autonomous lung scanning by localizing
the target region using RGB-D sensor data. However, the sys-
tem used only force feedback and did not rely on ultrasound
image feedback, thereby limiting its diagnostic accuracy.

Recently, Li et al. [19], [20] proposed a deep
Reinforcement Learning (RL) framework to control
the probe for spinal ultrasound, incorporating image quality
optimization into the reward formulation. However, the
success of these systems is limited to phantoms and
patients whose data was included during training. Moreover,
deploying RL in medical systems is quite challenging, as it
requires vast amount of physical interaction with the human
body and poses safety and ethical concerns. In contrast to
these systems, the proposed autonomous ultrasound system
narrows down the area to be scanned using BO, eliminating
the need to thoroughly scan the entire region. We further
propose using domain expertise gleaned from the experts in
the form of BO prior and image quality metrics, in order to
acquire diagnostic-quality ultrasound images.

Bayesian Optimization for Medical Robots: Due to
the fast optimization capability, BO has been adopted
for safety-critical robotic medical procedures, such as
autonomous robotic palpation [21], semi-autonomous
surgical robot [22], controller tuning of hip exoskeletons
[23] and autonomous robotic ultrasound [24], [25]. Our
work is a non-trivial extension to the work by Goel et al.

[25]. They proposed using BO for autonomous ultrasound
utilizing segmentation of the vessel in the ultrasound image
as feedback to the BO for scanning the region with high
vessel density. They used hybrid position-force control to
move the robot in (x, y) plane while maintaining constant
force along the z−direction to the point of contact. In
contrast, our work suggests two technical improvements
to enhance the practicality of this approach. First, we
recommend using a deep learning model that generates
quality scores for ultrasound images as feedback to the BO
instead of relying on a segmented mask of the tissue or
structure. The latter approach can be very time-consuming
and labor-intensive for experts as they would need to
annotate anatomical structures’ boundaries, taking into
account the ultrasound image noise and variability due
to machine settings, probe pressure, and patient anatomy.
Second, we expand the capabilities of the BO by enabling
it to search for the optimal scanning region along the
(x, y, z)-axis. Notably, the z-axis is under variable force
control to account for varying physiological conditions [26].

Domain Expertise in BO: BO can utilize the expert’s
knowledge in the form of priors (beliefs) that the expert
(practitioner) has on the potential location of the optimum.
Such techniques have been mostly used for hyper-parameter
tuning of image and text datasets [27], open-source machine
learning datasets [28] and robot simulation experiments [29].
A few recent works have utilized expert’s knowledge in the
form of prior for medical robots [30], [31]. Ayvali et al.
[30] propose robotic palpation to detect tissue abnormalities
using BO. They modified the acquisition function of BO,
whose value peaks at the user-provided locations. Zhu
et al. [31] proposed an autonomous robotic auscultation
system for locating the optimal sound quality location
using BO. They used visual registration of the patient
to locate the anatomical landmarks for obtaining a prior
observation model. Inspired by these works, we propose
BO for autonomous ultrasound leveraging a prior quality
map gleaned from expert’s demonstrations.

II. METHODOLOGY

The pipeline of the autonomous robotic ultrasound system
is shown in Fig. 2. In the offline phase, the expert will demon-
strate the potential probing poses to acquire the diagnostic
quality images. This demonstrated data would be used to
build a prior quality map, which encodes prior anatomical
approximation about expected image quality. We also built a
dataset of urinary bladder ultrasound images of humans and
phantoms with labelled image qualities and trained a deep
learning model for image quality assessment metrics. In the
online phase, we used BO to select the probe poses to find
the optimal ultrasound image quality utilizing both the prior
map and quality metric gleaned from the domain expertise.

A. Bayesian optimization formulation

We use BO to search adaptively for probing poses that
yield a high-quality ultrasound image within a specified
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Fig. 2: Overview of the pipeline for autonomous robotic ultrasound using online Bayesian optimization (BO), and offline
domain expertise to obtain a prior quality map and to learn image quality assessment metric for providing feedback to BO.

anatomical region. Let A be the region of interest on the
human body enclosing the anatomical structure, then the
objective of BO is to solve:

max
p∈A

q(I(p)) (1)

where q(I(p)) denotes the quality score of ultrasound Image
I at probe pose p. The BO will compute the probabilistic
estimate of the unknown quality map q(I(p)) across the
human body using the domain expertise in the form of
prior and image quality metric. An acquisition function is
optimized to yield the new probing pose. Once the new
observation is found, the estimate is re-fitted to the data and
the process is repeated till the termination criteria is reached,
which is either the maximum reasonable iteration Nmax or
the estimated quality score threshold required for adequate
diagnosis. The overall algorithm is outlined in Algorithm 1.

