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The largest cognitive systems will be optoelectronic
Jeffrey M. Shainline

National Institute of Standards and Technology, 325 Broadway, Boulder, CO, 80305

Abstract—Electrons and photons offer complimentary
strengths for information processing. Photons are excellent for
communication, while electrons are superior for computation
and memory. Cognition requires distributed computation to be
communicated across the system for information integration. We
present reasoning from neuroscience, network theory, and device
physics supporting the conjecture that large-scale cognitive
systems will benefit from electronic devices performing synaptic,
dendritic, and neuronal information processing operating in
conjunction with photonic communication. On the chip scale,
integrated dielectric waveguides enable fan-out to thousands of
connections. On the system scale, fiber and free-space optics
can be employed. The largest cognitive systems will be limited
by the distance light can travel during the period of a network
oscillation. We calculate that optoelectronic networks the area
of a large data center (105 m2) will be capable of system-wide
information integration at 1MHz. At frequencies of cortex-wide
integration in the human brain (4Hz, theta band), optoelectronic
systems could integrate information across the surface of the
earth.

I. INTRODUCTION: COGNITIVE SYSTEMS

Intelligent systems are characterized by the ability to incor-
porate a wide variety of stimuli into a coherent concept of
the world [1], [2], [3], [4], [5], [6]. These stimuli generally
encompass many content categories, and dynamically change
across many temporal scales. Neural systems are excellent for
cognition because they combine differentiated, local process-
ing of neuronal assemblies [7], [8] with information integration
[9], [10], [11], [12], [13], [14], [15] across space [16], [17]
and time [1], [2], [3], [4], [7]. Small clusters of neurons code
for certain features present in stimuli, and the neurons in these
assemblies must communicate locally amongst themselves to
form a consensus interpretation of a certain sensory input [5].
This information must be communicated up the information-
processing hierarchy and combined with input from other
neuronal assemblies to form a broad, coherent, and multi-
faceted conception of the available information [4], [5], [6]. In-
formation is integrated locally through transient synchronized
oscillations at high frequencies, and information is integrated
over larger regions of space through transient synchronization
of larger numbers of neurons at lower frequencies [18].
Cognition therefore depends on local computations amongst
neuronal ensembles as well as communication locally and
globally at various frequencies. Larger neural systems will be
capable of more information processing, provided all neurons
represent unique aspects of feature space, and information
from all neurons can be integrated in a coherent cognitive state.
In this work, we are concerned with the large-scale limits of
cognitive systems.

It has been argued that neurons are uniquely suited to
performing the differentiated processing and information in-

tegration across space and time required for cognition (see
discussion in Ref. [19]). Biological neurons perform the nec-
essary information processing and memory operations using
elegant electrochemical devices which grow in a bottom-up
manner. The molecular-scale devices lead to very dense and
compact circuits and systems.

Many of the required neuronal functions can be performed
with manufacturable electronic devices [20], such as transis-
tors [21], memristors [22], [23], magnetic tunnel junctions
[24], magnetic Josephson junctions (JJs) [25], and various
superconducting devices [26], [27], [28], [29]. Such devices
perform the necessary synaptic and neuronal processing which
leads to network computation. By contrast, light is not natu-
rally suited to perform neuronal computations. For example,
neurons must sum the inputs from many connections. To
perform this operation in the optical domain, a neuron would
need to store photons in a cavity for long periods of time.
Yet compact, high-Q optical cavities with storage times longer
than 1 ns are difficult to achieve, particularly when fabricated
in an integrated process.

