
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

 A New Paradigm for Fault-Tolerant Computing with
Interconnect Crosstalks

Naveen Kumar Macha1*, Bhavana Tejaswini Repalle1, Sandeep Geedipally1, Rafael Rios2, Mostafizur Rahman1#
E-mail: nmhw9@mail.umkc.edu1*, rahmanmo@umkc.edu1#

Abstract— The CMOS integrated chips at advanced

technology nodes are becoming more vulnerable to various

sources of faults like manufacturing imprecisions, variations,

aging, etc. Additionally, the intentional fault attacks (e.g., high

power microwave, cybersecurity threats, etc.) and environmental

effects (i.e., radiation) also pose reliability threats to integrated

circuits. Though the traditional hardware redundancy-based

techniques like Triple Modular Redundancy (TMR), Quadded

(QL) Logic etc. mitigate the risk to some extent, they add huge

hardware overhead and are not very effective. Truly polymorphic

circuits that are inherently capable of achieving multiple

functionalities in a limited footprint could enhance the fault-

resilience/recovery of the circuits with limited overhead. We

demonstrate a novel crosstalk logic based polymorphic circuit

approach to achieve compact and efficient fault resilient circuits.

We show a range of polymorphic primitive gates and their usage

in a functional unit. The functional unit is a single arithmetic

circuit that is capable of delivering

Multiplication/Sorting/Addition output depending on the control

inputs. Using such polymorphic computing units in an ALU would

imply that a correct path for functional output is possible even

when 2/3rd of the ALU is damaged. Our comparison results with

respect to existing polymorphic techniques and CMOS reveal 28%

and 62% reduction in transistor count respectively for the same

functionalities. In conjunction with fault detection algorithms, the

proposed polymorphic circuit concept can be transformative for

fault tolerant circuit design directions with minimum overhead.

Keywords—Fault tolerance, nano-computing, crosstalk,

interconnect interference, polymorphic, reconfigurable computing

I. INTRODUCTION

As scaling of technology nodes go below 10nm scale, hard
and soft errors due to process imprecision, variation, and aging
are adversely affecting the yield and reliability of ICs. Fault
tolerant circuits can help in mitigating the concerns and
increase reliability. A truly fault resilient circuit scheme can
also gracefully recover from run-time faults such as those that
incur due to radiation, high-power microwave, and cyber
threats. Traditional approach for fault tolerance has been
concentrated on redundancy based circuits such as CMOS
circuit Multiplexing [1], Triple Modular Redundancy (TMR)
and its generalized extension N-tuple Modular Redundancy
(NMR) [2], Triplicated Interwoven Redundancy and its
generalized extension N-tuple Interwoven redundancy
(NIR)[3], and Quadded Logic [4] etc. The need for duplication

of logic in all the above approaches/schemes results in large
overhead. A more recent approach for fault tolerance looks at
circuit level reconfigurability/polymorphism to achieve
multiple functionalities with a single logic block. The
motivation for such scheme is illustrated in Fig. 1. When a
single gate (Fig. 1(i)) is affected by a fault and malfunction,
another working gate (the NAND in this example) can be used
to perform both functionalities. The gate level reconfigurability
concept can be extended to module and system level also as
depicted in Fig. 1(ii). Although such polymorphic concepts are
enabling, a scalable CMOS alternative paradigm to achieve this
is lacking. Existing approaches either rely on environmental
control variables such as light, temperature etc. [5] or require
new exotic switches [6][7] that are yet to mature.

