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Abstract— Traditional approaches for active mapping focus
on building geometric maps. For most real-world applications,
however, actionable information is related to semantically mean-
ingful objects in the environment. We propose an approach
to the active metric-semantic mapping problem that enables
multiple heterogeneous robots to collaboratively build a map
of the environment. The robots actively explore to minimize
the uncertainties in both semantic (object classification) and
geometric (object modeling) information. We represent the
environment using informative but sparse object models, each
consisting of a basic shape and a semantic class label, and
characterize uncertainties empirically using a large amount
of real-world data. Given a prior map, we use this model to
select actions for each robot to minimize uncertainties. The
performance of our algorithm is demonstrated through multi-
robot experiments in diverse real-world environments. The
proposed framework is applicable to a wide range of real-
world problems, such as precision agriculture, infrastructure
inspection, and asset mapping in factories.

I. INTRODUCTION

Robots that can perceive and understand both semantic
(e.g. class, species) and metric (e.g. shape, dimension) as-
pects of the environment and actively build metric-semantic
maps can have a huge impact in many real-world applica-
tions. An example of our system is shown in Fig. 1.

Modeling the environment using a set of semantically
meaningful object models is important for long-range explo-
ration and large-scale mapping tasks. Such a model stores ac-
tionable information about the environment critical for robot
exploration. In addition, semantic maps can provide long-
term localization constraints for robot teams (loop closure,
intra-robot registration) due to their viewpoint invariance.
Finally, sparse semantic representations can significantly
reduce the storage requirements, and are suitable for multi-
robot settings with limited robot-to-robot communication
bandwidth. Due to these motivations and advancements in
data-driven object detection, metric-semantic Simultaneous
Localization and Mapping (SLAM) methods are gradually
becoming the new state-of-the-art in SLAM.
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Fig. 1: (Top left) Low-altitude UAV for map refinement. (Top right)
high-altitude UAV for aerial mapping. (Bottom) Active metric-
semantic mapping by two autonomous UAVs without using GPS.

Despite the success of metric-semantic SLAM methods in
various environments [1], [2], [3], [4], [5], [6], [7], active
metric-semantic mapping remains an open and challenging
research problem [8]. This problem requires robots to infer
changes not only in geometric but also in semantic uncertain-
ties as a result of their actions. The measurement model is
complex and varies with viewing angle, distance, occlusions,
robot motion, and object surface properties. Also, the noise
models for geometric maps are not valid for semantic objects.
Furthermore, characterization of uncertainties for semantic
object classification and modeling is a challenging task [9].

In this paper, we propose a novel approach to the ac-
tive metric-semantic mapping problem. Instead of making
assumptions about the measurement model uncertainty or
using heuristics for exploration, our algorithm empirically
characterizes the noise from real-world observations. This
can be intuitively thought of as allowing the robot to infer
the uncertainty distributions based on its past observations
of the world. The contributions of this paper include:

1) We propose a real-time metric-semantic SLAM algo-
rithm that uses a generic, storage-efficient, semantically
meaningful, and geometrically accurate environment
representation, encodes object-robot constraints via cus-
tomized factors in the factor graph to minimize robot
odometry drift, and supports multi-robot collaboration.

2) We propose an active metric-semantic mapping algo-
rithm built on the foundation of our metric-semantic
SLAM algorithm. This algorithm uses empirical uncer-
tainty characterizations from real-world data.

3) We integrate these algorithms with a complete auton-
omy stack and perform experiments in various real-
world environments, including merging maps from mul-
tiple UAVs. The system is quantitatively demonstrated
to gather higher quality information about objects of
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Fig. 2: System architecture. The quantities shared between robots are marked by asterisks, including the metric-semantic map (object
models and labels), robot poses, semantic and geometric uncertainty distributions, and the prior semantic map from an overhead robot.

interest compared to benchmark methods.
To our knowledge, this work is the first to propose an

active metric-semantic mapping system that enables the
robot to minimize both metric and semantic uncertainties
and is grounded in a systematic and empirical uncertainty
characterization from a large amount of real-world data.
A demo video of our system can be found at https:
//youtu.be/S86SgXi54oU.

II. RELATED WORK

We begin by discussing prior work in metric-semantic
mapping, then active mapping, and finally works combining
these areas into active metric-semantic mapping.