1) Expert’s prior: A common estimator used in BO is
Gaussian Process (GP) model, which defines an unknown
function f by assigning a probe pose p a random vari-
able f(p), which jointly represent a Gaussian. A GP for
unknown function f is defined by the mean function µ(·)
and covariance or kernel function κ(·, ·). Given the function
value estimates f̄ = [f(p1), · · · , f(pn)] at probe poses
p̄ = [p1, · · · ,pn], GP regression can predict the function
f at new probe pose p∗ as the Gaussian distribution and is
given by:

P(f(p∗)|p∗, p̄, f̄) = N (kK−1f̄ ,κ(p∗,p∗)− kK−1kT )
(2)

where,
k =

[
κ(p∗,p1) · · · κ(p∗,pn)

]
K =

κ(p1,p1) · · · κ(p1,pn)
...

. . .
...

κ(pn,p1) · · · κ(pn,pn)



We opted to use a combination of two kernel functions,
namely the radial basis function and white noise function, as
their combination improved estimations for structures present
in ultrasound images [25]. The formulation of the kernel is:

κ(pi,pj) = σr exp

(−||pi − pj ||2

2l2

)
+ σwI (3)

where σr is the overall variance, l is the length-scale, σw is
the variance of noise and I is the identity matrix. We further
denote the set of image qualities as q̄ = [q1, · · · , qn].

In GP, we propose using prior knowledge gleaned from
expert’s demonstrations to reduce the explorations and cap-
ture the variations of probe poses on the magnitude of
ultrasound image quality corresponding to different human
anatomy. Inspired from work in [31], we formulated the
GP as a semi-parametric GP model, with its prior E(θ)
modeled as a Gaussian process with latent parameters θ,
representing the mean µθ and covariance function κ. The
parameters θ is initially inferred from observed probe poses
and ultrasound image qualities, which the expert will provide
by maneuvering the probe at the potential poses of the
optimum image quality across different subjects. During
online BO, θ will be inferred using the history of points
in (p̄, q̄) and prior E(θ) with Maximum A Posteriori (MAP)
estimation, using an L-BFGS solver as:

θ∗ = argmax
θ
L(θ|p̄, q̄)E(θ) (4)

where L(θ|p̄, q̄) =
∏

P(qi|µθ(pi),K) is the likelihood
function and P(.) denotes the probability density function of
Gaussian distribution N (qi|µθ(pi),K). Since GP models
the residual function f(p) with respect to the prior, we
subtract the prior from image quality as f(pi) = qi−µθ(p),
before re-estimating the GP.

2) Acquisition Function: In each iteration of BO, the next
probe pose to observe the image quality is determined using



Algorithm 1: Bayesian Optimization for Ultrasound

Input: Prior E(θ), Region A, max. iterations Nmax;
Initialize p̄ = {}, f̄ = {}, q̄ = {};
for i = 1, ..., Nmax do

pi ← argmaxp∈A EI(p);
if termination criteria reached then

stop;
else

Probe at pi, compute image quality qi;
Set p̄← p̄ ∪ {pi}, q̄← q̄ ∪ {qi};
θ ← argmaxL(θ|p̄, q̄)E(θ);
Set f̄ ← f̄ ∪ {qi − µθ(p)};
Re-estimate GP;

return Top probe poses with max. image quality;

an acquisition function. We have used an Expected Improve-
ment (EI), which is the most commonly used acquisition
function. If the posterior mean and variance of GP is given
by µf̄ (x),σ

2
f̄
(x), then EI can be formulated as:

EI(p) =

{
(µf̄ (p)− f+(p)− ξ)Φ(Z) + σ2

f̄
(p)ϕ(Z) if σ2

f̄
(p) > 0

0 if σ2
f̄
(p) = 0

(5)

where Z =
µf̄ (p)−f+(p)

σ2
f̄
(p)

if σ2
f̄
(p) > 0 else 0; Φ and

ϕ are the probability and cumulative density function of
standard normal distribution, respectively and f+(p) is the
best observed quality so far. The parameter ξ in eq. (5)
governs the amount of exploration during optimization and
a high ξ value leads to more exploration or less exploitation.