In this paper, we show a novel solution for polymorphic
circuits using interconnect crosstalks. Previously, we
demonstrated how interference between two signal carrying
metal nano-lines can be engineered for logic operation [8].
Here, we show how the same principle can be extended for
reconfiguration. For operation, the transition of signals on input
metal lines (including polymorphic control signal) called as
aggressor nets induce a resultant summation charge on output
metal line called as victim net through capacitive couplings.
This induced signal serves as an intermediate signal to control
thresholding devices like pass-transistor or an inverter to get the
desired logic output. To achieve polymorphic behavior, the
victim net is influenced/biased by a control aggressor, which
switches the circuit behavior to a different logic type. In this
paper, we show how polymorphism allows reconfiguration of
basic gates such as NAND-NOR, AND-OR, AOI-OAI and
functional units such as Mutlipler-Sorter-Adder. We also
present a comparison with CMOS and other available
technologies. Our results indicate at-least 62% reduction in
transistor count compared to CMOS and 28% reduction
compared to other polymorphic approaches for the same
functionality. Also, we introduce the new polymorphic circuits
based fault tolerance concept applicable from gate-level to
module and system level. Additionally, we present high-level
fault discovery and fault-recovery routines for system level
utilization of polymorphic-crosstalk circuits.

The rest of the paper is organized as follows: Section.II
describes the crosstalk computing fundamentals, Section.III
presents polymorphic gates implementation in Crosstalk fabric
for fault resilience and a large functional unit example. Section
IV compares with other polymorphic circuits in literature.
Finally, Section V presents the conclusion.

1Authors are with Computer Science and Electrical Engineering
Department at University of Missouri Kansas City
2R. Rios is an independent consultant, formerly with Intel and AMD

II. CROSSTALK COMPUTING FUNDAMENTALS

The logic computation in crosstalk computing fabric happens
in metals lines, coupled with accurate control and
reconstruction of signals in transistors. We have introduced the
crosstalk computing concept in [8]. The crosstalk-logic can
implement efficiently both linear logic functions (e.g., AND,
OR etc.) and non-linear logic functions (e.g. XOR). The
primary principle for logic computation is through
deterministic charge induction in the output node. Fig. 2(i.a)
shows a NAND gate. Here, the transition of the signals on two
adjacent aggressor metal lines (Ag1 and Ag2) induces a
resultant summation charge/voltage on victim metal line (Vi)
through capacitive coupling. Since this phenomenon follows
the charge conservation principle the victim node voltage is
deterministic in nature, therefore it can be stated that the signal
induced on victim net posses the information about signals on
two aggressor nets, and its magnitude depends upon the
coupling strength between the aggressors and victim net. This
coupling capacitance is inversely proportional to the distance of
separation of metal lines and directly proportional to the
relative permittivity of the dielectric and lateral area of metal
lines (which is length x vertical thickness of metal lines).
Tuning the coupling capacitance values using the variables
mentioned above provides the engineering freedom to tailor the
induced summation signal to the specific logic implementation
or as an intermediate control signal for further logic. For
example, OR gate requires strong coupling than AND gate,
which can be achieved by tuning the dimensions and high-k
dielectric material choices. In Fig. 2(i.a), a discharge transistor
driven by Dis signal and an inverter are connected to Vi net as
shown in the figure. The Crosstalk logic operates in two states,
logic evaluation state (ES) and discharge state (DS). During ES,
the rise transitions on aggressor nets induce proportionate linear
summation voltage on Vi (through couplings) which is
connected to a CMOS inverter acting as a threshold function.
During discharge state (enabled by Dis signal) floating victim
node is shorted to ground through discharge transistor, this
ensures correct logic operation during next logic evaluation
state (ES) by clearing off the value from the previous logic
operation. The simulation response of the designed NAND gate
is shown in Fig.2.(i.b). For required capacitance representation,
we will use crosstalk-margin function CTM(CND), which
specifies that the inverter of the crosstalk polymorphic logic

gate flips its state only when victim node sees the input
transitions through

the total coupling greater than or equal to C. For example,
NAND CT-margin function is CTM(2CND), which states that
inverter flips the state only when victim node sees the input
transitions through total coupling greater than or equal to 2CND,
i.e. when both inputs are high.