A. Metric-semantic Mapping

Many works in metric-semantic mapping represent the
environment using dense semantically-annotated maps such
as mesh [5], surfel [6], or 2.5D grid maps [10]. These
maps can be conveniently used for planning and navigation
but have large demands on computation and storage. It is
challenging to use these approaches for large-scale mapping
and exploration due to limited onboard computation. These
works also do not employ semantics to improve localization
accuracy. Additionally, individual object models, often de-
sirable for downstream tasks such as asset mapping, are not
used in the SLAM optimization. By contrast, other works
build object-level maps using pre-collected 3D models [11],
or basic shapes such as points [1], cuboids [4], ellipsoids [2],
cylinders [7], a set of semantic keypoints [12], or a com-
bination of 2D shapes [13]. Some efforts also account for
ambiguity in data association [1], and the usage of semantic
information in identifying moving objects [14], generating
hierarchical descriptors for loop closure [15], and minimizing
odometry drifts to assist long-range navigation [16]. How-
ever, these approaches do not define a measurement model
that maps from state space to object classification confidence
space, which is still an open and challenging problem [9].
Without such a model, these approaches cannot be adopted
for active information acquisition in metric-semantic maps,
where the robot needs to infer how semantic and geometric
uncertainties are affected by its actions.

B. Active mapping

Prior works on active mapping mostly use geometric maps,
which represent the environment using either sparse (e.g.
landmark-based) or dense (e.g. volumetric) elements. [17]
proposes an efficient active information acquisition algorithm
for sparse maps. [18] extends this work by decentralizing
it for multiple robots, and adaptively adjusting the sub-
optimality to satisfy the computation budget. For dense maps,
[19] proposes an information-theoretic active 3D occupancy
grid mapping algorithm heavily optimized to run in real
time. To explore larger environments, some works employ
a two-stage approach where the algorithm first plans paths
for coverage and then refines the path for maximizing
information gain or minimizing execution time [20], [21].
However, none of these methods account for uncertainties
in semantic information, which we show often has a signif-
icantly different distribution than geometric uncertainties.

C. Active Metric-semantic mapping

Some prior works seek to characterize the uncertainty
related to semantic objects [22], [23], but cannot predict
uncertainties of future measurements. Others address this
next-best viewpoint prediction problem [24], [25] but verify
the models only under controlled indoor conditions with prior
knowledge, such as detailed 3D object models. Finally, some
works take a more end-to-end approach using reinforcement
learning [26] or map prediction [27], but validate their algo-
rithms only in simulation. Others take a more model-based
approach using Gaussian Mixture Models [28] or Bayesian
OcTrees [29], [30] to model uncertainties. However, none
of them explicitly model the relationship between object
classification uncertainty and states of robot and object.

We approach the active metric-semantic mapping problem
using model-based information-theoretic exploration, where
the uncertainties of the metric-semantic measurement model
are characterized empirically based on a large amount of
real-world data. We leverage our semantic SLAM module to
automate this characterization process. Our approach allows
robots to explore and build an uncertainty-minimized metric-
semantic map in real time.

https://youtu.be/S86SgXi54oU
https://youtu.be/S86SgXi54oU


Fig. 3: Active semantic mapping of urban areas with a het-
erogeneous team of UAVs. (Top left) Overhead view of one of
our experiment environments. (Top right) Semantic map built by
the overhead robot in real time, where vehicles are cyan colored.
(Bottom) Examples of the semantic map built by two low-altitude
robots. Cylinders represent light poles or tree trunks, cuboids
represent vehicles, and planes represent the local ground.

III. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries
Let there be k robots {r1, r2, ..., rk}. The semantic

map of the kth robot Mk consists of a set of seman-
tic objects {ℓk1 , ℓk2 , ..., ℓkn} belonging to v semantic classes
{s1, s2, ..., sv} ∈ S . For notational compactness, we sup-
press k unless otherwise noted. Each object has a state
vector ℓi = {ℓsi , ℓ

g
i } that defines the semantic and geometric

properties of the object, where ℓsi = (pi, si) ∈ [0, 1]×S, pi is
the probability of ℓi belonging to class si, and ℓgi is a vector
defining the pose and geometric model of the object. The
semantic class of the object defines the shape of the object,
which is rectangular cuboid, cylinder, or plane1. For each
cuboidal object, the state vector is (suppressing subscript i):
ℓg = [r; t;d], where r = [rx, ry , rz]⊺ is the rotation vector,
t = [tx, ty , tz]⊺ is the translation vector, and d = [dx, dy ,
dz]⊺ is the dimension vector. For each cylindrical object, the
state vector is: ℓg = [b;n; r], where b = [bx, by , bz]⊺ is the
origin of the axis ray, n = [nx, ny , nz]⊺ is the direction of
the axis ray, and r is the radius. The robot state at time t is
represented by xt, which contains the SE(3) pose.

