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Abstract— The CMOS integrated chips at advanced 

technology nodes are becoming more vulnerable to various 

sources of faults like manufacturing imprecisions, variations, 

aging, etc. Additionally, the intentional fault attacks (e.g., high 

power microwave, cybersecurity threats, etc.) and environmental 

effects (i.e., radiation) also pose reliability threats to integrated 

circuits. Though the traditional hardware redundancy-based 

techniques like Triple Modular Redundancy (TMR), Quadded 

(QL) Logic etc. mitigate the risk to some extent, they add huge 

hardware overhead and are not very effective. Truly polymorphic 

circuits that are inherently capable of achieving multiple 

functionalities in a limited footprint could enhance the fault-

resilience/recovery of the circuits with limited overhead. We 

demonstrate a novel crosstalk logic based polymorphic circuit 

approach to achieve compact and efficient fault resilient circuits. 

We show a range of polymorphic primitive gates and their usage 

in a functional unit. The functional unit is a single arithmetic 

circuit that is capable of delivering 

Multiplication/Sorting/Addition output depending on the control 

inputs. Using such polymorphic computing units in an ALU would 

imply that a correct path for functional output is possible even 

when 2/3rd of the ALU is damaged. Our comparison results with 

respect to existing polymorphic techniques and CMOS reveal 28% 

and 62% reduction in transistor count respectively for the same 

functionalities. In conjunction with fault detection algorithms, the 

proposed polymorphic circuit concept can be transformative for 

fault tolerant circuit design directions with minimum overhead. 
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I. INTRODUCTION 

As scaling of technology nodes go below 10nm scale, hard 
and soft errors due to process imprecision, variation, and aging 
are adversely affecting the yield and reliability of ICs. Fault 
tolerant circuits can help in mitigating the concerns and 
increase reliability. A truly fault resilient circuit scheme can 
also gracefully recover from run-time faults such as those that 
incur due to radiation, high-power microwave, and cyber 
threats. Traditional approach for fault tolerance has been 
concentrated on redundancy based circuits such as CMOS 
circuit Multiplexing [1], Triple Modular Redundancy (TMR) 
and its generalized extension N-tuple Modular Redundancy 
(NMR) [2], Triplicated Interwoven Redundancy and its 
generalized extension N-tuple Interwoven redundancy 
(NIR)[3], and Quadded Logic [4] etc. The need for duplication 

of logic in all the above approaches/schemes results in large 
overhead. A more recent approach for fault tolerance looks at 
circuit level reconfigurability/polymorphism to achieve 
multiple functionalities with a single logic block. The 
motivation for such scheme is illustrated in Fig. 1. When a 
single gate (Fig. 1(i)) is affected by a fault and malfunction, 
another working gate (the NAND in this example) can be used 
to perform both functionalities. The gate level reconfigurability 
concept can be extended to module and system level also as 
depicted in Fig. 1(ii). Although such polymorphic concepts are 
enabling, a scalable CMOS alternative paradigm to achieve this 
is lacking. Existing approaches either rely on environmental 
control variables such as light, temperature etc. [5] or require 
new exotic switches [6][7] that are yet to mature. 

In this paper, we show a novel solution for polymorphic 
circuits using interconnect crosstalks. Previously, we 
demonstrated how interference between two signal carrying 
metal nano-lines can be engineered for logic operation [8]. 
Here, we show how the same principle can be extended for 
reconfiguration. For operation, the transition of signals on input 
metal lines (including polymorphic control signal) called as 
aggressor nets induce a resultant summation charge on output 
metal line called as victim net through capacitive couplings. 
This induced signal serves as an intermediate signal to control 
thresholding devices like pass-transistor or an inverter to get the 
desired logic output. To achieve polymorphic behavior, the 
victim net is influenced/biased by a control aggressor, which 
switches the circuit behavior to a different logic type. In this 
paper, we show how polymorphism allows reconfiguration of 
basic gates such as NAND-NOR,  AND-OR, AOI-OAI and 
functional units such as Mutlipler-Sorter-Adder. We also 
present a comparison with CMOS and other available 
technologies. Our results indicate at-least 62% reduction in 
transistor count compared to CMOS and 28% reduction 
compared to other polymorphic approaches for the same 
functionality. Also, we introduce the new polymorphic circuits 
based fault tolerance concept applicable from gate-level to 
module and system level.  Additionally, we present high-level 
fault discovery and fault-recovery routines for system level 
utilization of polymorphic-crosstalk circuits. 