A more complex logic implementation is shown in Fig. 2(ii.a)
through an AOI21 circuit. Logic expression of AOI21, (AB+C)’,
evaluates to 0 when either AB or C, or both are 1. That means
the output is biased towards the input C i.e., irrespective of A
and B values, the output is 1 when C is 1. Therefore, in
Fig.2(ii.a), input C has the coupling 2CAO, whereas, A and B
have CAO capacitance. The margin function for this gate is
CTM(2CAO). The response of the circuit is shown in Fig.3(ii.b).
A complete list of fundamental and complex polymorphic gates
with Crosstalk computing can be found in [9].

Fig.1. Polymorphic/Re-configurable circuit based Fault Tolerance concept, i) Gate-level, ii) System-level

Fig.2. Crosstalk Logic Gates: i(a) NAND circuit, i(b) NAND

simulation response, ii(a) AOI21 circuit, ii(b) AOI21 simulation
response

III. POLYMORPHISM FOR FAULT TOLERANCE

A. Basic Gate Level Polymorphism

The polymorphic logic gates exhibit multiple logic behaviors
by altering a control variable, as a result, increases the logic
expressibility of a circuit. A wide range of polymorphic gates
can be implemented using crosstalk circuit techniques, out of
which, we show here the circuit reconfigurability between
AND/OR, OA21/AO21, AND3/AO21 and AO21/OR3. These
circuits switch the logic behavior by using an additional control
aggressor. Fig.3(i) shows the crosstalk-polymorphic AND/OR
circuit and its response graph. As shown in the circuit diagram,
inputs (A and B) and control aggressor (Ct) has the coupling
CPA (the coupling capacitance values are detailed in Table.1).
FI stage gives the inverting function (NAND/NOR) response

and F stage gives non-inverting function (AND/OR). A table
adjacent to circuit diagram lists the margin function and the
circuit operating modes. The margin function for AND/OR cell
is CTM (2CPA). When control Ct=0 it operates as AND,
whereas, when Ct=1 the Ct aggressor (Ag3) augments charge
on to Vi net through the coupling capacitance CPA, hence,
following the function CTM(2CPA) the cell is now biased to
operate as an OR gate, therefore, the transition of either A or B
is now sufficient to flip the inverter. The same response can be
observed in the simulation plots shown in the Fig.3(i.b), the
first panel shows the discharge (Dis) and control (Ct) signals,
2nd panel shows the input combinations fed through A and B,
and 3rd panel shows the response at the stage F. It can be
observed that the circuit responds as AND when Ct=0 for first
four input combinations (00 to 11), whereas, it responds as OR
when Ct=1 during next four input combinations (00 to 11).

Fig.3. Crosstalk Polymorphic logic gates and their simulation responses: i(a) AND/OR circuit , i(b) AND/OR simulation; ii(a) OA21/AO21
circuit, ii(b) OA21/AO21 simulation; iii(a) AND3/AO21 circuit, iii(b) AND3/AO21 simulation; iv(a) AO21/OR3 circuit, iv(b) AO21/OR3

