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Abstract— Convolutional neural networks have become an 
essential element of spatial deep learning systems. In the 
prevailing architecture, the convolution operation is performed 
with Fast Fourier Transforms (FFT) electronically in GPUs. The 
parallelism of GPUs provides an efficiency over CPUs, however 
both approaches being electronic are bound by the speed and 
power limits of the interconnect delay inside the circuits. Here we 
present a silicon photonics based architecture for convolutional 
neural networks that harnesses the phase property of light to 
perform FFTs efficiently. Our all-optical FFT is based on nested 
Mach-Zender Interferometers, directional couplers, and phase 
shifters, with backend electro-optic modulators for sampling. The 
FFT delay depends only on the propagation delay of the optical 
signal through the silicon photonics structures. Designing and 
analyzing the performance of a convolutional neural network 
deployed with our on-chip optical FFT, we find dramatic 
improvements by up to 104 when compared to state-of-the-art 
GPUs when exploring a compounded figure-of-merit given by 
power per convolution over area. At a high level, this performance 
is enabled by mapping the desired mathematical function, an FFT, 
synergistically onto hardware, in this case optical delay 
interferometers. 
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I. INTRODUCTION 

One singular attribute of the electromagnetic wave is its 
ability to perform addition and subtraction as it propagates.  
These arithmetic operations, commonly known as wave 
interference, are the basis of holography, phased array 
antennas, and interferometric microscopy. The only energy 
consumed by these arithmetic operations is the loss incurred by 
the propagation of the wave. One of the earliest uses for optics 
in computing was frequency domain filtering with Fourier 
optics. In these systems, a lens is used to convert an image into 
the frequency domain where filtering can occur with the result 
being converted back into the spatial domain with a second 
lens. Operating on the full image, these systems are highly 
parallel but also bulky. The idea of using optical interference 
for the Fast Fourier Transform (FFT) was first introduced by 
Marhic [1]. In this Optical FFT (OFFT) system, star couplers 
are used to perform addition and subtraction and length 
differences are used to rotate phase. Advances in on-chip 
photonics as well as simplifications of the waveguide layout 

[2]-[4] have led to realizable OFFTs in Silicon-On-Insulator 
(SOI) technology. While the most immediate application for the 
OFFT is in high bandwidth communications where frequency 
domain representation can break a large bandwidth into many 
sub-bands for Orthogonal Frequency Division Multiplexing 
(OFDM), a more recent application for frequency domain 
representation is found in Convolutional Neural Networks 
(CNNs). 

A CNN is neural network where instead of fully connecting 
each input to each output with weights, convolutional filtering 
connects the network in a spatially local manner [5]. This 
convolutional filtering is normally performed by Graphics 
Processing Units (GPUs). The GPUs convert the input data to 
the frequency domain with a forward FFT where it is multiplied 
by a kernel and then converted back into the spatial domain 
with an inverse FFT. By using an OFFTs for convolution 
instead GPUs, a system can be built to take advantage of the 
energy efficient arithmetic of wave interference to perform the 
convolutions of the CNN (Fig. 1). 

 

 
Fig. 1. Block diagram of the on-chip OFFT showing the data flow from the 
processor to the amplitude and phase Digital to Analog Converters (DACs) (a), 
being modulated onto an optical carrier (b) flowing through the phase calibrated 
OFFT network (c) and being converted back into the digital domain (d) with 
sampling Analog to Digital Converters (ADCs) and optional sampling 
modulators. 



 

 

II. THE OPTICAL COOLEY-TUKEY FFT 

The OFFT is built on three passive components: the 2 x 2 
coupler is used for addition and subtraction, waveguides with 
short path differences are used for phase rotation, and 
waveguides with long path differences are used for signal delay 
[1], [2]. While in principal an OFFT network could be created 
with perfect phase alignment at a specific temperature, in 
practice active phase calibration is required to compensate for 
fabrication and temperature variance. This phase calibration is 
normally accomplished with heating elements placed along one 
of the waveguide paths of each waveguide pair. 