The rest of the paper is organized as follows: Section.II 
describes the crosstalk computing fundamentals, Section.III  
presents polymorphic gates implementation in Crosstalk fabric 
for fault resilience and a large functional unit example. Section 
IV compares with other polymorphic circuits in literature. 
Finally, Section V presents the conclusion.  
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II. CROSSTALK COMPUTING FUNDAMENTALS 

The logic computation in crosstalk computing fabric happens 
in metals lines, coupled with accurate control and 
reconstruction of signals in transistors. We have introduced the 
crosstalk computing concept in [8]. The crosstalk-logic can 
implement efficiently both linear logic functions (e.g., AND, 
OR etc.) and non-linear logic functions (e.g. XOR). The 
primary principle for logic computation is through 
deterministic charge induction in the output node. Fig. 2(i.a) 
shows a NAND gate. Here, the transition of the signals on two 
adjacent aggressor metal lines (Ag1 and Ag2) induces a 
resultant summation charge/voltage on victim metal line (Vi) 
through capacitive coupling. Since this phenomenon follows 
the charge conservation principle the victim node voltage is 
deterministic in nature, therefore it can be stated that the signal 
induced on victim net posses the information about signals on 
two aggressor nets, and its magnitude depends upon the 
coupling strength between the aggressors and victim net. This 
coupling capacitance is inversely proportional to the distance of 
separation of metal lines and directly proportional to the 
relative permittivity of the dielectric and lateral area of metal 
lines (which is length x vertical thickness of metal lines). 
Tuning the coupling capacitance values using the variables 
mentioned above provides the engineering freedom to tailor the 
induced summation signal to the specific logic implementation 
or as an intermediate control signal for further logic. For 
example, OR gate requires strong coupling than  AND gate, 
which can be achieved by tuning the dimensions and high-k 
dielectric material choices. In Fig. 2(i.a), a discharge transistor 
driven by Dis signal and an inverter are connected to Vi net as 
shown in the figure. The Crosstalk logic operates in two states, 
logic evaluation state (ES) and discharge state (DS). During ES, 
the rise transitions on aggressor nets induce proportionate linear 
summation voltage on Vi (through couplings) which is 
connected to a CMOS inverter acting as a threshold function. 
During discharge state (enabled by Dis signal) floating victim 
node is shorted to ground through discharge transistor, this 
ensures correct logic operation during next logic evaluation 
state (ES) by clearing off the value from the previous logic 
operation. The simulation response of the designed NAND gate 
is shown in Fig.2.(i.b). For required capacitance representation, 
we will use crosstalk-margin function CTM(CND), which 
specifies that the inverter of the crosstalk polymorphic logic 

gate flips its state only when victim node sees the input 
transitions through  
 
the total coupling greater than or equal to C. For example, 
NAND CT-margin function is CTM(2CND), which states that 
inverter flips the state only when victim node sees the input 
transitions through total coupling greater than or equal to 2CND, 
i.e. when both inputs are high.  

A more complex logic implementation is shown in Fig. 2(ii.a) 
through an AOI21 circuit. Logic expression of AOI21, (AB+C)’, 
evaluates to 0 when either AB or C, or both are 1. That means 
the output is biased towards the input C i.e., irrespective of A 
and B values, the output is 1 when C is 1. Therefore, in 
Fig.2(ii.a), input C has the coupling 2CAO, whereas, A and B 
have CAO capacitance. The margin function for this gate is 
CTM(2CAO). The response of the circuit is shown in Fig.3(ii.b).  
A complete list of fundamental and complex polymorphic gates 
with Crosstalk computing can be found in [9].  

