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Abstract—In this paper, we present on-sensor neuromorphic
vision hardware implementation of denoising spatial filter. The
mean or median spatial filters with fixed window shape are

known for its denoising ability, however, have the drawback of
blurring the object edges. The effect of blurring increases with
an increase in window size. To preserve the edge information,
we propose an adaptive spatial filter that uses neuron’s ability
to detect similar pixels and calculates the mean. The analog
input differences of neighborhood pixels are converted to the
chain of pulses with voltage controlled oscillator and applied
as neuron input. When the input pulses charge the neuron to
equal or greater level than its threshold, the neuron will fire,
and pixels are identified as similar. The sequence of the neuron’s
responses for pixels is stored in the serial-in-parallel-out shift
register. The outputs of shift registers are used as input to
the selector switches of an averaging circuit making this an
adaptive mean operation resulting in an edge preserving mean
filter. System level simulation of the hardware is conducted using
150 images from Caltech database with added Gaussian noise to
test the robustness of edge-preserving and denoising ability of
the proposed filter. Threshold values of the hardware neuron
were adjusted so that the proposed edge-preserving spatial filter
achieves optimal performance in terms of PSNR and MSE, and
these results outperforms that of the conventional mean and
median filters.

Index Terms—G-neighbor filter, Neuron, Denoising, Mean filter

I. INTRODUCTION

The neurons and neural networks connected with the visual

pathways of visual cortex exhibit several important properties

for intelligent image processing under highly noisy environ-

ments [1], [2]. The ability for the neurons to respond to

input stimuli, its ability to ignore noise by learning from

repeated stimuli over a period of time is primary to its adaptive

behavior. Once the neuron learns an input stimuli, its response

to a known and unknown inputs stimuli can be differentiated

by the strength of its output responses. This behavior can be

modeled as weighted addition of inputs over a period of time

followed by threshold operations serving as activation function

for neural firing [3]. Since the neuron fires based on only the

known or learned stimuli, they serve as a natural system of

similarity detection between two stimuli - comparing an input

stimuli with that of the learned stimuli in real-time [4]. In

this paper, we exploit this ability of the neuron to determine

the similarity between two pixels for edge preserving image

filtering operations.

There is a class of image filtering techniques that rely on

similarity calculations between the pixels to extract and pre-

serve structural information. One such effective technique is

G-neighbour filtering [5], that uses the the similarity between

the neighborhood pixels within the filtering window to reject

the dissimilar pixels from the computation of the filtering

operations. In this study, we base our focus on mean filtering

operation as it results in lose of edge information with an

increase in filter window size.

Image denoising has been a well-studied question in the

image processing field and continues to attract researchers

with an aim to perform better restoration. As the the number

of pixels per unit area of a chip is continuously increasing,

modern image capturing devices are increasingly sensitive

to noise [6]. Therefore, built-in image denoising filters are

required to reduce the present noise in resultant image.

There are several methods proposed for hardware imple-

mentations of such image denoising filters [7], [8]. Conducted

work shows that image denoising on hardware level provide

fast execution and is well suited for real time image process-

ing. But to build such hardware filters, denoising algorithms

needs to be less complex and non-iterative [9]

In this paper, we propose using neurons for detecting the

similarity between the central pixel to its neighborhood pixels

within the filtering window. Similarity scores detected by

neuron are used as mask matrix that builds up an adaptive

denoising filter. Binary weights of the mask or similarity

scores are set by the threshold value of the neuron, which

equals to maximum possible difference between pixels. To

measure effectiveness of proposed denoising algorithm quanti-

tative performance measures such as peak signal-to-noise ratio

(PSNR) and mean square error (MSE) are calculated. Visual

quality evaluation of the images are also conducted in system

level simulations. In this paper Gaussian Noise was added to

test the performance of proposed denoising method.

II. PROPOSED FILTER

Traditional image filtering operations F [x, y] and its filter

mask H [x, y] can be represented as:
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Fig. 1. An example illustration of the modification of the spatial filtering operation by introduction of a binary similarity mask B that modifies the filter
mask H . The elements of B are determined using a neuron circuit proposed in this paper.

G[x, y] = F[x, y]⊗H[x, y] (1)

=

w/2∑

i=−w/2

h/2∑

j=−h/2

F[x+ i, y + j]H[i, j] (2)

where, w and h is the width and height of the image window

or the mask. We modify this filtering operation by including

a binary similarity mask B that has either null value φ or 1

and changing the values of H, for example changes to mean

filter mask with values 1/n, where n is the number of non-null

values in the mask. This modification is formally introduced

as:

G[x, y] = F[x, y]⊗ (H[x, y]⊙B[x, y]) (3)

=

w/2∑

i=−w/2

h/2∑

j=−h/2

F[x+ i, y + j]H[i, j]B[i, j] (4)

where, a multiplication of φ with any real number R results

in null φ, and those pixels are excluded from the filtering

operation. The filter falls under the subclass of G-neighbor

filter, where B serves as the similarity matrix representing the

similarity between the center pixel to that of its neighborhood.