Biological neurons are excellent for computation, but com-
munication via ionic conduction along axons is slow. This
slow communication limits the total size of the neural system
which can participate in synchronized oscillations at a given
frequency, and therefore limits the total number of neurons
that can be incorporated into a cognitive system [4]. Commu-
nication also poses challenges for semiconductor electronics.
Fan-out in CMOS circuits as well as JJ circuits is limited to
order 10. Light is not equipped for neuronal computations,
but it is ideal for neuronal communication. Electrons and ions
have charge and mass. They interact strongly and can be
made to sit still. These traits lead to the potential for com-
putation and memory. Photons are uncharged and massless.
They do not interact, and they travel at the fastest velocity
in the universe. On the local scale, the lack of interaction
means photons in waveguides do not experience charge-based
parasitics (resistance, capacitance, and inductance). A single
optical pulse can fan out to as many ports as there are
photons in the pulse without incurring an RC penalty due
to additional wiring. On the global scale, communication at
the speed of light enables the largest area of neurons possible
to be incorporated in a transient synchronized oscillation at a
given frequency. By combining the strengths of electrons and
photons, the information from many neurons with complex
processing capabilities can be integrated across large regions
of space to achieve the largest cognitive systems possible,
given the light-speed limit of communication set by special
relativity.

Based on graph theory metrics, we argue that even modestly
sized networks of a few hundred thousand neurons require
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neurons to make a thousand synaptic connections on average.
Already at the scale of networks of a few hundred thousand
neurons, light provides significant advantages in communica-
tion. For large-scale systems comparable to the human brain,
the advantages are more important. By considering the fun-
damental limit imposed by the light cone in conjunction with
an estimate for artificial synapse area, we estimate the total
number of synapses which can participate in a synchronized
transient neuronal ensemble. We find that systems with ten
billion times the number of synapses as a human brain may be
possible. At these enormous scales, system power consumption
is likely to be dominated by the production of light, so
signaling with the fewest number of photons possible will
reduce power density and total system power consumption.
We argue that superconducting optoelectronic circuits are ad-
vantageous for enabling massive scaling with tractable power
consumption. We close with speculation regarding the limits
of cognitive systems using light for communication.

II. DIFFERENTIATED PROCESSING: NEURONAL
ASSEMBLIES

Neural systems represent information in the firing rate and
relative timing of neurons. A given neuron can represent a
limited subset of all possible stimuli, and clusters of neurons
form transient assemblies that temporarily synchronize to form
a consensus interpretation of a given input. The information
from many assemblies must be communicated up the cognitive
hierarchy in a bottom-up manner, and feedback must also
be provided from higher cognitive centers to local neuronal
ensembles in a top-down manner to provide information
transfer across the system. For communication to be efficient
across the network, each node must be able to send and receive
information to and from many other nodes. In the language
of network theory [30], communication will be efficient if the
average path length [31] of the network is short. The average
path length is determined by calculating the smallest number
of steps from each node of the graph to every other node,
and averaging this quantity over all pairs of nodes. In order
to represent large quantities of information, we would like a
network with as many neurons as possible, and for efficient
integration of the information throughout the network, we need
short path length. We therefore wish to investigate path length
in networks which are useful for cognition.

To identify networks useful for cognition, we need to
analyze connectivity. An important network metric related to
connectivity is the degree distribution. The degree of a node
refers to the number of connections (synapses) it forms with
other nodes in the network. The degree distribution refers to
the statistical distribution of the degrees of all the nodes in
the network. We consider two degree distributions that are
pertinent to information processing in neural systems. A ran-
dom network [30] is characterized by a Gaussian degree dis-
tribution, and a scale-free network [32], [33] is characterized
by a power-law degree distribution of the form p(k) ∝ k−α,
where p(k)dk is the probability of finding a node with degree
between k and k + δk, and α is a constant, usually between
1 and 3. Random networks, formed by assigning connections
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Fig. 1. General degree analysis. (a) Average degree of a node in the network
as a function of total number of nodes in the network for a random network
for three values of average path length. (b) Average degree of a node in a
network as a function of the total number of nodes in the network for a power-
law degree distribution. (c) Maximum degree of a single node in a network
as a function of the total number of nodes in the network for a power-law
degree distribution.

at random between pairs of nodes, achieve short path lengths
between any two nodes in the network, and are effective at
forming associative memories, as observed in hippocampus
[4]. Scale-free networks arise due to the growth conditions in
many natural contexts [32], and appear to fit the connectivity
of large-scale brain networks [33]. Recent work finds evidence
that degree distributions of neurons in human cortex are fit
well by stretched exponential functions [34]. Here we consider
power-law and Gaussian degree distributions, keeping in mind
that stretched exponentials or other degree distributions may
better model cortex. The general conclusions drawn by this
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analysis are not likely to be affected by the exact form of the
underlying degree distribution.