The Cooley-Tukey FFT requires two operations: addition 
and multiplication by a phase. The 2 x 2 optical coupler forms 
the principal addition equation of the OFFT, Eq. 1. 

𝛽ଵ =
1

√2
(−𝛼ଵ + 𝛼ଶ) 

𝛽ଶ =
1

√2
(𝛼ଵ + 𝛼ଶ) (1) 

Where 𝛽ଵ  and 𝛽ଶ  are the outputs and 𝛼ଵ  and 𝛼ଶ  are the 
outputs of the 2 x 2 coupler. The phase multiplication required 
by the Cooley-Tukey FFT can be implemented optically by 
phase difference, Eq. 2. 

𝜖௫௬ = 𝑒𝑥𝑝(−𝑖2𝜋𝑥𝑦/𝑁) (2) 

With these two components, the butterfly pattern (Fig. 2) of 
the Cooley-Tukey FFT can be built using only passive optics. 

 
Fig. 2. The 4 x 4 butterfly pattern of the Cooley-Tukey OFFT is composed of a 
set of passive optical on-chip components in SOI technology. 2 x 2 optical 
couplers provide addition and subtraction while a small path-length difference 
in one of the waveguide branches provides the reciprocal root-of-unity change 
in phase. 

III. OPTICAL FFT AND SOI FABRICATION 

The OFFT in silicon photonics becomes a network of delay 
waveguides, Y-branches, Mach Zehnder Interferometers 
(MZIs), and heater-calibrated phase delay waveguide segments 
(Fig. 3). Delay is implemented with spiral delay stages. The 
spirals scale in area proportional to their length. The length of 
the first spiral is the greatest and they diminish in length with 
(1/2)௞, where k is the stage index. There are 𝑙𝑜𝑔ଶ(𝑁) delay 
stages each with 2௞ spirals. Even though the number of spirals 
doubles with each stage, the area stays constant due to the spiral 
length halving with each stage. Thus, the area relative to the 
first spiral scales with 𝑙𝑜𝑔ଶ(𝑁) and the first spiral with scales 
with N for a total area scaling of 𝑁𝑙𝑜𝑔ଶ(𝑁). 

 
Fig. 3. An N = 4 OFFT in silicon photonics, layout (a) and microscope image 
(b), shows the area budget being dominated by spiral delay waveguide stages. 
Physical area of the optical delay required in the serial architecture limits the 
scaling performance of the OFFT to small N. 

The second most significant scaling factor in the OFFT is 
found in the increasing optical losses from the growing number 
of branches and waveguide delay lengths at high N. The optical 
power at each output must be at least enough to meet the noise 
requirements for the number of bits at the detector. At high N 
the optical loss becomes dominated by the Nlogଶ 𝑁 scaling of 
spiral length. 

IV. 2D OPTICAL FFT 

Unlike OFDM, convolution works with spatial data and 
hence requires the 2D FFT. The M x N 2D FFT can be 
composed from row and column operations of M length N FFTs 
plus N length M FFTs. For a square matrix this becomes 2N 
FFTs of length N. In the OFFT there is a choice between 
implementing a large 2D FFT network directly or implementing 
a smaller 1D FFT in the complex domain and using it 
repeatedly in time for each row and column operation [6]. 
While complex OFFTs have not been directly discussed in 
literature, Eq. 1 and Eq. 2 hold for complex signals. To generate 
a complex OFFT an additional reference signal path must be 
mixed with the output prior to digitization to determine both 
phase and amplitude, just as in an optical heterodyne quadrature 
phased shift keying (QPSK) receiver. Alternatively, the phase 
can be measured by phase-difference as in an optical 
differential phased shift keying (DPSK) receiver. In the phase-
difference method, two cycles of the OFFT are required. The 
first cycle sends a known signal through the OFFT network and 
measure the real and imaginary part at the output. The second 
cycle sends the actual signal through the network and measures 
the real and imaginary part of the signal relative to the 
calibration signal. In either the heterodyne or the differential 
case, the complex and real measurements can be split into two 
separate cycles of the OFFT to conserve ADCs. In the two-
cycle approach, the unmodified signal is fed through the OFFT 
and the real part of the output is measured. Next, the signal 
multiplied by i, is fed through the OFFT and the real part is 
measured. The first cycle measures the real part of the result 
and the second measures the complex part. 

