
Cloth Funnels: Canonicalized-Alignment
for Multi-Purpose Garment Manipulation

Alper Canberk 1 , Cheng Chi 1 , Huy Ha 1 ,
Benjamin Burchfiel 2 , Eric Cousineau 2 , Siyuan Feng 2 and Shuran Song 1

clothfunnels.cs.columbia.edu

Abstract— Automating garment manipulation is challenging
due to extremely high variability in object configurations.
To reduce this intrinsic variation, we introduce the task
of “canonicalized-alignment” that simplifies downstream
applications by reducing the possible garment configurations.
This task can be considered as “cloth state funnel” that
manipulates arbitrarily configured clothing items into a
predefined deformable configuration (i.e. canonicalization) at
an appropriate rigid pose (i.e. alignment). In the end, the cloth
items will result in a compact set of structured and highly
visible configurations – which are desirable for downstream
manipulation skills. To enable this task, we propose a novel
canonicalized-alignment objective that effectively guides
learning to avoid adverse local minima during learning. Using
this objective, we learn a multi-arm, multi-primitive policy that
strategically chooses between dynamic flings and quasi-static
pick and place actions to achieve efficient canonicalized-
alignment. We evaluate this approach on a real-world ironing
and folding system that relies on this learned policy as the
common first step. Empirically, we demonstrate that our
task-agnostic canonicalized-alignment can enable even simple
manually-designed policies to work well where they were pre-
viously inadequate, thus bridging the gap between automated
non-deformable manufacturing and deformable manipulation.

I. INTRODUCTION

Why has garment manipulation proved more difficult to
automate than more typical rigid and articulated objects? We
argue that two key factors are severe self occlusion, which is
present in the large set of possible crumpled states, and the
infinite degrees of freedom inherent to clothing. As a result,
it is impractical to manually define manipulation policies that
achieve reliable manipulation — a cornerstone of current auto-
mated non-deformable manufacturing pipelines. In this work,
we explore bridging the gap between existing approaches to
automation and the challenging domain of clothing. We show
that when a robot first manipulates arbitrarily configured
clothing items into a predefined configuration (i.e. canonical-
ization) at an appropriate pose (i.e. alignment), downstream
manipulation skills work significantly more reliably.

Recently, real-world cloth manipulation has received
significant attention. Some of the earliest cloth manipulation
work explored manually designed heuristics which worked
well for specific clothing types, configurations, and tasks,
such as cloth unfolding [1–4], smoothing [5, 6], folding [2, 7–
9], but their strong assumptions initial states, fiducial markers,
specialized tools, or cloth type/shape do not generalize. More
recently, learning-based approaches have shown success in
more general cloth manipulation behavior. One line of work
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Fig. 1. Canonicalized-Alignment funnels the large space of possible cloth
configurations into a much smaller and better structured set of highly-visible
states that greatly simplifies downstream tasks such as ironing or folding.

has explored supervised-learning from human demonstrations
for smoothing [10] and folding [7], but those methods required
costly human demonstrations/annotations. Another recent line
of work employs fully self-supervised learning and has shown
success in learning to unfold [11] (but doesn’t generalize
to other tasks) and in tackling visual goal-conditioned
manipulation of a single square cloth instance [12].

Instead of learning arbitrary monolithic cloth manipulation
tasks, we hypothesize that it is more efficient to learn a
robust task-agnostic canonicalization and alignment policy
from which other task-specific manipulation skills may be
chained. This is because such a policy funnels unstructured
and self-occluded cloth configurations into structured states
with clearly visible key points (Fig. 1, middle), reducing the
complexity of the task-specific downstream policy, and en-
abling even simple heuristics to work with a high success rate.