B. Expert’s ultrasound image quality metric

1) Dataset: We used two datasets of Urinary Bladder
(UB) ultrasound images. One of them is collected during
the in-vivo trials of our in-house developed Telerobotic Ultra-
sound System [3], [32] at All India Institute of Medical Sci-
ences (AIIMS), Delhi, India. The AIIMS ethics committee
approved this study under IEC-855/04.09.2020,RP-16/2020.
The other dataset is collected from the UB phantom. A total
of 2016 real and 2016 phantom images were collected. The
ground truth quality of the images is an average integer score
of labels by three expert radiologists, each having 15 years
of experience in abdomen radiology. Each label is an integer
score between 1− 5, based on an internationally prescribed
generalized 5-level absolute assessment scale [5], [33]. A
score of 1 means no appearance of the urinary bladder and
5 means that the clear depiction of the urinary bladder with
distinct boundaries and acceptable artifacts, depicting a high
diagnostic accuracy. A subpar-quality image (2 to 4) either
contains noise or motion artifacts, blurred images, indistinct
boundaries, obscuring the posterior or anterior sections of
the urinary bladder. Later, we normalized the quality score
in the range of 0 − 1 for standard comparison with other
quality estimation methods.

2) Feature extraction: Ultrasound image quality assess-
ment requires rich feature extraction for classifying the
images that are highly variable in appearance but differ a
lot in terms of image quality, as shown in Fig. 2. In recent

work, Song et al. [34] proposed a bilinear Convolutional
Neural Network (CNN) for fine-grained classification of
breast ultrasound image quality. We propose a technical
enhancement to this work in order to analyze the urinary
bladder ultrasound images, in which the bladder appears at
multiple scales/shapes (refer Fig. 2 for sample images) due to
the variability among inter- and intra-subject anatomy, probe
poses and forces. Thus, it is also essential to analyze images
at multiple scales. Recently, Basu et al. [35] proposed com-
bining multi-scale and second-order capability for detecting
gall bladder cancer. Taking inspiration from these works,
we proposed a deep CNN-based quality assessment model.
The base network used is Residual Network (ResNet50) [36]
and combined with Multi-scale, Bilinear Pooling classifier,
as shown in Fig. 2.

We used the group convolution kernels on equal-width
feature volume splits in place of the 3×3 convolution kernel
in the bottleneck layer of ResNet50. If X ∈ RH×W×N

represents the feature volume with height H , width W and
number of channels N , then the operation of Multi-scale
block can be represented by the following equations:

Y1 = X 1 Y3 = C2(Y2 +X 3)

Y2 = C1(X 2) Y4 = C3(Y3 +X 4)

where X i ∈ RH×W×N/4. Each split X i is first concatenated
with output of previous split Yi−1 and then fed to the 3× 3
convolutional kernel Ci to produce an output Yi. After
passing the image through 16 multi-scale blocks, the image
feature volume X ∈ RH×W×N is passed through 1 × 1
convolution block to reduce the feature volume to X ∈
RH×W×N

′

. Then it is reshaped to a matrix X ∈ RM×N
′

where M = H ×W . Later, a bilinear pooling is applied as:

B =
1

N ′ (XXT ) + ϵI (6)

B ←− B
||B||2

←− sign(B)
√
|B| (7)

where eq. (6) computes the outer product of feature volume,
eq. (7) will first perform the element-wise square-root and
then the l2 normalisation of the matrix B. Finally, the flat-
tening of the feature map is done and then a fully connected
layer is utilized to return the ultrasound image quality score.

C. Robot control

The robot controller will move the probe to the new pose
p = [x, y, z] given by BO, where (x, y) is under position
control and z is under force (fz) control. For the safety of
phantoms, the force limits have been set to 20N [3]. The
orientation of the probe is kept normal to the point of contact.
The hybrid position-force control is used for controlling the
robot. After searching, the robot may execute the top probe
poses with maximum image quality.

III. RESULTS AND DISCUSSIONS

A. Experimental setup

We conducted the experiments on the laboratory setup of
the Robotic Ultrasound System at Purdue University, USA,



consisting of a 7-DoF Sawyer collaborative robotic arm (Re-
think Robotics, Germany) with Micro Convex MC10-5R10S-
3 transducer attached to its end-effector. The US image
is captured by the Telemed Ultrasound machine (Telemed
Medical Systems, Italy) and is transferred to the laptop. The
ultrasound was performed on a urinary bladder phantom
(YourDesignMedical, USA). We customized this phantom
with the 0.39 inches thick (subjected to manual cutting error)
rectangular layers of ballistic gel in order to approximately
represent the patient’s body with physiological differences.
Thus, we present our results using three phantoms, termed as
P0, P1 and P2, having 0, 1 and 2 layers, as shown in Fig. 3.
The BO and image quality model have been implemented in

Urinary 
Bladder 

Phantom

Telemed 
Ultrasound 

Machine

Sawyer 7-DoF 
Robot Arm

Ultrasound
 Image

Curved 
Ultrasound 

Probe

Phantom 1 (P1)

Original Phantom (P0)

Phantom 2 (P2)

Fig. 3: Experimental setup of robotic ultrasound system with
three phantoms of the urinary bladder.