simulation

The next three circuits depicted in Fig.3(ii.a)-3(iv.a)
implement 3 variable polymorphic functions OA21/AO21,
AND3/AO21 and AO21/OR3. The simulation responses of
these circuits are presented in the waveforms below (Fig.3(ii.b)-
3(iv.b)). The first and second panels show the inputs Ct, and A,
B and C respectively, while the panels below are the responses
of the circuits in Fig.3(ii.a) to Fig.3(iv.a) respectively. For
OA21/AO21 circuit (Fig.3(ii.a)), aggressors A, B, and Ct are
given CPB coupling, whereas input C is given 2CPB, the margin
function is CTM (3CPB). When control Ct=0 it operates as
OA21, whereas, when Ct=1 the Ct aggressor (Ag4) augments
charge through the coupling capacitance CPB, hence, following
the function CTM(3CPB) the cell is now biased to operate as
AO21. The same response can be observed in the simulation
graph (4th panel), the circuit responds as OA21 when Ct=0 for
first eight input combinations (000 to 111), whereas, it responds
as AO21 when Ct=1 for next eight combinations (000 to 111).
Similarly, Fig.3(iii.a) depicts AND3/AO21 circuit, where, A
and B are given CPC coupling, while Ct and C are given 2CPC
coupling, and the margin function here is CTM (4CPC),
therefore, the circuit responds as AND3 (4th panel) for all input
combinations when Ct=0, whereas, it responds as AO21 when
Ct=1. Similarly, for the AO21/OR3 circuit in Fig.3(iv.a) the
coupling choices for A, B and Ct are CPD, and for C it is 2CPD.
Following the margin function CTM (2CPD), the circuit behaves
as AO21 when Ct=0 for first 8 input combinations (000 to 111),
while it behaves as OR3 when Ct=1 for next 8 input
combinations (000 to 111). By employing such compact and
efficient polymorphic logic gates in the circuits, in the event of
a fault occurrence in some portions of the circuit, the unaffected
logic gates can be morphed to implement the damaged
functionality, thus, it could pave ways to a new paradigm of
fault tolerance which is based on polymorphism at gate-level.

B. Block Level Polymorphism

This section demonstrates the block level polymorphism
using a circuit example of 2-bit multiplier-sorter-adder (Fig.4)
which is implemented using the polymorphic gates discussed
above. The circuit uses 31 gates in total, out of which 25 are

Fig.4. Crosstalk Polymorphic Multiplier/Adder/Sorter

circuit

Fig.5. Crosstalk Polymorphic Multiplier/Adder/Sorter circuit simulation response

crosstalk gates, and 6 are inverters. 16 out of 25 crosstalk gates
are polymorphic gates which are efficiently employed to switch
the circuit between the multiplier, sorter and adder operations
using two control signals (C1 and C2). The inset figure shows
the control circuitry (C1-C5). Fig.5 shows the simulation
response of the circuit, different operation modes of the circuit
are annotated on top, which are, Multiplier (M), Sorter (S), and
Adder (A). The first panel shows Dis signal, Dis=1 is the
discharge state (DS) and Dis=0 is the logic evaluation state.
The second panel shows the control signals C1 and C2 whose
values as 01, 11 and 10 corresponds to multiplier, sorter and
adder operations. Third and fourth panels show the 2-bit inputs
A[1:0] and B[1:0] respectively, the following panels show the
4-bit response of the circuit Y[3:0]. The circuit is operated
alternately in the multiplier, sorter, and adder modes, and in
each set of this modes, common input values are fed through
A1A0 and B1B0 which effectively demonstrates the
transformation of the circuit in accordance with the control
signals. For example, for the first input combinations, 11 and
10, the multiplier operation gives 0110 as output while the
succeeding sorter and adder operations give 1110 and 0101
outputs respectively. Similarly, for the second inputs 10 and 01,
M, S, and A operations give 0010, 1100 and 0011 outputs
respectively. In similar fashion, few other combinations are
shown in the next stages. The circuit consumes only 155
transistors in total. Such polymorphic circuits can be employed
for the fault tolerance at the block level. For example, as shown
in the Fig.6, Multiplier, Sorter and Adder operations can be
implemented in independent blocks which also possess the
dormant other two operations. During the event of fault
detection in one of the blocks, the other blocks can be
reconfigured and multiplexed to achieve the correct output. The
polymorphic blocks can be also used with traditional voter
based [2] fault resiliency techniques.

C. System Level Polymorphism

In Fig.7, we introduce the concept of hardware-software
based fault detection and recovery scheme that can fully utilize
the polymorphic circuits to recover from faults at run-time.