We assume that the base (take-off) locations of robots are
close and known relative to each other, and allow robots
to communicate and exchange information only at the base.
Note that this implies that the robots explore independently,
but can collaboratively construct semantic maps when at the
base. Also, simultaneous and sequential flights are equivalent
under this assumption. In our prior work [31], we proposed
a method for localizing robots using a semantic map built
by a high-altitude UAV and opportunistically communicating
data within the team. Using these methods, we can relax
our assumptions and extend our work to handle intermittent
communication or unknown take-off positions.

B. Objective
Given an unknown environment, or limited prior knowl-

edge about the environment, our objective is to find M̂, such

1Planar objects are associated with ground classes and are implicitly used
to constrain the bottom of the cylinder and cuboid models.

Fig. 4: Experiment environments with vehicles, light poles, tree
trunks. (Left) Garage. (Middle Two) Urban. (Right) Dirt road.

that ∥M̂⊖M∥ is minimized. ⊖ is the generalized difference
between the two maps. In other words, we want our estimated
metric-semantic map to best approximate the real-world map.
We decompose our problem into metric-semantic SLAM
and Planning for Active Metric and Semantic information
acquisition (PAMS).

1) Metric-Semantic SLAM: The objective of metric-
semantic SLAM is to accumulate previous measurements
{z1, z2, ..., zt} ∈ Zt to estimate the current metric-semantic
map Mt and a set of robot trajectories {T1, T2, .., Tk}.

2) PAMS: The objective of PAMS is to find the best
trajectory for each robot that minimizes both semantic and
geometric uncertainties, given Zt and the initial states of all
robots x0, and a planning horizon τ ≜ t+ 1 : t+ T . Recall
that robots explore independently, so we treat PAMS as a
single-robot problem. Minimizing semantic and geometric
uncertainty requires confidently classifying an object, and
reducing errors in geometric models of objects ℓgi . Instead
of directly optimizing the two objectives together, we cast
the classification confidences pi as the constraint of the
optimization problem, and minimizing the uncertainties of
ℓgi as the objective2. In other words, we try to improve
the accuracy of the object model, once the object exists
and belongs to the class of interest. This design avoids
hand-tuning the weights of different objectives and improves
computational efficiency and optimization convergence.

IV. PROPOSED APPROACH

A. Object detection and modeling

For each object geometry type, we construct a virtual sen-
sor, which given raw point cloud data outputs the estimated
object configuration measurements in the body frame. This
pipeline has three steps: semantic segmentation, instance
extraction, and object modeling.

For semantic segmentation, we build upon
RangeNet++ [32], and drastically reduce the number
of layers in the encoder and decoder to boost efficiency
(∼800% the speed of the default DarkNet-53 [33] backbone).
It runs in real time on the Intel NUC computer.

The extraction and modeling of cylindrical objects and
local ground planes are done in a similar way as presented
in our previous work [7], and the root b of the cylinder
model is the intersection of cylinder axis and local ground
plane. For cylindrical objects, the resulting measurement is
ℓg(z) = [b(z);n(z); r(z)], but in robot body frame.

For cuboidal objects, the resulting measurement is of the
form ℓg(z) = [r(z); t(z);d(z)], but again in robot body

2We assume that the robot pose estimation error is negligible, since we
use an accurate LIDAR-inertial odometry algorithm to estimate frame-to-
frame relative transformation and semantic landmarks to minimize the drift.