To investigate the potential for efficient information integra-
tion in neuronal assemblies of various sizes, we investigate the
relation between the number of neurons in the network and
the number of connections made by the neurons for Gaussian
and power-law degree distributions. For the Gaussian degree
distribution of a random network, the average degree of a node
in the network, k̄, is related to the total number of nodes in the
network, Ntot, and the average path length, L̄, by the relation
k̄ = exp{[ln(Ntot)− γ]/L̄+ 1/2} [31], where γ ≈ 0.5772 is
Euler’s constant. This relationship between the total number
of nodes in the network and their degree is shown in Fig. 1(a)
for three values of L̄. From this plot we find that for modest
networks of 100,000 nodes, the average degree must be 400
to ensure an average path length of two, and for a network
of one million nodes, the average degree must be over one
thousand to keep the path length to two. In hippocampus, the
average path length is believed to be less than two [4], and
neurons are observed to have over ten thousand connections.
This extraordinary connectivity appears to be necessary to
enable memory recall (convergence to an attractor [35]) within
a single cycle of gamma oscillation [36]. More generally, large
cognitive systems are likely to make use of modules with
large numbers of neurons with random connectivity to form
associative memories with large storage (like hippocampus),
and these modules are likely to need short path length for
efficient information access within a small number of network
oscillations.

Figure 1(b) presents a similar analysis for the case of the
power-law-distributed network. Here we plot the average de-
gree versus the total number of nodes in the network for three
values of the exponent, α. When viewing Figs. 1(b) and (c),
one should keep in mind that smaller α corresponds to shorter
path length because more high-degree nodes are included in
the network. The node of the network with maximum degree,
kmax, is shown in Fig. 1(c). Again we see that modest network
sizes require very high degree nodes. The message of Fig. 1
is that information integration in cognitive neural systems
requires massive connectivity. This massive connectivity is
necessary to enable rapid information access and integra-
tion across neuronal ensembles embedded within cognitive
modules. Neurons in the brain making tens of thousands of
connections across multiple regions of the thalamocortical
complex with long-range axonal projections are central to
achieving the information integration necessary for cognition
[5]. As we consider the limits of cognition based on physics,
we must consider how to best achieve neurons with massive
connectivity without sacrificing the potential for information
integration in the temporal domain.

III. HARDWARE: ELECTRICAL AND OPTICAL SYSTEMS

The connectivity requirements of neurons have been widely
appreciated for quite some time, and the majority of neu-
romorphic engineers working with CMOS systems decide
not to design neurons with such a large number of direct
connections. Direct wiring would introduce large capacitance

and resistance, which would slow response times and require
too much current and power. Instead, virtual connections are
achieved by assigning addresses to neurons, and shared com-
munication lines route synaptic events between neurons based
on addresses in a synaptic routing table. When multiple events
request access to the shared communication lines, the events
are queued, and latency related to the number of neurons on
the bus and their firing frequencies is introduced. Communi-
cation over shared lines is referred to as time multiplexing,
and it is a common and powerful technique with CMOS
hardware across multiple computing domains. The speed of
semiconductor devices mitigates limitations in connectivity
[37].

Time multiplexing signals with address-event representation
has achieved some of the most impressive neuromorphic
systems to date [21], [38], [39], [40], [41]. The functionality of
CMOS systems enables reconfigurable networks with various
forms of synaptic plasticity and dendritic processing, illustrat-
ing the fitness of electronics for performing neuronal com-
putations. Yet the challenges inherent in communicating with
electrons are evident in neuromorphic CMOS. The necessity
of shared communication lines and routing nodes introduces a
constraint on the number of neurons participating in a synchro-
nized ensemble and the oscillation frequency of that ensemble.
In silicon microelectronics, time-multiplexed communication
lines are necessary between nodes above a certain degree due
to the immutable physical properties of electrons. The high
speed of CMOS devices enables impressive neuromorphic
systems despite communication bottlenecks. Yet we should
not let the excellence of CMOS deter us from considering
physical systems even more equipped for cognition.