To this end, we define a new “canonicalized-alignment” task
for garment manipulation, where the goal is to transform a gar-
ment from its arbitrary initial state into a canonical shape (de-
fined by its category) and align it with a particular 2D transla-
tion and rotation. The end result is a decomposition of garment
manipulation into two factorized parts. The first part funnels
a diverse set of cloth configurations into SE-2 transforms of a
small set of states with high visibility. The second part consists
of downstream behaviors which relies on kinematically
feasible transforms of structured initial configurations and
full keypoint observability to achieve high task success rates.

Our primary contribution is the introduction of
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Fig. 2. Approach Overview. a) A batch of scaled and rotated observations are created from a top-down RGB image of the workspace and then concatenated
with a scale-invariant coordinate map. b) The batch of inputs is fed through the factorized network architecture, producing a batch of rotated and scaled
value maps for each primitive. c) All primitive batches are concatenated and the maximum value pixel parameterizes the action to be executed.

“canonicalized-alignment”, a garment manipulation task
which serves as a cloth funnel for reducing general-purpose
garment manipulation complexity. We achieve this by the
following technical contributions:
• We propose a learned multi-arm, multi-primitive

manipulation policy that strategically chooses between
dynamic flings and quasi-static pick&place actions to
efficiently and precisely transform the garment into its
canonicalized and aligned configuration.

• To train the policy, we proposed a novel factorized reward
function that avoids adverse local minima which plague
the generic goal-reaching formulations by decoupling
deformable shape and rigid pose.

• We evaluate our approach in multiple downstream garment
manipulation tasks in the real-world on a physical robot,
including folding and ironing.

Our experiments show that incorporation of canonicalized-
alignment significantly reduces the complexity of downstream
applications, suggesting that robust canonicalized-alignment
provides a practical step forward toward multi-purpose
garment manipulation from arbitrary states for diverse tasks.

II. RELATED WORK

Heuristic-based cloth manipulation. Heuristic-based
manipulation pipelines – where action selection and planning
is manually designed – can produce impressive results.
However, the generality and robustness of these approaches is
limited due to strong assumptions regarding pre-canonicalized
initial state [9, 13], fiducial markers [14], specialized tools [8],
and cloth type and shape [1, 2, 4–6, 15–18].

Learning-based cloth unfolding. Learning-based methods
can self-discover the best policies for a distribution of
cloths using real-world self-supervision [11, 19] or simulator
states [20, 21]. While these approaches have been successfully
applied to cloth unfolding [11, 19] or canonicalization [20],
they do not consider canonicalized-alignment. This limits
their applicability since heuristic-based pipelines cope poorly
with unmet cloth assumptions or kinematic constraints.

Goal-conditioned cloth manipulation. Towards generic
goal-conditioned cloth manipulation, prior works have
investigated reinforcement learning [22–25], real-world self-
supervised learning [12] and imitation learning [26]. However,
these methods often struggle to bridge the sim2real gap [24],
generalize across cloth instances [12, 26, 27] or generalize
between garment types [23, 25, 28]. Furthermore, all

goal-conditioned works do not address how goal vertices/key
points/images can be obtained for a completely novel cloth
instance. Instead, our proposed approach can accommodate
different garment categories and generalize to a variety of
novel real-world garment instances from simulation training.

III. METHOD

A. A Multi-Purpose Garment Manipulation Pipeline
We propose a factorized approach to multi-purpose

garment manipulation from arbitrary states that decomposes
the process into two steps. First, the robot executes a learned
task-agnostic canonicalized-alignment policy, which leaves
the garment in a known configuration predefined for the
clothing category at a specified 2D rotation and translation.
Second, the robot executes a task-specific keypoint based
policy, which could be as simple as a manually-designed
heuristic. This approach confers three primary benefits:
• Arbitrary initial configuration: Canonicalization funnels

the large space of possible cloth configurations into a
narrow distribution of highly-structured fully-observable
configurations from which downstream policies can more
easily operate.

• Downstream task-awareness: Flexible goal-conditioned
alignment allows the canonicalized cloths to be placed at
specified positions and orientations that are kinematically
appropriate for particular downstream tasks.