Having both the real and imaginary part of the FFT at the 
output allows the OFFT to be reused in multiple cycles to 

(a) (b) 



 

 

generate the 2D FFT required for convolutional neural 
networks. Additionally, the 1D Cooley-Tukey algorithm can be 
divided over multiple cycles due to its recursive nature. This 
allows the size of the OFFT to be scaled appropriately for the 
application, with a trade between the number of ADCs and 
DACs and their operating speed. That is, a large number of 
ADCs and DACs can be replaced by a smaller number 
operating at a higher speed. 

The choice of allocating delay presents another design 
decision. The architecture can be serial, with a single sample 
modulator (Fig. 4(a)) and optical delay, or parallel, with N 
sample modulators (Fig. 4(b)). While the serial case consumes 
less power, with only one DAC, it also has a lower convolution 
rate since only one convolution result can be produced within 
the period of the longest delay path.  

 
Fig. 4. The optical convolution can be run in serial with a single DAC and 
optical delay in the photonic network, (a) or with N parallel DACs and no 
additional delay in the photonic network (b). 

V. POWER CONSUMPTION 

It is apparent that due to the passive nature of the OFFT 
network, the primary power consumer in the small N OFFT is 
found in the conversion between the digital and analog 
domains. If the OFFT were directly connected to an analog 
fully connected neural network or some other analog processor, 
the only power consumed by the OFFT would come from 
optical propagation losses, phase compensation, and the 
coherent optical source. However, todays dominant computer 
architecture is digital, and to be practical, the OFFT 
implementation must interface to the digital domain. The power 
consumption analysis becomes an analysis of digital and analog 
conversions. 

Estimating the power budget for the optical FFT alone, we 
here consider two cases; (i) taking the state-of-the-art foundry 
processes of Silicon photonics [7], and (ii) emerging 
nanophotonics solutions on the other [8], we can bound the 

power budget for the optical portion of the on-chip FFT as 
follows. The only active portion of the FFT is the sampling of 
the output of the FFT transfer function performed by electro-
optic modulators (EOM). Their output is then converted by a 
photodetector (and a possible TIA) and ADCs back into an 
electronic signal. Hence the only active power consumed 
dissipates at the sampling EOMs, the Rx leakage current (if 
present), and the laser source feeding the OFFT, which we 
consider off-chip due to temperature instabilities and 
subsequent thermo-optical impact on the phase sensitive OFFT.  

In contrast, if we assume a nanophotonics solution for the 
on-chip EOM and Rx (case (ii)), but keeping the laser off chip 
as before, the photonic (excluding ADCs, DACs, and 
processor) power consumption for N = 64 OFFT is reduced 
from 146 W to 0.29 W, a reduction of 510 times. The main 
power reduction in nanophotonics is gained at the modulator 
which can required sub 1V power levels improved by  enhanced 
light-matter-interactions [9] and unity-strong index changes 
shown by emerging EO active materials such as transparent 
conductive oxides (TCO) [10] and 2D dimensional materials 
such as Graphene’s sensitive  [11]. However, nanolasers or 
nano-LEDs could be considered on-chip in future 
improvements, which have higher conversion ratios compared 
to bulky sources enabled by their high spontaneous emission 
factors (i.e. high optical pump efficiencies and relative faster 
each of the lasing threshold [12]. In addition, plasmonic-silicon 
hybrid integration schemes have been predicted [13] to deliver 
higher performance for communication compared to either 
electronic, plasmonic, or silicon-photonic solutions alone, since 
the best of both worlds can be harnessed. 