Neurons in a physical system without charge-based par-
asitics can achieve direct fan-out to thousands of synaptic
connections, avoiding the need for time-multiplexing neces-
sitated by shared communication lines. By using photons
rather than electrons for communication across multi-planar
routing structures [42], [43], 10-to-100 routing manifolds have
been demonstrated [44], and direct fan-out to thousands of
connections appears straightforward. By utilizing optical fibers
and free-space links in addition to on-chip routing networks,
signaling across large-scale, multi-modular cognitive systems
may be achieved.

Communication appears promising in emerging integrated-
photonic systems [45], [46], but inevitably, new challenges
are introduced. First, light sources are inefficient, and it is
not worth the energy cost to produce light if only a small
number of connections will be addressed. Second, using light
for communication requires hardware with light sources and
detectors integrated with the electronic neuronal components.
The challenge of constructing this hardware is the most signif-
icant near-term hurdle to overcome on the route to large-scale
optoelectronic cognitive systems. Third, the relatively large
wavelength of light makes optical components generally larger
than electronic components (and far larger than biological
neuronal components). Models of optical neurons indicate they
may be roughly the same size as CMOS neurons [21], [47],
and as we argue below, the factor determining the scaling
potential of a cognitive system scales as the velocity of
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communication divided by the size of a neuron or synapse.
It appears light speed communication more than compensates
for the increase in device size of optical neurons relative
to biological neurons. The large wavelength of light is an
inconvenience, but it does not appear to negate the strengths
of light for communication in large-scale cognitive systems.
As optoelectronic hardware matures, the progress made to
overcome these challenges will determine the scale at which
light for communication becomes advantageous.

In addition to spatial and graph metrics, there are many
considerations at the level of devices, circuits, and architecture
that are necessary to assess utility. Neuronal devices and
circuits must achieve excitatory and inhibitory connections
with dendritic processing to maximize utilization of the fre-
quency domain. For very large neural systems, unsupervised
learning is required for scalability, so a variety of synaptic
plasticity mechanisms are required to enable memory retention
and learning in the presence of dynamically varying stimuli.
Networks and systems must achieve small-world graph metrics
and information processing across interconnected modules to
enable efficient exchange between sub-processors. Optoelec-
tronic neurons and networks designed with these criteria in
mind have been presented in Refs. [19], [27], [28], [29], [47].
While significant further investigation of the requirements on
neurons and network architectures for cognition is required,
the present work proceeds assuming that electronic circuits
(either semiconducting or superconducting) can achieve a wide
variety of necessary device functions, and optical networks
can achieve arbitrary connectivity graphs. Future knowledge
regarding the requirements for cognition are likely to lead to
modifications of circuit and system designs, but the conjecture
that electronic circuits will remain capable of performing
neuronal and synaptic functions while photonic networks will
remain capable of performing communication is likely to hold.

IV. INFORMATION INTEGRATION: THE NEURONAL POOL

We have argued that electronics are excellent for performing
the synaptic, dendritic, and neuronal operations required by
cognitive systems, and also that light is advantageous for
enabling direct fan-out to thousands of connections, thereby
circumventing the trade-offs introduced by shared electronic
communication lines. The advantage in communication at the
chip scale results from the absence of charge-based parasitics,
but for communication across large scales (across a wafer,
between wafers in a module, or between multi-wafer modules
in a massive cognitive system), the speed of light plays a
central role in facilitating the highest performance neuronal
operation.