• Clothing category generalization: A keypoint-based cloth
representation effectively reduces the observation space
from having to represent the infinite DoF down to a few
meaningful keypoints. Further, cloths are always in a known
canonicalized configuration. These two properties combined
not only simplifies learning downstream task-specific ma-
nipulation policies, but also makes it possible to engineer
heuristics that work reliably for a clothing category.

Next, we will discuss how the canonicalized-alignment task is
formulated (Sec. III-B), learned (Sec. III-C), and implemented
alongside the several downstream task policies (Sec. III-D).

B. The Canonicalization & Alignment Task
Problem Formulation. Given a clothing item in some

clothing category in an arbitrary initial configuration, the goal
of canonicalization is to reach the human-defined standard de-
formable configuration for that clothing category, such as a T-
shaped configuration for shirts and the upside-down V-shaped
configuration for pants. Note that this only accounts for the



Fig. 3. Reward Computation. From the goal configuration g (green) and
current configuration v (magenta), we compute a best-alignment configuration
g′ (orange). Then, the average vertex distance between g′ and g (where only
rigid transforms matter) gives the alignment reward RA, while that between
g and v (where only deformation matters) gives the canonicalization reward
RC. Our factorized reward RCA is a weighed sum between RA and RC.

garment’s shape, but not its pose in the workspace. This means
canonicalization alone can’t ensure that downstream tasks are
kinematically feasible. To address this shortcoming, the goal
of “canonicalized-alignment” is to reach canonicalization at
a specific planar position and rotation in the workspace.

Naive Reward Formulation. Given a simulated cloth
instance with N vertices, let v={vi}i∈[N] denote the current
configuration of the cloth (Fig. 3, magenta), where each
vi ∈ R3 is the position of the ith cloth vertex. Given a
goal configuration g = {gi}i∈[N], the average per-vertex
distance between g and v gives a generic goal-conditioned
cloth manipulation cost. In the specific case where g is
a canonicalized configuration of the cloth at the goal
position and rotation (Fig. 3, green), we have the following
straightforward canonicalized-alignment reward

RUnf=−||g−v||2 (1)
Clearly, RUnf is consistent, in that a policy which achieves
RUnf=0 achieves perfect canonicalized-alignment. However,
this formulation has two primary downsides:
1) Entangled supervision. When RUnf is low, it can be

difficult for the policy to tell whether it should make
a planar transformation of the cloth configuration (such
as shifting entire cloth to the right) or a deformable
adjustment (such as flipping a shirt’s sleeve outwards).

2) Over-emphasis on cloth pose. Actions that shift the cloth
result in sharp and large changes in RUnf, while actions
of smaller magnitudes become insignificant. Since such
small adjustment actions are required to bring a poorly
canonicalized cloth to a well-canonicalized one, RUnf fails
to put enough emphasis on the canonicalization subtask,
and leads to a problematic local minima in policy learning.

Factorized Reward Formulation. To alleviate these
shortcomings, we propose a reward factorization, that
expresses the canonicalization RC and alignment RA aspects
of the task separately:

RCA=(1−α)RC+αRA (2)
where α∈(0,1) is a hyperparameter. With this factorization,
we can provide separate supervision RC and RA during
training, while acting with respect to RCA during data-
collection and inference. This helps the policy distinguish
how actions separately affect the cloth shape or planar pose.
Further, with a tunable α , we can emphasize RC more than
RA, which leads to a better canonicalization.