 
Fig.1. Polymorphic/Re-configurable circuit based Fault Tolerance concept, i) Gate-level, ii) System-level    

 
Fig.2. Crosstalk Logic Gates: i(a) NAND circuit, i(b) NAND 

simulation response, ii(a) AOI21 circuit, ii(b) AOI21 simulation 
response 



III. POLYMORPHISM FOR FAULT TOLERANCE 

A. Basic Gate Level Polymorphism 

The polymorphic logic gates exhibit multiple logic behaviors 
by altering a control variable, as a result, increases the logic 
expressibility of a circuit. A wide range of polymorphic gates 
can be implemented using crosstalk circuit techniques, out of 
which, we show here the circuit reconfigurability between 
AND/OR, OA21/AO21, AND3/AO21  and AO21/OR3. These 
circuits switch the logic behavior by using an additional control 
aggressor. Fig.3(i) shows the crosstalk-polymorphic AND/OR 
circuit and its response graph. As shown in the circuit diagram, 
inputs (A and B) and control aggressor (Ct) has the coupling 
CPA ( the coupling capacitance values are detailed in Table.1). 
FI stage gives the inverting function (NAND/NOR) response 

and F stage gives non-inverting function (AND/OR). A table 
adjacent to circuit diagram lists the margin function and the 
circuit operating modes. The margin function for AND/OR cell 
is CTM (2CPA). When control Ct=0 it operates as AND, 
whereas, when Ct=1 the Ct aggressor (Ag3) augments charge 
on to Vi net through the coupling capacitance CPA, hence, 
following the function CTM(2CPA) the cell is now biased to 
operate as an OR gate, therefore, the transition of either A or B 
is now sufficient to flip the inverter. The same response can be 
observed in the simulation plots shown in  the Fig.3(i.b), the 
first panel shows the discharge (Dis) and control (Ct) signals, 
2nd panel shows the input combinations fed through A and B, 
and 3rd panel shows the response  at the stage F.  It can be 
observed that the circuit responds as AND when Ct=0 for first 
four input combinations (00 to 11), whereas, it responds as OR 
when Ct=1 during next four input combinations (00 to 11).  

 
Fig.3. Crosstalk Polymorphic logic gates and their simulation responses: i(a) AND/OR circuit , i(b) AND/OR simulation;  ii(a) OA21/AO21 
circuit, ii(b) OA21/AO21 simulation; iii(a) AND3/AO21 circuit, iii(b) AND3/AO21 simulation;  iv(a) AO21/OR3 circuit, iv(b) AO21/OR3  

simulation  



The next three circuits depicted in Fig.3(ii.a)-3(iv.a) 
implement 3 variable polymorphic functions OA21/AO21, 
AND3/AO21 and AO21/OR3. The simulation responses of 
these circuits are presented in the waveforms below (Fig.3(ii.b)-
3(iv.b)). The first and second panels show the inputs Ct, and A, 
B and C respectively, while the panels below are the responses 
of the circuits in Fig.3(ii.a) to Fig.3(iv.a) respectively. For 
OA21/AO21 circuit (Fig.3(ii.a)), aggressors A, B, and Ct are 
given CPB coupling, whereas input C is given 2CPB, the margin 
function is CTM (3CPB). When control Ct=0 it operates as 
OA21, whereas, when Ct=1 the Ct aggressor (Ag4) augments 
charge through the coupling capacitance CPB, hence, following 
the function CTM(3CPB) the cell is now biased to operate as 
AO21. The same response can be observed in the simulation 
graph (4th panel), the circuit responds as OA21 when Ct=0 for 
first eight input combinations (000 to 111), whereas, it responds 
as AO21 when Ct=1 for next eight combinations (000 to 111). 
Similarly, Fig.3(iii.a) depicts AND3/AO21 circuit, where, A 
and B are given CPC coupling, while Ct and C are given 2CPC 
coupling, and the margin function here is CTM (4CPC), 
therefore, the circuit responds as AND3 (4th panel) for all input 
combinations when Ct=0, whereas, it responds as AO21 when 
Ct=1. Similarly, for the AO21/OR3 circuit in Fig.3(iv.a) the 
coupling choices for A, B and Ct are CPD, and for C it is 2CPD. 
Following the margin function CTM (2CPD), the circuit behaves 
as AO21 when Ct=0 for first 8 input combinations (000 to 111), 
while it behaves as OR3 when Ct=1 for next 8 input 
combinations (000 to 111). By employing such compact and 
efficient polymorphic logic gates in the circuits, in the event of 
a fault occurrence in some portions of the circuit, the unaffected 
logic gates can be morphed to implement the damaged 
functionality, thus, it could pave ways to a new paradigm of 
fault tolerance which is based on polymorphism at gate-level.   