As discussed in Sec. I, neural systems integrate information
through transient synchronized oscillations across a multitude
of spatial and temporal scales. To anticipate very large cogni-
tive systems, we consider the number of neurons and synapses
that can be integrated in a transient synchronized oscillation
at a given frequency. We refer to an ensemble of neurons
capable of synchronizing as the neuronal pool. Consider two
neurons, each of width w, separated by a distance d, as shown
in Fig. 2. If n1 produces a spike at time t0, and n2 produces

n
1

n
2

d
w

Fig. 2. Schematic of two neurons of width w separated by distance d
considered in the calculation of the number of neurons in the neuronal pool.

a spike at t0 + ∆t, we ask whether the spike produced by
n1 may have contributed to the spike produced by n2, and
therefore whether n1 is capable of inducing n2 to synchronize
within a single period of the oscillation cycle. If the neurons
communicate with signals propagating at velocity v, the pulse
from n1 will have traveled a distance x = v∆t by the time n2
spikes. For the case of synchronized oscillations at frequency
f , the oscillation period T = 1/f sets the time scale. We find
that if

d ≤ v

f
, (1)

n1 may induce n2 to spike within a single period of oscillation.
We take the value of d which saturates the inequality of Eq.
1 to define the maximum diameter of the neuronal pool.

One may argue that to establish synchronization, n1 must
induce n2 to spike, and this spike from n2 must also propagate
to n1, causing n1 to spike again during the next period of the
oscillation cycle. This model would decrease d by a factor of
two. One may also argue that n1 could produce a spike train at
frequency f , and this spike train could induce n2 to produce a
spike train of the same frequency at a later time, independent
of their spatial separation. In the context of cognitive pro-
cessing, the delayed pulse train from n2 is not conducive to
efficient information integration if it is delayed beyond a single
oscillation period. Much like networks with short path length
are necessary for efficient information integration across space,
signaling with delay shorter than a single period of oscillation
is necessary for information integration across time. For this
reason, we consider the diameter of the neuronal pool to be set
by the distance signals can propagate within a single period
of oscillation.

It is not the diameter of the neuronal pool that is of primary
interest, but rather the number of neurons (or synapses) that
can integrate information within the pool. To estimate this
quantity, we must account for the size of a neuron, labeled w
in Fig. 2. The number of neurons in the pool, Npool, is given
by the size of the pool divided by the size of a neuron. In n
dimensions we have

Npool =

(
v

wf

)n
. (2)

Note that when we refer to the neuronal pool, we do not refer
to the number of neurons which are synchronized at a given
moment, which is a quantity that depends on the network
graph and dynamical state. In this calculation, we refer to
the total number of neurons that could potentially synchronize
based on the reach of communication.
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Fig. 3. Row-column routing architecture in 5 × 5 sector. All-to-all connec-
tions.

Let us check the validity of Eq. 2 with numbers from the
human brain. Cortex in mammals is a two-dimensional sheet.
When removed from the skull, it can be unfurled flat on a
surface. Therefore, we model signals propagating within a
plane, and take n = 2 for this analysis, although it may be
possible to construct artificial cognitive systems fully utilizing
three spatial dimensions. The area of the human cerebral cortex
is 0.095 m2 [48], and it contains 1.6×1010 neurons [49], [50],
giving w = 2.4×10−6 m. Signal velocity along axons in cortex
is 2 m/s [51], and theta oscillations (4 Hz-8 Hz) are believed to
play a key role in integrating information across cortex. Using
v = 2 m/s, w = 2.4 × 10−6, and f = 6 Hz in Eq. 2, we find
Npool = 1.9× 1010 neurons, very close to the reported value
of 1.6×1010 neurons [49], [50] in the human cerebral cortex.

To assess the performance of a neural system using light for
communication, we must estimate the size of optoelectronic
neurons. Such a spatial estimate requires an assessment of the
size of the neurons themselves as well as the space occupied
by routing waveguides, analogous to white matter in the brain.
This analysis is conducted in Ref. [47]. A schematic of the
proposed routing architecture is shown in Fig. 3. This routing
schematic leverages multiple planes of integrated photonic

Fig. 4. Row-column routing architecture in 5 × 5 sector. The out-directed
connections from a single node are highlighted.

waveguides [42], [43], [44] to achieve all-to-all connectivity,
and networks in practice can be constructed by pruning the all-
to-all master routing scheme. The connections emanating from
a single node are highlighted for clarity in Fig. 4. Based on
this routing and analysis of the area required for synaptic and
neuronal circuits [27], [28], [29], [47], we calculate the area
of a neuron as a function of its degree, as shown in Fig. 5(a).
Assuming a power-law degree distribution, we calculate the
total area of the network, as shown in Fig. 5(b). We find a
network with one million neurons and two hundred million
synapses will fit on a 300 mm wafer. Further details are
included in Ref. [47].