Fig. 5: Metric-semantic SLAM factor graph representation. We
define customized factors for cuboidal and cylindrical objects.

frame. Cuboidal objects are difficult to model from only
one LIDAR scan. Therefore, we use LIDAR odometry to
accumulate a 1∼3 seconds of semantically segmented point
clouds and filter points into a certain elevation window to
reject outlier points. Filtered points with target class labels
are clustered using DBSCAN [34]. We then project the points
within each cluster onto the ground plane, and extract the 2D
convex hull of each cluster. We perform principal component
analysis (PCA) on the 2D convex hull points to estimate the
longitudinal axis b1 of the cuboid (first PCA component).
We assume that the front of the vehicle is lower than the rear
to determine the facing direction. The vertical axis b3 of the
cuboid is assumed to be the same as the normal of its nearby
local ground plane. The lateral axis is then b2 = b3 × b1.
The dimensions d(z) = [dx, dy , dz]⊺ are estimated by the
distance between the 5th and 95th percentiles of projections
onto the axes, and b2, b3 define the rotation r(z). The
centers of the projections define the translation t(z).

B. Metric-Semantic SLAM
We build our semantic SLAM implementation on the

GTSAM library [35], [36], [37]. The factor graph of our
semantic SLAM module is shown in Fig. 5. The objects
are classified into target and non-target objects, which are
discussed in Section IV-D.

Let Hw
s be the matrix form of the robot pose xt, where Rw

s

is the rotation component and tws is the translational compo-
nent. We suppress the i subscript of ℓi for notational com-
pactness. Following [35], [36], the measurement likelihood
function with the Gaussian noise model is: L(x, ℓg; zg) =
exp{− 1

2 ||h(x, ℓ
g)⊖zg||2Σ}, where h(x, ℓg)⊖zg is the error

e(·) that we will define separately for cuboid and cylinder
objects, zg is the output of the object detection and modeling
step, and Σ is the covariance matrix.

1) Odometry factor: We use a LIDAR odometry algo-
rithm [38] to generate the odometry factor. We calculate
a relative SE(3) transform between two consecutive pose
estimates and use this transform as a factor between the
corresponding poses in the graph.

2) Data association: When detecting an object, we first
associate it with objects in M or create a new map object.
We employ nearest neighbor (NN) matching of the centroids
(for cuboids) or roots (for cylinders), with a fixed threshold
for valid matches, using the currently estimated robot pose to
transform detected objects into the world frame for matching.

3) Custom cuboid and cylinder factors: Once we have ob-
ject associations, we use these observation-landmark matches
to form factors in the factor graph. To acquire the expected

Fig. 6: For a vehicle at (0,0) facing in the +x direction: (1st) Region
with 95% confidence in semantic classification. (2nd) Region with
95% confidence in localization and dimension estimation (with less
than 0.1 m and 0.2 m error, respectively). (3rd) Regions with 95%
confidence level for both semantic and metric mapping are marked
in cyan. (4th) Sampling. Two different sampling strategies: uniform
sampling (grey) and centroid-only sampling (red), which form the
set of valid samples, i.e., X visible. (5th) Best action sequence.

measurement of the cuboid, we can first transform the pose
of the cuboid into the robot body frame Hs

cub = Hs
wH

w
cub.

We use a similar measurement error function as the one in [4]
for cuboidal objects, i.e.,

ecub =

[
log((Hs

cub(z))
−1(Hs

wH
w
cub))

∨

d− d(z)

]
(1)

where ∨ is vee operator that maps the SE(3) transformation
matrix into 6×1 vector, log is the log map, and (·)(z) are the
object measurements. Intuitively, this measurement error is
the distance between the currently detected and the expected
cuboid models in the tangent space of SE(3) and the 3 × 1
dimension vector.

Similarly, we can calculate the expected measurement and
actual measurement of cylinder objects from ℓgi and ℓgi (z).
We define the measurement error function for cylindrical
objects as:

ecyl =

(Rs
wb+ tsw)− b(z)
Rs

wn− n(z)
r− r(z)

 (2)

We implemented our custom factors to be compatible with
the GTSAM library [35].

4) Multi-robot Semantic SLAM: Each robot maintains its
own factor graph. When robots establish communication,
they exchange their history object detections and odometry,
with each other. Robots can treat other robots’ data in the
same way as their own by maintaining an odometry graph
for each robot and performing data association in the same
way as their own measurements. This merged factor graph
is illustrated in Fig. 5.