To factorize the reward, we propose to compute a
transform T , which transforms g into a best-aligned goal
configuration g′ (Fig. 3, orange). Given such a g′, its distance
to v accounts only for their deformable shape mismatch,
which serves as the canonicalization reward,

RC=−||v−g′||2 (3)
Meanwhile, by T ’s definition, the distance between g′ and
g accounts only for the mismatch in planar position and
rotation, which serves as the alignment reward,

RA=−||g′−g||2. (4)
Factorization Implementation. To find g′, we have

observed that naively minimizing the average per-vertex
distance between g and v is extremely sensitive to outliers,
so does not give us the best alignment. Such outliers arise
due to mismatches in g’s and v’s deformable shapes where
small protrusions with large offsets (e.g. a shirt’s arm folded
inwards) could significantly shift the minimum distance
configuration. To filter out such outliers, we optimize the
transform T which minimizes this distance for only a subset
of points, where point i is included if ||gi−vi||2≤τ for some
scalar threshold τ then apply T to g to get g′. We repeat
this minimization and filter procedure in iterations, using the
previous iteration’s g′ as the current g, until convergence.

In our experiments, we observed that α =0.6 and τ =0.3
performs best. To account for different cloth sizes, we
normalize all RC, RA, RUnf, and τ by the geometric mean of
the cloth’s height and width in a canonicalized configuration.
Since most garments are mirror-symmetric, we select the
highest reward from either the goal configuration or its
mirror-flip in the goal’s local frame.

C. Multi-Primitive Spatial Action Maps Policy
Coarse-grain dynamic multi-arm flings can efficiently

unfold and align garments from crumpled states [11], but
are insufficient for the fine-grained adjustments required to
achieve canonicalization. To overcome this challenge, we
propose a multi-arm, multi-primitive system that combines
quasi-static and dynamic actions, which enables both efficient
and fine-grained manipulation. To unify the primitive
parametrizations and easily enforce constraints, we use a
spatial action maps policy.

Spatial Action Maps is a convolutional neural
network [29] (CNN) policy for learning value maps [30]
where actions are defined on a pixel grid. Through its
simple and effective exploitation of translational, rotational,
and scale equivariances, spatial action maps is a popular
framework for learning robotic policies [11, 19, 31].

We extend FlingBot [11]’s spatial action maps approach
as follows. Given a H × W × 3 top-down view of the
workspace (Fig. 2a), we rotate and scale it to form a stack of
transformed observations of shape K×H×W×3. To help the
network reason about the cloth’s alignment, we concatenate a
K×H×W×2 scale-invariant, normalized (between -1 and 1)
positional encoding to the transformed observation stack. To
enable multiple primitives, we propose a factorized network
architecture (Fig. 2b) with two encoders, one for each task’s
reward (RC, RA), where each encoder has two decoder heads,
one for each primitive. The encoders take in the transformed
observation stack, and the decoders output value maps, one
for each reward-primitive pair. The value maps are combined



Fig. 4. Canonicalized-Alignment of Multiple Categories. In each row,
we demonstrate a sequence of 5 actions taken by the model corresponding
to a clothing category in simulation.

using (2), and the highest value action (over all action
parameters and primitives) is chosen (Fig. 2c).

System Implementation. In our experiments, we consider
two primitives, quasi-static pick&place and dynamic flings.
We use (H,W ) = (128,128) and a decaying ε-greedy with
ε = 1 for exploration of 1) action primitives (i.e. fling v.s.
pick&place) with half life 5000, and 2) action parameters
within each primitive with half life 2500. By constraining the
observation’s transforms to 16 rotations spanning 360◦ and
scales in {0.75,1.0,1.5,2.0,2.5,3.0} (giving K=96), we can
ensure that arms neither collide nor cross-over each other. Our
value networks’ predictions are supervised using the delta-
reward values – which is the difference in RCA before and after
an action is taken – using the MSE loss and the Adam [32]
optimizer with a learning rate of 1e−4. We train our model for
12,500 episodes which takes 2 days on 4 NVIDIA RTX3090s.

D. Keypoint-based Task Heuristics
Compared to learning-based approaches, heuristics are

highly interpretable and thus simple to define. Here, we
demonstrate that it’s possible to use heuristics for shirt ironing
with no keypoints and folding with a small set of keypoints.