To compare two hardware platforms, we consider spatial
scaling in terms of the size of a synapse rather than a neuron.
Neurons many have any number of synapses, and therefore
may span a wide range of sizes, whereas the size of synapses
will depend less on the degree of the neuron to which they are
connected. In particular, we wish to compare neurons leverag-
ing photonic communication to the human brain. Denoting the
photonic and biological hardware platforms with superscripts,
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we find
N

(p)
pool

N
(b)
pool

=

(
v(p)w(b)

w(p)v(b)

)2

. (3)

To be concrete, we consider the size of superconducting
optoelectronic neurons, as described in Ref. [47]. A 300 mm
wafer can support roughly 2.0×108 superconducting optoelec-
tronic synapses, giving an estimate of w(p) = 1.9 × 10−5 m.
Here w refers to the size of a synapse, not a neuron, as
discussed above. If we assume each of the 1.6×1010 neurons
in the human cerebral cortex has 104 synapses [52], we
find w(b) = 2.4 × 10−8 m. A biological synapse is 1000
times smaller than a superconducting optoelectronic synapse in
width, and a million times smaller in area. The speed of signals
in cortex is roughly 2 m/s [51]. Axons with larger diameter can

propagate signals above 100 m/s, but for the dense connectivity
of cortex, such large fibers cannot be supported. The speed
of light is 3 × 108 m/s [53]. Thus, comparing superconduct-
ing optoelectronic networks to biological networks, we find
N

(p)
p /N

(b)
p ≈ 1010. The neuronal pool enabled by light-speed

communication can contain ten billion times the number of
synapses as the pool enabled by ionic signal propagation along
biological axons. Signaling at the speed of light brings a
tremendous advantage in this regard, an advantage made more
significant in networks spanning a volume rather than an area.
This simple scaling analysis does not take into account factors
that may be significant for very large systems, such as volume
required for liquid helium flow for cooling or the volume
of white matter occupied by optical fibers carrying signals
between large modules. Suppose these factors introduce a
quadratic error, and the correct scaling is the square root of
the 1010 estimate. We would still be considering a system
with 105 times the number of synapses as the human brain,
and orders of magnitude faster network oscillations.

We can calculate the area of the neuronal pool as a function
of the frequency of oscillations, as shown in Fig. 5(c). We find
that oscillations at 1 MHz can integrate information across an
area of 105 m, roughly the size of a large data center. For the
optoelectronic hardware considered in Refs. [19], [27], [28],
[29], [47], oscillation frequencies above tens of megahertz
will be attainable, and therefore such systems could integrate
information from across a system the size of a data center
into a coherent cognitive state within 1 µs. If system-wide
oscillations occurred at the same frequencies as the human
brain (theta band, 4 Hz - 8 Hz), the network could be as large
as the earth, integrating the information within local regions
of 105 m2 every microsecond, and integrating the information
from thousands of these regions several times per second.

On the small scale of a chip, photonic communication
enables dense local clusters of optoelectronic neurons by
direct signal fan-out. On the large scale of multi-modular sys-
tems, photonic communication enables information integration
across massive cognitive systems by communicating at the
fastest velocity in the universe. The strengths of electronics
for computation and photonics for communication indicate that
the largest cognitive systems will be optoelectronic.

V. POWER: AS FEW PHOTONS AS POSSIBLE

Once optical communication is employed, communication
velocity is not likely to be the factor which limits network size
in the near term, as it appears to be for biological systems.
When we are discussing networks as big as data centers,
power consumption becomes the center of attention. Assuming
communication requires creation and destruction of a photon,
it is not possible to send optical signals with less energy
than a single photon. We therefore conjecture that neurons
communicating to their synaptic connections with order one
photon will achieve the highest energy efficiency.