Figure 1 shows a numerical example demonstrating the

functionality and working principle of the proposed spatial

filtering operator. In this example, the mean filter mask is

modified by using the similarity mask B and removes the

dissimilar pixels from the filter output G calculations.

III. HARDWARE IMPLEMENTATION

The block diagram of proposed hardware implementation

of adaptive mean filter is shown in Fig. 2. The pixel in

the center of the window is compared to its neighbor pixels

sequentially in time using differential amplifier. Obtained

analog differences are used as control signal to the voltage

controlled oscillator (VCO) that compares this control voltage

to an inbuilt sinusoidal signal. VCO produces signal spikes

of different frequencies depending on the amplitude of the

applied inputs. After VCO conversion, produced set of spikes

is applied as input signal to the neuron that fires only for

a tuned similarity threshold. Binary output B of the neuron,

represented as logic high ”1” in case of similar pixels and logic

low ”0” otherwise, is saved to Series-In-Parallel-Out (SIPO)

shift register. Values saved in SIPO builds up the mask that

controls the switches in the averaging circuit, activating only

similar pixels for implementing mean operation.

The process of filtering noise within a single window can

be divided to three stages: pre-neuron stage, that converts the

pixel differences to the chain of pulses, neuron processing

stage, that outputs mask values, and mean calculation stage,

that provides filter output Vdiff . The analog circuit for the

pre-neuron stage, consisting of the difference amplifier and

VCO, is shown in Fig.3. The difference amplifier calculates the

difference of neighbor pixels and is based on LT1097 amplifier

model. VCO, on the other hand, creates a chain of pulses of a

particular frequency depending on the input voltage supplied

from the amplifier. VCO is based on LTC1841 operational

amplifier model and has two input signals to the comparator:

the differential amplifier output and sine wave signal with an

amplitude of Vsine. The increase of the Vdiff signal leads to



Fig. 2. The block diagram shows the various functional circuit block of the proposed system for a mean filter implementation.

the decrease of the duty cycle of the output pulses from the

VCO.

Fig. 3. Pre-neuron stage

As regards neuron design, it was inspired from the model

presented in [10], characterized by steep depolarization and

repolarization phases. Figure 4 shows modified circuit of

the neuron, that consists of 4 blocks representing different

functional characteristics of the neuron. The first block is the

polarization or charging functionality of the neuron, which is

realized through different levels of C1 and C2 capacitor values

and CMOS transistors. The second block consists of single

comparator LTC8702 and acts as an activation function, which

output will be chain of spikes, in case the neuron is charged

to the Vref level. The amplitude of Vpulse and the values of

the capacitances impact the time required to make the neuron

fire. If the difference of compared pixels are less than the firing

threshold, the pre-firing time increases.

The following two neuron blocks are responsible for nor-

malization the output spikes for further storage in the SIPO

shift register. First, chain of pulses that neuron produces in

case of firing are converted to DC voltage. Next, this signal is

normalized to Vdd amplitude and fetched to SIPO shift register

shown in Fig. 5. SIPO shift register performs the storage

functionality to preserve the complete mask for implementing

mean operation and consists of 9 flip-flops. The neuron output

Vn is fetched to the first flip-flop. The output of the flip-flop

is plays the role of input signal to the subsequent flip-flop

to ensure the shift register functionality. The outputs of all

flip-flips are read at the same time when the last flip-flip

is activated. The output of each flip-flop is then fetched to

control the corresponding switch in the averaging circuit in

Fig. 5 and the mean of activated pixel branches are calculated.

The simulation of the proposed filter design was conducted in

Spice. Configuration of the proposed filter circuit is provided

in Table I.

TABLE I
CIRCUIT CONFIGURATION

NMOS, W/L (µm) 0.36/0.18

PMOS, W/L (µm) 0.72/0.18

V + /V − 3V/-3V

Vdd 1V

Vref 1.12V

Vc/Vth 0.6/0.4

Vsine (amplitude, frequency) 3V, 100kHz

clk (amplitude, frequency, duty cycle) 1V, 50Hz,2.5%

C1/C2 (pF) 1200/12000

C3 (µF) 1

C4 (pF) 0.01

R0/R1/R2 (Ω) 1k/10k/100k

IV. RESULTS AND DISCUSSION

A. System level simulation

System level simulation of the proposed filter was verified

in MATLAB using 150 images from Caltech database [11]

and adding Gaussian Noise at different rates(0.02 and 0.04).

To achieve the optimum performance of the filter, simulation

results of denoising the images with proposed method at

different threshold levels were compared with the results of the

conventional Mean filter. The quantitative performance of the

filters was verified by peak signal to noise ratio (PSNR) and

mean square error (MSE). Table II presents the average PSNR

and MSE values for all the simulated images for different

threshold values. The optimum performance of the filter is

achieved at the threshold of θ = 0.3 for both 0.02 and



Fig. 4. Neuron design with four different stages for generating the desired pulse response.