Keypoint Detection. We collect 200 cloth configurations
from simulation with coverage at least 60% and trained a
DeepLabv3 [33] detector for each garment class. Using a
random 80/20 training/evaluation split, we observed that
this detector generalizes well to novel garment instances
with average error of 5/128 pixels. Setting up a keypoint
detector model for a new clothing category takes roughly
1 hour. After detection, each keypoint is depth-projected
into 3D points and transformed into the workspace frame
of reference. By representing cloths as a set keypoints,
we sidestep their infinite DoF by using a few meaningful
keypoints as the representation, which makes it simpler to

Fig. 5. Reward Comparisons. We qualitatively compare the final
configuration achieved by policies trained with our factorized and the
unfactorized reward formulation. For the qualitative comparisons, the IoU
of the final frame of various rollouts are shown in top-left corner of each
square.

define heuristics over them. For instance, long sleeve shirts
have six keypoints for two sleeves, shoulders, and waists.

Ironing Heuristic. For garment manipulation pipelines,
specialized tools are placed at a fixed location in the
workspace. For ironing, the extra tools involved are the ironing
board and the arm holding the iron (Fig. 8 left). Given a well
canonicalized and aligned shirt, an open-loop ironing primitive
where the end effector moves from one end of the ironing
board and back without any perception can be sufficient. In
our setup, we use two transforms such that the left and right
side of the shirt is on the ironing board respectively.

Folding Heuristic. First, the sleeves are folded towards
the waist using a dual-arm pick and place action. Here,
the pick point is the sleeve keypoint, while the place point
is the quarter and three-quarter point along the waist line
(computed from the waist keypoints). Since not all shirt arms
are long enough to reach the waist points, the place points
are constrained to be an arm’s length distance away from the
shoulder keypoints. The arm length can be computed from
keypoints as the minimum distance between the sleeve and
the shoulder keypoints over the left and right arms. In the
second step, with the arms folded in, the shoulder keypoints
are picked and placed at the waist keypoints (Fig. 8 right).

IV. RESULTS

In simulation, we conduct ablation studies of reward for-
mulation (Sec. IV-C) and action primitives (Sec. IV-D). Next,
we demonstrated our approach on five garment categories
from Cloth3D [34] (Sec. IV-E) and a folding downstream
task (Sec. IV-F). In the real world, we include primitive
and reward comparisons for the long-sleeve shirt category on
canonicalized-alignment (Tab. IV, Fig. 7), folding and ironing.

A. Metrics
After running each policy for 10 steps, we evaluate the

final RUnf (1), RA (3), and RC (4) in the episode. While these
rewards account for the full configuration of the garment, they
measure distance based on effectively ground-truth vertex
correspondence. This means they give larger distances for
radially symmetric garments, like skirts and dresses, and they
can’t readily be computed on real world garments. To address
these shortcomings, we also evaluate the IoU and percent cov-
erage from the current cloth binary image mask and the goal



TABLE I
REWARD ABLATION ON HARD TASKS

Metric RUnf ↓ RA ↓ RC ↓ IoU ↑ Cov.↑

RUnf 0.093 0.069 0.064 0.684 0.879
RCA (α =0.6) 0.075 0.051 0.052 0.728 0.887

cloth binary image mask. In all tables, ↓ indicates that lower
is better while ↑ indicates that larger values are preferred.

B. Task Generation
Our task datasets contain randomized initial configurations

of a filtered1 subset of meshes from Cloth3D [34], whose
configurations are generated as follows:
1) Hard Tasks have low coverage and severe self-occlusion.

They are generated by randomly rotating the cloth,
picking a random point on the cloth, dropping it from
a random height in [0.5,1.5]m, and then translating the
cloth by a random distance in [0.0,0.2]m.

2) Easy Tasks have high coverage to test policies’ abilities
to perform small adjustments crucial to canonicalization.
They are generated by starting with the canonicalized
configuration, and dragging a random point on the cloth
by an angle uniformly sampled from [0,360] degrees by
a distance uniformly sampled in [0.5,1]m.