One must consider which frequency of photons are best
suited for this application. Because the energy of a photon
and its wavelength are inversely proportional, optoelectronic
circuits face a power/area trade-off. It may be possible to de-
velop circuits based on microwave photons to achieve extreme
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energy efficiency. However, for integrated circuits, the long
wavelength of microwave photons may make dense integration
of highly connected chip- and wafer-scale networks difficult.
Alternatively, ultraviolet photons could be employed to reduce
the device footprint. In this case, materials are less conducive
to integrated fabrication, and photon production requires an
undesirable amount of energy. At present, it appears that near-
infrared photons (λ ≈ 1.5 µm) strike a balance between size
and energy efficiency. Additionally, based on the ubiquity
of near-infrared light sources (including silicon-based [54],
[55]); the integrability [56] and performance [57] of near-
infrared single-photon detectors; and the abundance of passive
waveguiding media (including optical fibers), this wavelength
range appears uniquely suited to achieve the highly scaled
optoelectronic systems under consideration.

Superconducting single-photon detectors [58], [59], [60],
[57] will perform well receiving communication events be-
tween neurons. The use of superconductors in large-scale
cognitive systems contributes to energy efficiency by enabling
single-photon communication and also because the supercon-
ducting circuits draw near zero power when not responding
to a detection event. Further, using single-photon detectors
in conjunction with other superconducting electronic circuit
elements, such as Josephson junctions [61], [62], [63] and
thin-film amplifiers [64], [65], [66], combines the strengths
of photons for communication with electronic devices for
computation and memory. Superconducting optoelectronic cir-
cuits achieving the desired synaptic and neuronal functions
have been designed in Refs. [27], [28], [29]. Future designs
achieving communication without photon annihilation, or neu-
rons leveraging concepts of reversible computing may achieve
further energy efficiency.

As we have argued, neurons with many long-range connec-
tions are important for information integration across a cogni-
tive system. In the context of an optoelectronic hardware plat-
form, consider a massive node with 106 synaptic connections
spanning multiple regions of the network. Suppose 10 photons
per firing event must be sent to each synapse to overcome loss
and noise. A pulse of 107 photons consumes a picojoule at
λ = 1.5 µm. Even with a poor photon production efficiency
of 10−3, this massive, long-range neuron could synchronize
vast neuronal ensembles across multiple processing areas at
1 MHz with with 1 mW of device power. This large node
would address an order of magnitude more synapses than the
largest long-range neurons in the human brain.

The use of superconductors contributes to energy efficiency
by enabling communication with single photons, but super-
conductors require cryogenic operation, which is inefficient.
Is there a net gain in energy efficiency? For large systems, the
answer is likely yes. To operate at liquid helium temperature,
4.2 K, approximately one kilowatt of cooling power is required
for each watt of device power. Cryogenic operation of sources
can gain two orders of magnitude in efficiency [67]. Similarly,
low-temperature waveguide-integrated superconducting detec-
tors efficiently receive single photons, while room-temperature
waveguide-integrated, scalable semiconductor photodetectors
may require one thousand photons or more. While cryogenic
operation costs three orders of magnitude due to power re-

quired for cooling, the combined improvements in sources
and detectors may gain five orders of magnitude in power
consumed by devices. Noise will also be much higher at
room temperature when faint photonic signals are employed.
Additionally, the extraordinarily low energy per operation of
Josephson electronics leads to synaptic and dendritic compu-
tations with extremely low power. Calculations of a network
of one million neurons in operation with oscillations up
to 20 MHz indicate the network will consume 1 W, with a
power density of 10 W/m2 [47]. Considering spatial scaling in
conjunction with power scaling, we find this value of 10 W/m2

is roughly constant for networks across a wide range of spatial
scales. The heat from these networks can be straightforwardly
removed with liquid helium [68], indicating cooling will not
be a fundamental impediment when scaling to large cognitive
systems.