Python 3.8 and PyTorch 1.11. ROS has been used to integrate
and establish communication among all components of the
setup. For BO Algorithm 1, we used ξ = 0.1, Nmax = 50,
A ∈ ((0, 0.15)m, (0, 0.15)m, (8− 20)N) for (x, y, fz). The
prior E(θ) has been modeled using GP by fitting it to 10
potential probing poses and corresponding image qualities.

B. Performance of quality assessment model

We trained the ultrasound image quality assessment model,
explained in Section II-B, using the Categorical Cross En-
tropy (CCE) as a loss function. We split the dataset in a 90 :
10 ratio as a training and testing dataset. We also used the
transfer learning approach [37] and used the proposed model
pre-trained on ImageNet. The stochastic gradient descent has
been used as an optimizer with a learning rate of 0.005,
momentum of 0.9 and weight decay of 0.0005. The size of
the input image to the model is 224× 224, batch size is 16
and the network is trained for 100 epochs. The results in
Table I shows that the proposed model (ResNet50+MS+BP)
achieved an increase in accuracy by 3.01% on a test set when
compared to the ResNet50+BP model proposed in [34].

C. Comparing different BO strategies

In order to analyze the effectiveness of the proposed
methodology, we have compared the BO with zero prior
to the BO with the proposed expert’s prior. We illustrated
these search strategies using the image feedback having a
mean of the segmented mask of the bladder in the ultrasound
image (qS) as used in [25] and having proposed ultrasound
image quality metric learned from expert’s rating (qE). For
segmentation, we used a U-net-based segmentation model

TABLE I: Comparison of ultrasound image quality assess-
ment model predictions on testing set, where accuracy values
close to 100 indicate similarity to the expert’s quality score.

Image
quality
score

ResNet50+BP [34] ResNet50+MS+BP (Proposed)

Precision Recall Accuracy Precision Recall Accuracy

1 92.00 97.87 94.84 93.88 97.87 95.88
2 83.33 68.96 75.47 83.87 89.65 86.67
3 65.22 75.00 69.77 88.24 75.00 81.08
4 93.33 85.71 89.36 91.11 83.67 87.23
5 90.48 97.44 93.83 90.48 97.44 93.83

Average 87.67 87.48 87.34 90.23 90.17 90.05

proposed in [38]. Further, each of the feedback strategies has
been compared with different search spaces, first considering
the probe motion along x and y-axis of the phantom, second
along x, y and z−axis of the phantom, where z−axis is
under the force control (fz). The estimated quality maps
obtained using these strategies for P0 are shown in Fig.
4, where red region shows the high-quality region and blue
region shows the low-quality region. The black dots over the
map represents the queried probe positions over the phantom
during the optimization. The first column in Fig. 4 shows
the quality map obtained using the uniform movement of
the probe over the phantom, which has been considered
as the approximate ground truth quality map. For both the
quality types, the ground truth has been obtained using the
approximate desired force (fd) of 14N , 16N and 18N for
P0, P1 and P2, respectively, which gives the best image
quality in these phantoms. We present results for 3 cases
to illustrate the effect of searching with appropriate force in
these phantoms: (i) fz < fd: fz is constant but equal to
fd − 4, (ii) fz = fd and (iii) when fz is variable.

We compared the quality maps of these strategies by doing
quantitative analysis using three metrics: (i) Sum of quality
difference of top n points, (ii) Top quality, and (iii) Zero
Normalized Cross Correlation (ZNCC), as shown in Table II.
The numbers in the table represent the average value of the
matrices for the 3 tests on each phantom. These metrics have
been computed with respect to the approximate ground truth
for the phantom. The sum of the difference between the top
n−points compares the quality of images acquired from the
top-n highest quality values, top quality compares the highest
value of image quality score and ZNCC evaluates the overall
similarity of the acquired quality map during the search. The
value of quality differences close to 0, and top quality and
ZNCC value close to 1 indicates a better estimation of the
quality map. The quality maps in Fig. 4 with less scattered
probe points (less exploration) and more points in the high-
quality region (red) represent a better search strategy.