Fig. 5. Storing, control circuit and filter output

0.04 rate of Gaussian noise. Comparing to the conventional

filtering, MSE is reduced by 36.6% and PSNR is increased by

2.5%. This optimum threshold value is used in the hardware

implementation of the proposed neuron-based adaptive G-

neighbor filter. The comparison of the conventional mean filter

and the proposed adaptive mean filter performances is pre-

sented in Fig. 6. The proposed neuron-based G-neighbor filter

implementation outperforms the conventional mean filtering

in terms of the noise reduction and preservation the image

quality.

B. Hardware level simulation

Proposed hardware implementation of adaptive mean fil-

ter exploits polarization property of the neuron reflecting

its learning ability. However, the threshold level of neuron

TABLE II
SIMULATION RESULTS OF ADAPTIVE AND CONVENTIONAL MEAN

FILTERING

Noise rate Threshold
PSNR MSE

Adapative

Mean
Mean

Adaptive

Mean
Mean

0.02
0.2 36.75

36.17
0.0029

0.00430.3 37.47 0.0022
0.4 37.25 0.0025

0.04
0.2 36.05

35.63
0.0040

0.00520.3 36.54 0.0033
0.4 36.39 0.0035

(a) (b) (c)

Fig. 6. Comparison of image filtering results:(a) initial picture, (b) application
of adaptive mean and (c) conventional mean filter

activation was set manually using results of system level

simulations, which gives the ability of differentiating similar

pixels. Nevertheless, design of the filter mimics the model of

human visual cortex neuron, reacting to the chain of pulses fed

as an input information and giving the output in binary values

for building up the mask matrix that denoises the input signal

preserving the information. An example for this is the human

eye that can adapt to the noisy environment still detecting the

edges and recognizing the objects in the image.

The simulation results of the hardware implementation of

the proposed filter are shown in Fig.7 and Fig.8. Fig.7 (a)

illustrates the exemplar inputs to the filter. Signal denoted as

px0 refers to the value of the central pixel, while second input

signal of pxN amplitude corresponding N-th pixel within the



(a)

(b)

(c)

(d)

Fig. 7. Time diagram of (a) differential amplifier inputs (b) and corresponding
neuron output signals, (c) clock signal and (d) output of averaging circuit

window. Series output of the neuron for given example input

signals is shown in Fig.7 (b) while the activation of flip flops

is presented in Fig.8. Mean value (Fig. 7 (d)) of similar pixels

within the window can be retrieved from the averaging circuit

after the clock signal (Fig. 7 (c)) activates final flip-flop of the

shift register. The reading time, when the mean filter output is

activated corresponds to the time period from about 168 ms

till 180 ms in Fig.7 and Fig.8.

C. Discussion

Presented neuron based filter with the mask size of 3x3

can be incorporated into CMOS image sensor architecture.

Since the proposed filter design requires windowing oper-

ation, it is necessary to add two more wire lines to the

pixel matrix which brings overall complexity to the circuit

design consuming area and power. Nevertheless, embedding

the analog filters would be more effective compared to the

Fig. 8. Time diagram of Flip flop states of shift register

TABLE III
POWER DISSIPATION

Pre-neuron part

Difference amplifier 508.9 mW

VCO ≈ 19.1 uW

Neuron part

Neuron 175 uW

Comparator 20 uW

ADC 1.6 fW

Thresholding circuit 38 pW

Mask storage and filtering

Shift register 200 pW

designs with a separate co-processing unit. During the system

level simulation of proposed filter, its comparison with the

Mean filter performance was presented. But comparing it to the

existing hardware mean filter designs, the power consumption

of existing architecture presented in [12] is less, which is about

of 55.3uA current consumption. While proposed method is

based on more complex algorithm inspired from the biological

neuron functionality, incorporating several computing blocks

to the design which causes more power dissipation. Table III

presents the power calculations for each hardware block of

the filter. The simulation results show that the rate of power

consumption is high only at the stage of defining the similarity

of the pixels that relies on differential amplifier requiring

508mW, while the rest of the circuit consume about 220uW

overall. One of the ways to address this problem would be to

use low power amplifiers.

V. CONCLUSION

In summary, we presented the design of neuron based

adaptive window for image denoising purposes and demon-

strated its functionality through simulations on hardware and

system levels. The proposed method was verified using Caltech

database images and compared to conventional method of

noise removing mean filter. It was shown that the neuron can

be used for comparison of pixels and serve to build a mask



for denoising as well as preserving the information throughout

the signal. Hence, incorporation of neuron’s behaviour to the

architecture of image processing units can further result in self

learning systems that can provide better performing results in

separating signals from noise.
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