B. Block  Level Polymorphism 

This section demonstrates the block level polymorphism 
using a circuit example of 2-bit multiplier-sorter-adder (Fig.4) 
which is implemented using the polymorphic gates discussed 
above. The circuit uses 31 gates in total, out of which 25 are 

 
Fig.4. Crosstalk Polymorphic Multiplier/Adder/Sorter 

circuit 

 
Fig.5. Crosstalk Polymorphic Multiplier/Adder/Sorter circuit simulation response 

 



crosstalk gates, and 6 are inverters. 16 out of 25 crosstalk gates 
are polymorphic gates which are efficiently employed to switch 
the circuit between the multiplier, sorter and adder operations 
using two control signals (C1 and C2). The inset figure shows 
the control circuitry (C1-C5). Fig.5 shows the simulation 
response of the circuit, different operation modes of the circuit 
are annotated on top, which are, Multiplier (M), Sorter (S), and 
Adder (A). The first panel shows Dis signal, Dis=1 is the 
discharge state (DS) and Dis=0 is the logic evaluation state. 
The second panel shows the control signals C1 and C2 whose 
values as 01, 11 and 10 corresponds to multiplier, sorter and 
adder operations. Third and fourth panels show the 2-bit inputs 
A[1:0] and B[1:0] respectively, the following panels show the 
4-bit response of the circuit Y[3:0]. The circuit is operated 
alternately in the multiplier, sorter, and adder modes, and in 
each set of this modes, common input values are fed through 
A1A0 and B1B0 which effectively demonstrates the 
transformation of the circuit in accordance with the control 
signals. For example, for the first input combinations, 11 and 
10, the multiplier operation gives 0110 as output while the 
succeeding sorter and adder operations give 1110 and 0101 
outputs respectively. Similarly, for the second inputs 10 and 01, 
M, S, and A operations give 0010, 1100 and 0011 outputs 
respectively. In similar fashion, few other combinations are 
shown in the next stages. The circuit consumes only 155 
transistors in total. Such polymorphic circuits can be employed 
for the fault tolerance at the block level. For example, as shown 
in the Fig.6, Multiplier, Sorter and Adder operations can be 
implemented in independent blocks which also possess the 
dormant other two operations. During the event of fault 
detection in one of the blocks, the other blocks can be 
reconfigured and multiplexed to achieve the correct output. The 
polymorphic blocks can be also used with traditional voter 
based [2] fault resiliency techniques.  

C. System  Level Polymorphism 

In Fig.7, we introduce the concept of hardware-software 
based fault detection and recovery scheme that can fully utilize 
the polymorphic circuits to recover from faults at run-time. 

Here, polymorphic circuit blocks are deployed first and 
periodically monitored during operation for correctness and 
recovery. First, a block is configured for one operation and 
known set of inputs are driven to check the functional 
correctness. If the correct operation is registered, the block and 
operation is registered in a lookup table. Similarly, all blocks 
and relevant functionalities are checked and their information 
are stored in the lookup table. Upon fault detection in one of the 
blocks, the Software/Assembler will look for alternative blocks 
in the lookup table, and re-route and reconfigure blocks 
accordingly to achieve correct results.  

IV. COMPARISON & DISCUSSION OF MERITS 

The proposed fault tolerant scheme can be implemented using 
any polymorphic circuit approaches [5-7][10-11]. In order to 
quantify the efficacy, in this section, we compare the crosstalk 
polymorphic logic technology with respect to CMOS 
multiplexer based polymorphic implementation and to a recent 
approach of ambipolar Si-Nanowire circuits [10][11]. The 
traditional approach (‘CMOS’ column in the table) is 
multiplexer based, where independent stand-alone circuits are 
designed and selected through a multiplexer, the hardware 
redundancy in this method is huge. Whereas, in the second 
approach circuits are constructed using nanowire transistors 
which are configurable to either n-type or p-type using a control 
voltage. Limitations of this approach are, the density benefit is 
limited, additional circuitry is required to swap power rails for 
pull-up and pull-down networks, device response is not robust, 

 
Fig.6. Block-Level Polymorphic Fault Tolerant scheme  

 

Fault Discovery 

//Assuming n different functional blocks are available and each 

block can be configured to achieve m different functionalities 

Step 1: Configure block1 for functionality 1 by asserting 

configuration bits 

Step 2: Drive known set of inputs for functional verification 

Step 3: Check outputs for correctness 

Step 4: If outputs are correct/incorrect, mark block1 

functionality 1 as correct/incorrect, configure block1 for 

functionality 2 … functionality m and repeat from Step 2.  