From the result in Fig. 4 and Table II, it has been found
that the BO using the segmented image as quality score
in (x, y) space with fz ≤ fd have resulted in being too
exploratory (low ZNCC) with a lot of points spread over
the low-quality region of the phantom. However, the quality
maps obtained using the expert’s quality metric of the image
have fewer explorations, with most of the probe positions
in the high-quality region of the phantom. Due to noise and
shadows in the ultrasound image, the segmentation results
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Fig. 4: The estimated ultrasound image quality map of urinary bladder phantom P0 using different BO strategies. Black dots
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TABLE II: Quantitative comparison of different BO strategies for three different urinary bladder phantoms P0, P1 and P2

Image quality
estimation

method
Variables

BO with zero prior BO with expert’s prior

Sum of quality difference of n points Top ZNCC Sum of quality difference of n points Top ZNCC
n = 1 n = 5 n = 10 n = 20 Quality n = 50 n = 1 n = 5 n = 10 n = 20 Quality n = 50

Segmentation x, y, fz < fd 0.382 0.944 1.430 1.931 0.684 0.689 0.291 0.692 0.941 1.205 0.782 0.782
(qS ) x, y, fz = fd 0.132 0.609 0.963 1.651 0.911 0.811 0.103 0.531 0.785 1.308 0.911 0.920
[38] x, y, fz 0.396 1.016 1.919 3.336 0.711 0.733 0.404 0.991 1.379 2.158 0.799 0.801

Expert’s image x, y, fz < fd 0.280 0.370 0.600 1.030 0.690 0.717 0.130 0.290 0.570 1.010 0.750 0.817
quality metric x, y, fz = fd 0.120 0.240 0.390 0.710 0.950 0.876 0.050 0.090 0.180 0.970 0.980 0.959

(qE ) x, y, fz 0.130 0.270 0.820 1.320 0.823 0.821 0.040 0.280 0.760 1.600 0.910 0.889

are prone to errors, resulting in a large number of probe
evaluations in low-quality regions, whereas expert’s image
quality score, which is based on the holistic assessment
of the image, pinpoints the focus on anatomical structures
rather than getting distracted by noise. The search strategies
using fz < fd could not find the high-quality region and
instead converged to the local maxima rather than the global
maxima. However, with fz = fd, the high-quality regions
have been acquired. When the quality region is searched
using fz as a variable in BO with zero prior, the quality
maps and top quality score show that the high-quality regions
can be located with a varying force too, which is essential
for in-human ultrasound procedures. However, the search is
quite exploratory, reporting low ZNCC values of 0.733 and
0.821 for quality qS and qE , respectively. When the expert’s
prior is used, all BO strategies have significantly improved,
including the search space with three variables (x, y, fz).
The exploration steps of BO usually increase as the search
space dimension increases. However, BO with expert’s prior
reported a top quality of 0.910 with a ZNCC score of 0.889,
which is 9.6% and 7.6% more than the BO with zero prior.

D. Validating the convergence of probe positions and forces

Since our study involves phantom experiments, the ap-
proximate probe positions and forces that yield the best-
quality images are known. The search strategy should con-
verge to these approximate probe poses and forces to acquire
high-quality images. The proposed strategy has reached the
desired probe position with an average mean value accuracy
of 98.73% across all phantoms. To emphasize the conver-
gence of force, we compared the probe forces explored by
different BO search strategies, as shown in Fig. 5. The
proposed formulation of BO using the expert’s prior and
image quality metric has resulted in the mean value accuracy
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Fig. 5: Force fz profiles with different BO search strategies

of 99.28%, 98.25%, and 96.11% for P0, P1, and P2,
respectively. Comparatively, the other BO search strategies
using zero-prior and segmentation-based quality maps (qS)
have shown significant errors in mean values and greater
standard deviation due to the noise in image feedback and
the inability to adapt to the profile of the scanning region.

IV. CONCLUSION

We proposed an autonomous Robotic Ultrasound System
(RUS) to perform the ultrasound as per clinical protocols. We
used Bayesian Optimization (BO) to search for high-quality
regions leveraging the domain expertise in the form of a prior
quality map and ultrasound image quality. The prior map
has been gleaned using expert’s demonstration of the poten-
tial high-quality probing maneuvers. A novel image quality
metric has been learned from the expert-labelled dataset of
ultrasound images. Three phantom experiments validated that
incorporating domain expertise into BO effectively improves
the system performance, resulting in acquiring diagnostic
quality ultrasound images while adapting to desired probing
maneuvers. Since phantom results are promising, we would
like to validate its capability for in-vivo study using our
RUS in India [3], which is our future work. We would also
expand the search space in BO from [x, y, fz] to include
[roll, pitch, yaw] in order to orient the probe for scanning
patients with complex physiological conditions.
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