C. Uncertainty modeling

As discussed in Section I, we seek to develop a pipeline
for building models that map from the state space to
the metric-semantic uncertainty space from real-world data.
Formally, we want to find fs and fg such that pi =
fs(x, ℓgi , ℓ

s
i ),Σ(ℓgi ) = fg(x, ℓgi , ℓ

s
i ), where fs maps state

space into object classification confidence space, and fg

maps state space into object geometric measurement uncer-
tainty space.

1) Acquiring the training samples: To characterize the un-
certainty, we propose extracting important low-dimensional
inputs to reduce the dimensionality of the problem. From
our data, we found that the most influential factors for object



Fig. 7: Geometric entropy ( 1
2
ln{det(Σ(ℓgi )}) vs viewing angle (a). The oblique views lead to the least uncertainty in the vehicle geometric

model. Geometric entropy vs range (b-d). For each semantic class, there is a range interval that leads to minimized geometric uncertainty.

classification and modeling accuracies are range and viewing
angles. Thus, we use these two quantities as inputs to the map
predicting the uncertainty. To generate data, we manually
fly a spiral-shaped trajectory centered around the object of
interest to cover as many angles and ranges as possible.

In order to model uncertainty, we require pairs of obser-
vation and ground truth to fit the model. To characterize the
object classification uncertainty, we first extract the points
enclosed by the cuboid or cylinder model estimated by our
semantic mapping algorithm from the recent 10∼30 time
window. We then calculate the average per-point classifica-
tion confidence from our semantic segmentation network,
and use this as the object classification confidence. Once
these samples are collected, we use a multilayer perceptron to
approximate the underlying semantic uncertainty distribution
and can then predict the confidence for any range and
viewing angle, as shown in Fig. 6. A visualization is here.

To obtain geometric model ground truth, we look up the
actual dimensions of the vehicle online. To characterize geo-
metric uncertainty, we first discretize the range and viewing
angle. For each discretized interval, we calculate the error
distribution of all measurements in the interval compared to
the ground truth object model. A spline is fit to these data
points which represent the underlying geometric uncertain-
ties. The results of this characterization are shown in Fig. 7.
Note that for vehicles we only consider uncertainties in X-Y
localization, length, and width, since the Z position is well
constrained by the ground, and height is observable from
all viewing angles. For light poles and tree trunks, we only
consider uncertainties in X-Y localization.

D. PAMS

The semantic classes are divided into target objects (ve-
hicles), which are used to guide active semantic mapping,
and non-target objects (tree trunks and light poles), which
are only used to minimize robot localization drift.

1) Target object discovery: With the object of interest
locations extracted from the prior semantic map, we simply
solve or approximate the Traveling Salesman Problem (TSP)
to visit all of the objects as efficiently as possible. Our
implementation also supports reactive exploration (active
mapping upon detecting an object of interest), and it is trivial
to incorporate a coverage planner into our system [16].

2) Uncertainty minimization: As presented in Section III,
once the robot detects a target object it will minimize
uncertainties in the geometric properties for the target object,

while guaranteeing that the classification confidence and
robot localization uncertainty are within a threshold.

To guarantee object classification confidence, candidate
actions are only sampled from the high confidence regions.
To further reduce the sampling space, we also extract the low
geometric uncertainty regions and samples in the intersection
of the two, either by uniform sampling or by taking their
centroids, as illustrated in Fig. 6.

We then generate candidate paths given the planning
horizon T constituting all possible orders of visiting the a
sample locations. Therefore, the number of candidate actions
is equal to the number of variations P (a, T ) = a!/(a−T )!.

For each candidate path xτ = [xt+1,xt+1, ...xt+τ ], we
quantify the information gain. Supposing that ℓgi is the
target object to explore for time t, we use differential
entropy to calculate the information gain as: I(ℓgi ; zτ ) =
1
2 ln{det(Σ(ℓgi,t))} − 1

2 ln{det(Σ(ℓgi,t+T ))}. We update the
covariance recursively using the same method as shown
in [17]: Σ(ℓgi,t+1) = (Σ(ℓgi,t)

−1 + Σ(ℓgi,t+1)
−1)−1, where

Σ(ℓgi,t+1) is estimated by the uncertainty models we obtained
in Section IV-C. We choose the candidate path maximizing
this information gain, and end exploration once entropy drops
below a threshold or all samples are explored.