Modeling the power vs performance characteristics of the 
OFFT using the highest speed DAC and ADC found in 
literature today, and comparing against NVIDIA P100 GPU, 
shows up to four orders of magnitude better performance even 
with the high power consumed by the ADCs and DACs. The 
NIVIDIA P100 performs 1.6 TFLOPS during single precision 
1024 length FFT [14]. Assuming the 1D FFT requires 
2𝑁𝑙𝑜𝑔ଶ(𝑁) multiplication operations and 3𝑁𝑙𝑜𝑔ଶ(𝑁) addition 
operations there will be a total of  5𝑁𝑙𝑜𝑔ଶ(𝑁) FLOPS per 1D 
FFT of length N. To generate a 2D FFT with an edge length of 
N from a 1D FFT there will be 2N 1D FFTs of length N for 
each 2D FFT. Each convolution requires one forward FFT, one 
N2 multiplication, and one inverse FFT. Then the number of 
FLOPS to convolutions becomes 20𝑁ଶ𝑙𝑜𝑔ଶ(𝑁) + 𝑁ଶ . With 
the NVIDIA P100 this results in a convolution rate of 7 KHz 
with N = 1024 and 150 KHz with N = 256. 

The highest speed DAC in literature operates at 100 GSa/s 
and consumes 2.5 W [15]. The highest speed ADC available 
today is the Fujitsu CHAIS 56 GSa/s and consumes 2 W per 
channel [16]. Assuming integrated germanium photodetectors 
[17] with a reverse bias of 8 V and 250 µW of optical power, 
the power consumption in each photodiode is approximated as 
2.4 µW.  

Using these assumptions, we modeled both serial and 
parallel implementations of the OFFT convolutional 



 

 

architecture and compared them to the NVIDIA P100 GPU 
(Fig. 5) using a Figure of Merit (FoM) of convolutions s-1 W-1 
m-2. The results of the analysis show that with a small 
convolution size the photonic approach is more efficient than 
the P100. However, the advantage diminishes as the 
convolution scales. This is due to the approximate scaling of the 
FoM with 1/൫𝑁ସ logଶ 𝑁 10(ே ୪୭୥మ ே)/ଵ଴൯ in the serial photonic 
case, 1/(𝑁ସ logଶ 𝑁) , in the parallel photonic case, and 
1/(𝑁ଶ logଶ 𝑁) in the electronic case. The contribution to the 
serial photonic FFT scaling are from 1/(𝑁 logଶ 𝑁) in area, 1/

൫10(ே ୪୭ మ ே)/ଵ଴൯ in optical power,  1/𝑁 in ADC power, 1/𝑁ଶ 
in samples to area. Shortly beyond N = 102 the power efficiency 
of the P100 overtakes the serial photonic approach and near N 
= 104 the P100 passes the parallel OFFT architecture. 

 
Fig. 5. A model of the figure of merit, Convolutions s-1 W-1m-2, vs N shows the 
OFFT architecture outperforming the NVIDIA P100 in for N < 102 in a serial 
configuration and less than N < 104 in parallel configurations. The model 
assumes 20𝑁ଶ𝑙𝑜𝑔ଶ(𝑁) + 𝑁ଶ FLOPS per convolution, ADCs with 56 GSa/s @ 
2 W, and DACs with a max sample rate of 100 GA/s @ 2.5 W. Photonics 
performance assumes IMEC Silicon Photonics ePIXfab optical performance 
spiral with a base optical loss of 0.686 dB, optical modulators with optical loss 
of 3.49 dB, 2x2 couplers with an optical loss of 0.991 dB, optical splitters with 
0.5 dB insertion loss, and optical grating couplers with 4 dB loss. NVIDIA P100 
GPU FLOPS performance taken from NVIDIA datasheet for single precision 
floating point. 

VI. CONCLUSION 

The wave nature of coherent light allows for efficient 
arithmetic operations around the phase-amplitude plane. These 
operations can be harnessed to perform computations, 
including the FFT. The greatest power consumer in this type of 
computer is not in the arithmetic processing, which is almost 
negligible, but rather in the conversion from digital to analog, 
from electronic to photonic, from photonic to electronic, and 
from analog back to digital. Each of these conversions presents 
a significant hurdle to the power consumption of the 
architecture. As Moore’s law reaches an end and future 
computer architectures continue to demand higher efficiencies, 

this mechanism for low-power computing may become an 
important supplement to digital computing.  
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