While the arguments related to communication and energy
efficiency lead us to conjecture that superconducting optoelec-
tronic networks will be uniquely suited to achieving large-scale
cognitive systems, we emphasize that room-temperature neural
systems will also benefit from the strengths of optoelectronic
integration. Operation by humanoid organisms in an earth-
like environment necessitates that at least some portion of the
system operate in an ambient environment. The advantages of
using light for communication across cognitive systems lead us
to anticipate hybrid cognitive systems with high-speed, high-
efficiency cognition occurring in cryogenic modules, and in-
formation integration to room temperature with optical signals
over fiber. The advantages of light for communication will be
paramount for enabling high-bandwidth, low-latency signaling
between modules in a massive cognitive system, spanning
cryogenic and ambient environments.

VI. SCALING: COGNITION ACROSS THE SOLAR SYSTEM?

How large can optoelectronic cognitive systems be? As we
see in Fig. 5(c), networks as large as the earth can communi-
cate with oscillations near 1 Hz. Earth is the most valuable
environment in the solar system to humans because of its
magnetic field, atmosphere, and temperature. These attributes
make the earth hospitable to humans, but are not necessary
for optoelectronic cognitive systems. Extraterrestrial objects
are naturally suited to support these systems. In particular,
asteroids are abundant, sufficiently large, colder, and composed
of the necessary silicates and superconductors to constitute the
large-scale optoelectronic systems under consideration [69],
[70], [71], [72], [73]. Information could be integrated across
an asteroid with diameter of 60 km [74] through transient
synchronized oscillations at 1 kHz.

It appears possible for an asteroid belt to form the nodes
and light to form the edges of a solar-system-scale intelligent
network. Would this turn the entire solar system into a single
cognitive module? Probably not. Asteroids can be separated by
billions of meters, so light-speed communication delays may
be several seconds or longer. For cognitive systems oscillating
from 1 kHz to 20 MHz, such delays would cause individual
modules to operate as separate cognitive units. Light-speed
communication between these modules would be analogous
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to spoken words between humans, and the asteroid belt would
form a community of cognitive entities.

What types of computations might these systems con-
duct? Allow us to speculate. Superconducting technologies
are capable of digital logic [75], [76], [77] and quantum
computing [78]. Quantum state behavior is fundamentally
probabilistic, and neural systems are optimized for statistical
inference [79], [80], [81]. Cognitive neural systems coupled to
quantum systems may engage in computation that leverages
quantum superposition and entanglement without necessitating
high-fidelity gates, long qubit lifetimes, or error correction.
Superconducting optoelectronic hardware may enable this type
of computation, with data sent to and from the cryogenic envi-
ronment over optical fibers, quite likely received in the ambient
environment by optoelectronic CMOS, perhaps augmented
by distributed memory and nanoscale dynamical elements
[24]. Further, superconducting sensors [82], [83], including
single-photon detectors, are excellent for detection of radiation
of many types at many energies. Systems leveraging these
sensors are presently used in exoplanet search [84], [85], [86],
cosmology [87], and particle detectors [88]. Cognitive systems
working in conjunction with a variety of superconducting
sensors have the potential to observe the universe across
large scales of space and time. A cognitive system receiving
stimulus from many other solar systems and galaxies reaching
to the edge of the observable universe and computing with
classical, quantum, and neural information may have insights
into the origin and evolution of nature beyond what we can
currently conceive.

VII. SUMMARY: PHOTONS AND ELECTRONS FOR
COGNITION

From neuroscience we know that a variety of neuronal
processors and assemblies send information up the cognitive
hierarchy, while neurons and systems of neurons at higher-
levels of hierarchy send feedback across the network to close
processing loops and inform local clusters of the consensus
being established by the entire cognitive system. Large neurons
with massive connectivity are crucial for network information
integration, and for the fastest convergence to a network
consensus, neurons across large regions must be able to drive
each other to fire within the period of a network cycle to
efficiently share information across space and time. Electronic
circuits are excellent for local, synaptic, dendritic, and neu-
ronal processing. Photonic circuits are excellent for dense,
local connectivity, as well as long-range communication.
These arguments lead to the conjecture that tremendous gains
in cognition will be enabled by advances in optoelectronic
hardware.

This is a contribution of NIST, an agency of the US
government, not subject to copyright.
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