V. RESULTS AND ANALYSIS

To demonstrate the performance of our system, we carried
out experiments in various real-world environments as shown
in Fig. 4 which are diverse in object types, object shapes, and
degree of structure. As illustrated in Fig. 1, our complete
system consists of both low-altitude and overhead UAVs,
both built on our custom-made Falcon 4 UAV platform [16].
The low-altitude UAVs are equipped with forward-facing
cameras and 3D LIDARs, and can autonomously navigate
in cluttered and GPS-denied environments. To focus on the
map quality, we assume that there is a prior map available
(which could come from the high-altitude UAV) and the
robots only explore the objects in this map. Our system
detects and models vehicles (as cuboids), tree trunks and
light poles (as cylinders), and the ground (as planes).

A. Qualitative results

We observe in Fig. 6 and Fig. 7 that both semantic and
geometric uncertainties vary significantly for the vehicle
class when either the angle or the range changes, and these
trends are clear and consistent across multiple datasets. How-
ever, for the tree trunk and light pole classes, the semantic

https://youtu.be/S86SgXi54oU?t=100


Fig. 8: Comparison of trajectory examples from active metric-semantic mapping (leftmost) and heuristic-based mapping (middle left).
Each grid is 10 m × 10 m. The ground-truth vehicle positions are marked by blue-colored disc-shaped markers. Our active metric-semantic
mapping method drives the robot to observe objects from different ranges and viewing angles to minimize uncertainties. Comparison of
estimated vehicle model examples from active metric-semantic mapping (middle right) and heuristic-based mapping (rightmost).

Measure Urban Dataset 1 Urban Dataset 2 Urban Dataset 3 Urban Dataset 4 Parking Garage Dirt Road All Data
Err. Mean. (Ours / Baseline) 0.26 m / 0.44 m 0.22 m / 0.64 m 0.03 m / 0.46 m 0.04 m / 0.71 m 0.68 m / 1.96 m 0.58 m / 0.39 m 0.19 m / 0.57 m

Err. Std. Dev. (Ours / Baseline) 0.26 m / 0.35 m 0.33 m / 0.39 m 0.30 m / 0.47 m 0.36 m / 0.34 m — 0.20 m / 0.19 m 0.39 m / 0.55 m
Obj. Mapped (Ours / Baseline) 100% / 100% 100% / 100% 100% / 100% 100% / 80% 100% / 100% 100% / 100% 100% / 95%

Fig. 9: Geometric model error mean and standard deviation and percentage of objects discovered.

confidence does not have a clear relationship with range or
viewing angle. Even when there are very few points returned
from the object, the segmentation network can classify them
relatively well. This is probably because these objects are
relatively distinct from the surrounding environment. There
is a clear relationship, though, between the range and the
geometric uncertainty for light poles and tree trunks, as
seen in Fig. 7. Based on these observations, we model the
distribution of metric and semantic uncertainties w.r.t. both
range and viewing angle for the vehicle class, while only
modeling the distribution of metric uncertainties w.r.t. range
for the light pole and tree trunk classes.

As illustrated in Fig. 6, the classification confidence is
higher from the two side views than from the front or back
views, while the back view is more informative than the front
view. This distribution is intuitive since from the side view,
the vehicle is more readily identified. We also note from
Fig. 6 that the dimensions of vehicles are best estimated from
oblique views. This is reasonable because, at oblique views,
the sensor can observe both the lateral and longitudinal
directions of the vehicle, resulting in a better fit.

In addition, our uncertainty characterization approach gen-
eralizes to different types of objects as in Fig. 7. The method
can characterize uncertainties for any object of interest pro-
vided that the object shape can be approximated by cuboids
or cylinders and the sensor used can output point cloud data.

In Fig. 8 we compare the trajectories from active semantic
mapping to our baseline method of visiting each object
location in the prior map. While one could likely design a
heuristic to perform similarly to our method, we emphasize
that our system is rooted in real-world data instead of human
intuition, and therefore is more generalizable. Our system
achieves a 100% detection accuracy and is significantly
better in terms of object model accuracy than the heuristic-
based method as shown on the right of the figure. The
higher accuracy does come at the cost of a longer path
length, but the difference in path length is less significant
when the environment is more sparse because the robot will
spend proportionally more time covering the environment as
opposed to exploring individual objects.