Here, polymorphic circuit blocks are deployed first and
periodically monitored during operation for correctness and
recovery. First, a block is configured for one operation and
known set of inputs are driven to check the functional
correctness. If the correct operation is registered, the block and
operation is registered in a lookup table. Similarly, all blocks
and relevant functionalities are checked and their information
are stored in the lookup table. Upon fault detection in one of the
blocks, the Software/Assembler will look for alternative blocks
in the lookup table, and re-route and reconfigure blocks
accordingly to achieve correct results.

IV. COMPARISON & DISCUSSION OF MERITS

The proposed fault tolerant scheme can be implemented using
any polymorphic circuit approaches [5-7][10-11]. In order to
quantify the efficacy, in this section, we compare the crosstalk
polymorphic logic technology with respect to CMOS
multiplexer based polymorphic implementation and to a recent
approach of ambipolar Si-Nanowire circuits [10][11]. The
traditional approach (‘CMOS’ column in the table) is
multiplexer based, where independent stand-alone circuits are
designed and selected through a multiplexer, the hardware
redundancy in this method is huge. Whereas, in the second
approach circuits are constructed using nanowire transistors
which are configurable to either n-type or p-type using a control
voltage. Limitations of this approach are, the density benefit is
limited, additional circuitry is required to swap power rails for
pull-up and pull-down networks, device response is not robust,

Fig.6. Block-Level Polymorphic Fault Tolerant scheme

Fault Discovery

//Assuming n different functional blocks are available and each

block can be configured to achieve m different functionalities

Step 1: Configure block1 for functionality 1 by asserting

configuration bits

Step 2: Drive known set of inputs for functional verification

Step 3: Check outputs for correctness

Step 4: If outputs are correct/incorrect, mark block1

functionality 1 as correct/incorrect, configure block1 for

functionality 2 … functionality m and repeat from Step 2.

Step 5: Repeat Steps 1 to 4 for all computing blocks to discover

working functions

Fault Recovery

Step 1: Run Fault Discovery algorithm to discover all

correct computing blocks and their respective functions.

Step 2: Operating system stores information about correct

blocks and functions in lookup table and generates

instructions accordingly

Step 3: From incoming instructions, configure bits are

generated during instruction decode phase and all blocks

are configured

Step 4: All output multiplexers get proper selection inputs

Step 5: Inputs are driven to computing blocks and outputs

observed

Fig.7. Fault Discovery and Recovery Steps

and it imposes the complex manufacturing steps. The other
alternate approach for polymorphic circuits is using emerging
spintronic devices [6], but they rely on complex information
encoding scheme through spin-polarized currents, and bipolar
voltages etc., also, they are a significant departure from existing
computational, device and circuit paradigm.

 The crosstalk-polymorphic approach compared to other
approaches is very compact in implementation, friendly to
advanced technology nodes and scalable to the larger
polymorphic systems. Also, the working mechanism is simple
and reliable. The benefits in performance metrics like, area,
power and performance are also best compared to any other
approaches. Deliberate and very fast reconfigurability is
achievable by using a control signal. The benchmarking of
transistors count requirement for basic, complex and cascaded
logic cases are given in the table.2 The complex gates listed for
the Si-NWFET approach are constructed by cascading
polymorphic NAND-NOR, AND-OR gates presented in [10].
The crosstalk-circuit based polymorphic approach consumes
fewer transistors than any other approaches. The transistor
count comparisons show that crosstalk polymorphic gates show
the reduction ranging from 25% to 83% at the cell level. For the
multiplier/adder/sorter circuit, our approach show 28% and
62% reduction in transistor count compared to ambipolar
SiNWFET and CMOS approaches respectively. Moreover,
unlike any other approaches, crosstalk-polymorphic circuits
could implement a wide range of complex logic functions in a
compact manner [9].