Step 5: Repeat Steps 1 to 4 for all computing blocks to discover 

working functions 

Fault Recovery 

Step 1: Run Fault Discovery algorithm to discover all 

correct computing blocks and their respective functions. 

Step 2: Operating system stores information about correct 

blocks and functions in lookup table and generates 

instructions accordingly 

Step 3: From incoming instructions, configure bits are 

generated during instruction decode phase and all blocks 

are configured 

Step 4: All output multiplexers get proper selection inputs 

Step 5: Inputs are driven to computing blocks and outputs 

observed 

Fig.7. Fault Discovery and Recovery Steps 

 



and it imposes the complex manufacturing steps. The other 
alternate approach for polymorphic circuits is using emerging 
spintronic devices [6], but they rely on complex information 
encoding scheme through spin-polarized currents, and bipolar  
voltages etc., also, they are a significant departure from existing 
computational, device and circuit paradigm.  

 The crosstalk-polymorphic approach compared to other 
approaches is very compact in implementation, friendly to 
advanced technology nodes and scalable to the larger 
polymorphic systems. Also, the working mechanism is simple 
and reliable. The benefits in performance metrics like, area, 
power and performance are also best compared to any other 
approaches. Deliberate and very fast reconfigurability is 
achievable by using a control signal.  The benchmarking of 
transistors count requirement for basic, complex and cascaded 
logic cases are given in the table.2 The complex gates listed for 
the Si-NWFET approach are constructed by cascading 
polymorphic NAND-NOR, AND-OR gates presented in [10]. 
The crosstalk-circuit based polymorphic approach consumes 
fewer transistors than any other approaches. The transistor 
count comparisons show that crosstalk polymorphic gates show 
the reduction ranging from 25% to 83% at the cell level. For the 
multiplier/adder/sorter circuit, our approach show 28% and 
62% reduction in transistor count compared to ambipolar 
SiNWFET and CMOS approaches respectively. Moreover, 
unlike any other approaches, crosstalk-polymorphic circuits 
could implement a wide range of complex logic functions in a 
compact manner [9]. 

V. CONCLUSION 

We introduced a novel polymorphic circuit approach for fault 
tolerant computing leveraging interconnect crosstalks. Various 

polymorphic logic gates including AND-OR, AO21-OA21, 
AND-AO21, and OR-AO21 and a complex circuit that 
performs the functionalities of Multiplication/Sorting/Addition 
with polymorphic gates were shown. Transistor count 
comparison revealed potential benefits of crosstalk-
polymorphic logic; for the same complex circuit 
implementation, the transistor count was found to be 155 vs. 
408 of CMOS. We also presented an approach for run-time 
system level fault detection and recovery. The proposed work 
sets new pathways for fault-tolerant computing and can be 
transformative for reliable integrated circuits in future.  
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Table 2. Comparison with relevant technologies 

 
CMOS 

Ambipolar 

NWFET[10] 

Crosstalk-

Polymorphic 

Computing 

Principle 

Complementary 
logic with FETs 

Band Structure 
modification 

Control of 
signal 

interference 

Application 

for fault 

tolerant 

computing 

 

Circuit 
duplication 

(redundancy) and 
use of 

multiplexers to 
select redundant 

blocks 

Polymorphic 
logic 

implementation 
with 

configurable 
transistors  

Logic 
reconfiguration 
by leveraging 

Crosstalk  

Trade-off  

Density, power 
and performance 

penalties for 
redundant blocks 

Scalability 
challenges and 
limited density 

benefits 

Control 
overhead vs. 

Density, Power 
& Performance 

benefits   

Transistor Count Comparison 

AND2-OR2 18 6 5 

AO21-OA21 22 8 5 

AND3-

AO21 
22 12 5 

AO21-OR3 22 12 5 

Multiplier-

Sorter-

Adder 

408 216 155 

 