It is obvious that the metric-semantic uncertainty distri-
butions are highly non-linear and vary with object types, as

shown in Fig. 7. It is difficult to design and verify mathe-
matical models for such uncertainty distributions, especially
for complicated objects that vary in type and appearance.

B. Quantitative results

We evaluate our system quantitatively using the accuracy
of width and length estimates for target-class objects (i.e.
vehicles) as the metric. We looked up the dimensions based
on the vehicle model to obtain the ground truth. For a
discussion of localization error, we refer readers to our prior
work [7], [16] which demonstrated the ability to reduce long-
term drift in robot localization using semantic SLAM.

We compare against our baseline method as described in
Section V-A. The object modeling accuracy is significantly
improved using the proposed method, as shown in Fig. 9.
The overall error mean is 0.19 m, which is around 3.5% of
the average vehicle dimensions. The overall error standard
deviation is 0.39 m, which means that the vehicle dimensions
can be estimated within 14.5% error with more than 95%
confidence. By comparison, across all datasets, the error
mean and standard deviation of the heuristic-based baseline
method are around 300% and 140% of the error mean
and standard deviation of our method. This shows that, by
actively choosing the best viewing angles and ranges, the
robot can gather significantly more accurate information.

We also note that there are edge cases where our method
struggles. For example, the parking garage is a constrained
space where most of the exploration viewpoints are un-
reachable. The dirt road is highly unstructured, lacking
reliable landmarks such as tree trunks or light poles to
constrain the robot’s pose. Therefore, the longer the robot
operates, the more drift accumulates, and the less accurate
the model becomes. Thus, the heuristic-based approach that
requires shorter flights outputs better results in this case.
Additionally, Urban Dataset 1 contains all black vehicles,
which are generally more difficult to detect, thus resulting
in more noise. A potential solution is accounting for LIDAR
intensities in our uncertainty characterization models.

We perform multi-robot experiments by flying sequentially
and fusing the maps afterwards. Using heterogeneous robots
leads to more accurate mapping results than any robot
working independently as in Fig. 10. Homogeneous robots



Measure Robot at 2.5 m Robot at 5 m Combined
Num. of Obj. / Min 0.8 0.9 0.8

Err. Mean 0.13 m 0.15 m 0.06 m
Err. Std. Dev. 0.30 m 0.50 m 0.30 m

Fig. 10: Mapping accuracy vs the number of heterogeneous robots.

Measure Robot in lot 1 Robot in lot 2 Robot in lot 3 Combined
Num. of Obj. / Min 0.8 1.6 1.6 3.3

Err. Mean 0.13 m 0.22 m 0.03 m 0.12 m
Err. Std. Dev. 0.30 m 0.33 m 0.30 m 0.33 m

Fig. 11: Mapping efficiency vs the number of homogeneous robots.

can parallelize coverage linearly w.r.t. the number of robots
without sacrificing map accuracy as in Fig. 11, assuming that
the robots fly simultaneously.

Our full system runs in real time onboard UAVs with an
Intel i7-10710U processor. Semantic segmentation runs at
1.5 Hz using only 1 out of 12 CPU threads. In total we use
5-6 threads, leaving ∼50% computational headroom.

Finally, our map representation significantly reduces stor-
age and communication burden. One million object models
take only 9 MB of storage. By comparison, it requires 6,250
MB to store a 3D voxel map that covers the same area (0.1
m resolution, 20 m height, 5 m spacing between objects).

VI. CONCLUSION AND FUTURE WORK

Highly accurate metric-semantic maps are important for
applications such as precision agriculture, infrastructure in-
spection, and asset mapping in factories. In this paper, we
proposed an active metric-semantic mapping approach that
enables robots to actively explore to minimize uncertainties
in both metric and semantic information. We characterized
the relationship between states and metric-semantic uncer-
tainties empirically using a large amount of real-world data,
and analyzed the resulting insights into the relationship
between uncertainty and different viewpoints. Through real-
world multi-robot experiments, we showed that our system
is capable of constructing highly accurate metric-semantic
maps in real time. We additionally showed that our active
mapping system improved map quality, and using multiple
heterogeneous robots can improve both the map accuracy as
well as the mapping speed. Future work includes scaling up
to include more semantic classes, enabling robots to react
to each other’s information in real time, and considering
more factors such as altitude angle and LIDAR point cloud
intensity for the uncertainty characterization.
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