V. CONCLUSION

We introduced a novel polymorphic circuit approach for fault
tolerant computing leveraging interconnect crosstalks. Various

polymorphic logic gates including AND-OR, AO21-OA21,
AND-AO21, and OR-AO21 and a complex circuit that
performs the functionalities of Multiplication/Sorting/Addition
with polymorphic gates were shown. Transistor count
comparison revealed potential benefits of crosstalk-
polymorphic logic; for the same complex circuit
implementation, the transistor count was found to be 155 vs.
408 of CMOS. We also presented an approach for run-time
system level fault detection and recovery. The proposed work
sets new pathways for fault-tolerant computing and can be
transformative for reliable integrated circuits in future.

REFERENCES

[1] 1. J. von Neumann, “Probabilistic Logics and the Synthesis of Reliable

Organisms from Unreliable Components,” AutomataStudies, C.E.
Shannon and J. McCarthy, eds., Princeton Univ. Press, 1956, pp.

[2] Dubrova E, Fault-tolerant design, Springer, 2013.

[3] Jie Han, J. Gao, P. Jonker, Yan Qi and J. A. B. Fortes, "Toward hardware-
redundant, fault-tolerant logic for nanoelectronics," in IEEE Design &
Test of Computers, vol. 22, no. 4, pp. 328-339, July-Aug. 2005.

[4] J. Han, E. Leung, L. Liu, F. Lombardi, “A fault-tolerant technique using
quadded logic and quadded transistors,” IEEE Transactions on VLSI
Systems, vol. 23, no. 8, pp. 1562-1566, August 2015.

[5] A. Stoica, R. Zebulum, and D. Keymeulen, “Polymorphic Electronics,”
Evolvable Syst. From Biol. to Hardw., vol. 2210, pp. 291–302, 2001.

[6] S. Rakheja and N. Kani, "Polymorphic spintronic logic gates for hardware
security primitives — Device design and performance benchmarking,"
2017 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH), Newport, RI, 2017, pp. 131-132.

[7] Yu, W. J., Kim, U. J., Kang, B. R., Lee, I. H., Lee, E. H., Lee, Y. H,
“Multifunctional logic circuit using ambipolar carbon nanotube
transistor,” Proc. SPIE 7399, 739906 (2009).

[8] Naveen kumar Macha, et al., “A New Concept for Computing Using
Interconnect Crosstalks,” Rebooting Computing (ICRC), 2017 IEEE
International Conference, Washington, DC, USA, December 2017.

[9] Naveen kumar Macha, Sandeep Geedipally, Bhavana Tejaswee Repalle,
Md Arif Iqbal, Wafi Danesh, Mostafizur Rahman “Crosstalk based Fine-
Grained Reconfiguration Techniques for Polymorphic Circuits,”
IEEE/ACM NANOARCH 2018 (submitted)

[10] M. De Marchi et al., “Configurable logic gates using polarity controlled
silicon nanowire gate-all-around FETs,” IEEE Electron Device Lett.,
vol.35, no. 8, pp. 880–882, 2014.

[11] J. Zhang, P. E. Gaillardon, and G. De Micheli, “Dual-threshold-voltage
configurable circuits with three-independent-gate silicon nanowire
FETs,” Proc. - IEEE Int. Symp. Circuits Syst., pp. 2111–2114, 2013.

Table 2. Comparison with relevant technologies

CMOS

Ambipolar

NWFET[10]

Crosstalk-

Polymorphic

Computing

Principle

Complementary
logic with FETs

Band Structure
modification

Control of
signal

interference

Application

for fault

tolerant

computing

Circuit
duplication

(redundancy) and
use of

multiplexers to
select redundant

blocks

Polymorphic
logic

implementation
with

configurable
transistors

Logic
reconfiguration
by leveraging

Crosstalk

Trade-off

Density, power
and performance

penalties for
redundant blocks

Scalability
challenges and
limited density

benefits

Control
overhead vs.

Density, Power
& Performance

benefits

Transistor Count Comparison

AND2-OR2 18 6 5

AO21-OA21 22 8 5

AND3-

AO21
22 12 5

AO21-OR3 22 12 5

Multiplier-

Sorter-

Adder

408 216 155