Each garment category has 2000 training and 400 testing
tasks with unseen meshes, with a 75-25 and 50-50 split
between hard and easy tasks respectively.

C. Reward Ablation
We compare the canonicalized-alignment performance

between the unfactorized (1) and our factorized reward
formulation (2) on the long sleeve category. We observe that
our approach consistently does best on all metrics (Tab. I),
reflected in qualitatively more consistent canonicalized-
alignment (Fig. 5). We hypothesize that the RUnf baseline
struggles to canonicalize properly due to faint supervision
on small deformable adjustments. Meanwhile, our approach
can emphasize canonicalization more with α =0.6.

D. Effectiveness of Combined Primitives
While high-velocity dynamic actions enable efficient

unfolding, precise quasi-static actions are necessary for
fine-grained adjustments involved in canonicalization. We
compare two single primitive systems, only Aligned-Fling
(Flingbot [11]’s fling with fling direction and location
specified by the target alignment) and only Pick &
Place (P&P), with our combined primitive system on
canonicalized-alignment of long sleeve shirts.

TABLE II
PRIMITIVE ABLATION IN SIMULATION

Task Primitives RUnf ↓ RA ↓ RC ↓ IoU ↑ Cov.↑

Aligned-Fling 0.100 0.058 0.079 0.649 0.821
Easy P&P 0.077 0.068 0.037 0.734 0.928

Aligned-Fling+P&P 0.075 0.051 0.044 0.731 0.924

Aligned-Fling 0.100 0.058 0.079 0.644 0.812
Hard P&P 0.136 0.111 0.077 0.601 0.792

Aligned-Fling+P&P 0.075 0.051 0.052 0.728 0.887
1Since CLOTH3D meshes are automatically generated, we manually filter

unrealistic mesh examples (e.g. arms as wide as cloth body), and we ensured
all cloth meshes are shorter than 0.7m.

On easy tasks in simulation (Tab. II, top), P&P and our
combined primitive system perform similarly, confirming that
quasi-static actions alone are effective for small adjustments.
In contrast, the fling-only system performs poorly because
the imprecise flinging actions are ill-suited for cases where
fine-grained manipulation is required (e.g. Fig. 2).

For hard tasks (Tab. II bottom in simulation, Tab. IV
in real), we observe that both single primitive baselines
perform poorly. Notably, Fling achieves a similar performance
between easy and hard tasks in simulation, suggesting that the
effect of coarse grain high-velocity actions can be effective
for unfolding but is not versatile enough for canonicalization.
Meanwhile, the P&P baseline performed significantly worse
on hard tasks in simulation, confirming the findings reported
in FlingBot [11]. Our combined primitive system achieves
the best performance, demonstrating the synergy between
coarse-grain high-velocity flings and fine-grain quasi-static
actions for canonicalized-alignment.

Due to imperfect cloth simulators, deformable dynamics
such as arms twisting (instance #2, last column in Fig. 7)
and stretching (instance #3, last column in Fig. 7) are never
observed in simulation. Despite this sim2real gap, our real
world qualitative results (Fig. 7) confirmed our simulation
findings. Specifically, we found that on average, our
combined primitive approach achieved an IoU of 0.65, while
other single primitive baselines/ablations reached 0.56 or less.

E. Canonicalized-Alignment on Garment Category
Using the same learning and system configuration, we

trained new models on 4 other garment categories, one
model per garment category. From the quantitative evaluation
in Tab. III, our approach achieves around 70 IoU for all
categories, which demonstrates the generality of our problem
formulation with respect to garment categories. Further, from
Fig. 4, our policy has learned that while flinging is crucial
for quickly unfolding crumpled garments, a few pick&places
are usually required to achieve good canonicalization.

TABLE III
EVALUATION ON MULTIPLE CATEGORIES ON HARD TASKS

Category RUnf ↓ RA ↓ RC ↓ IoU ↑ Cov.↑

Shirt 0.075 0.051 0.052 0.728 0.887
Pants 0.098 0.077 0.053 0.708 0.892
Skirt 0.159 0.128 0.122 0.680 0.837
Dress 0.149 0.106 0.100 0.714 0.878
Jumpsuit 0.099 0.072 0.060 0.648 0.817

F. Application in Downstream Cloth Manipulation
A primary motivation for this work is the improvement

of downstream tasks; we hypothesize that effective
canonicalized-alignment will significantly reduce the
complexity of subsequent manipulation skills. To this end,
we study two garment manipulation tasks, ironing and
folding (Sec. III-D). For folding, we measured the final RUnf
achieved by each approach when the goal configuration is the
ground-truth folded configuration at a specified alignment.
We also include a folding success rate which is a thresholded
RUnf, where the boundary is chosen by qualitatively.

Canonicalized-Alignment Improves Downstream
Tasks. From Tab. V, we observe that manually-designed
folding heuristic completely fails at the task if starting from



Fig. 6. Simulation Folding Qualitative Comparison. We compare our
folding heuristic on our method’s canonicalization results vs. FlingBot’s
unfolding results. We qualitatively (images) and quantitatively (histogram)
demonstrate that not all high-coverage configurations ensure folding success.

random initial configurations. While success rate improves
with FlingBot [11]’s unfolded configurations, achieving
high-coverage configurations (the goal of unfolding) does not
always give structured, high-visibility configurations required
by heuristics (Fig. 6), so FlingBot [11] still performs poorly.
With canonicalized-alignment, policies trained with RUnf
and RCA achieve success rates of 84.9 and 87.8 respectively,
demonstrating the importance of canonicalized-alignment
reducing downstream task complexity, such that even simple
manually designed task heuristics can work well.

TABLE IV
REAL-WORLD CANONICALIZED-ALIGNMENT

Approach IoU ↑ Cov.↑

FlingBot [11] 0.489 0.709
Aligned-Fling 0.558 0.735
P&P 0.433 0.507
Aligned-Fling+P&P 0.648 0.806

TABLE V
SIMULATION FOLDING

Approach Success ↑ RUnf ↓

Random 2.1 0.520
FlingBot [11] 19.6 0.486
RUnf 84.9 0.246
RCA (Ours) 87.8 0.253

V. CONCLUSION

We introduce the task of canonicalized-alignment, a univer-
sal first step for multi-purpose garment manipulation pipelines.
By funneling a diverse array of crumpled clothing into a
small set of high-visibility configurations, this task addresses

Fig. 7. Real-world Canonicalized-Alignment. High-coverage configura-
tions achieved by Flingbot aren’t always aligned, which is improved with
our Aligned-Fling. However, using only coarse-grained Aligned-Fling fails
to fully canonicalize the shirt, and using only fine-grained Pick & Place
fails to fully-unfold the shirt as can be seen by the average of the final cloth
masks (bottom row).

Fig. 8. Real-world Ironing & Folding. Reliable canonicalized-alignment
not only gives high-visibility starting configurations, which reduces com-
plexity for downstream tasks like folding (step 1), but can also be called
multiple times with different target alignments, which is useful in ironing
(step 2 & 3). More video results on the project website.

much of the complexity associated with cloth’s infinite DOF
state space and severe self-occlusion and thus simplifies
downstream tasks. After training in simulation with our novel
factorized reward formulation for canonicalized alignment our
learned policy generalizes to the real-world robot system and
can be directly used for garment ironing and folding. Due to
imperfect cloth simulators, we hypothesize that canonicalized-
alignment performance can be improved if a real-world super-
vision signal could be derived to enable real-world finetuning,
and believe this is an interesting direction for future work.

https://clothfunnels.cs.columbia.edu
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Bimanual robotic cloth manipulation for laundry folding.
In 2011 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 1413–1419. IEEE, 2011.

[15] Andreas Doumanoglou, Jan Stria, Georgia Peleka,
Ioannis Mariolis, Vladimir Petrik, Andreas Kargakos,
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