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Abstract—Stochasticity is ubiquitous in the world around us.
However, our predominant computing paradigm is deterministic.
Random number generation (RNG) can be a computationally in-
efficient operation in this system especially for larger workloads.
Our work leverages the underlying physics of emerging devices
to develop probabilistic neural circuits for RNGs from a given
distribution. However, codesign for novel circuits and systems
that leverage inherent device stochasticity is a hard problem.
This is mostly due to the large design space and complexity
of doing so. It requires concurrent input from multiple areas
in the design stack from algorithms, architectures, circuits, to
devices. In this paper, we present examples of optimal circuits
developed leveraging AI-enhanced codesign techniques using
constraints from emerging devices and algorithms. Our AI-
enhanced codesign approach accelerated design and enabled
interactions between experts from different areas of the micro-
electronics design stack including theory, algorithms, circuits,
and devices. We demonstrate optimal probabilistic neural circuits
using magnetic tunnel junction and tunnel diode devices that
generate an RNG from a given distribution.

Index Terms—Probabilistic Devices, Probabilistic Neural Cir-
cuits, AI-Enhanced Codesign, Codesign, Neuromorphic comput-
ing

I. INTRODUCTION

Neuromorphic computing is an emerging paradigm that
promises to alleviate the challenges faced by current clas-
sical computing approaches by emulating key computational
principles from the brain. Recent work has shown that neural
networks can be used to sample probabilistic graphs [1], [2].
However, today’s neuromorphic platforms have at best modest
pseudo-random number generator (PRNG) capabilities. In
contrast, every synapse in the brain exhibits stochastic vesicle
release. Neuroscientists have observed that stochasticity at the
synapse and circuit scales allows for both synaptic develop-
ment and circuit functional dynamics, phenomena that are
crucial for higher-level cognitive functions. Recent theoreti-
cal work has also demonstrated that neural algorithms can
leverage RNGs in parallel to provide added capabilities to

Fig. 1: Top: In scientific computing applications today, uni-
form random numbers need to be converted to distributions
of interest through expensive rejection sampling or related
techniques. Bottom: By using device stochasticity and co-
designed circuits, we can directly convert biased coin flips to
our distributions of interest, avoiding repeated sampling loops.

probabilistic algorithms while leveraging the energy and time
advantages of neuromorphic parallelism [3]. We seek to lever-
age stochasticity in computing by exploiting the underlying
physics of emerging random number generator (RNG) devices
to build probabilistic neural architectures. We will leverage
stochasticity in computing, by making stochasticity ubiquitous
and, crucially, making it useful.

In many scientific computing applications today, uniform
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pseudo-random numbers are converted to a desired distribu-
tion. When examining a particular collider physics simulation
[4], on the order of 270K uniform pseudo-random numbers are
used to simulate a single event, and up to billions of events
must be simulated to understand experimental data [5]. The
CPU time for PRNGs in such simulations is on the order of
40 − 50% of the total compute time [5]. Contributing and
adding to this cost is the necessity to convert uniform sam-
ples to distributions of interest: as PRNGs typically produce
uniformly distributed numbers, it is necessary to convert these
samples into distributions of interest using techniques such as
rejection sampling or Markov Chain Monte Carlo algorithms
(Fig. 1, top).

Direct random number generation leveraging stochastic de-
vices can promise significant energy savings for such appli-
cations. In this work, we explore drawing samples directly
from a simple, non-uniform distribution using true random
number generating (TRNG) device models (Fig. 1, bottom).
We choose a simple distribution among four outcomes that
cannot be represented by the outcome of two independent coin
tosses alone. Rather, we employ a probabilistic mixing through
a “Hidden Dependence” process that can be represented as
a probabilistic circuit. The hidden process randomly selects
between various coin distributions. Though our choice of
distribution and hidden process circuit may seem arbitrary,
they are important as they demonstrate a methodology to
correlate output among independent tosses. Leveraging cor-
relation of output is critical in direct drawing from non-trivial
distributions. This work showcases our results from develop-
ing neural probabilistic circuits using AI-enhanced codesign
leveraging emerging neuromorphic devices for random number
generation from a given distribution as illustrated in Fig. 1.

II. AI-ENHANCED CODESIGN

It is not immediately clear how to design circuits and
tune device parameters with emerging devices. To enable the
design of circuit topology and circuit parameters, we use
evolutionary optimization. There are several key reasons that
we leverage evolutionary optimization for this task. First, it
can be used to optimize multiple objectives; in this case, we
may be interested in how accurate the circuit performs the
task, while simultaneously minimizing latency and/or energy
usage. Second, it can be used to evolve both the topology
of the circuit and the parameters simultaneously. In this
work, we leverage the Library of Evolutionary Algorithms in
Python (LEAP) [6] to evolve the parameters of a probabilistic
circuit, though in future work, for both topology and parameter
optimization, we will leverage Evolutionary Optimization for
Neuromorphic Systems (EONS) [7], [8] for evolving both
non-neuromorphic and neuromorphic circuits of these devices.
Third, evolutionary algorithms can potentially be used to
creatively discover new ways to design circuits or leverage
the underlying device characteristics. Evolutionary algorithms
have been used for decades to design analog circuits [9], [10].
They have been found to have surprising creativity in the
design of novel solutions to a variety of problems [11]. In

this work, we use LEAP’s traditional evolutionary algorithm
with a real representation, where the parameters to be evolved
represent parameters associated with the devices themselves
(described in detail in Section III).

III. DEVICES

We evaluated two devices for random number generation,
namely Tunnel Diodes (TD) and Magnetic Tunnel Junctions
(MTJs). We included functional models with abstracted device
characteristics to evaluate the probabilistic circuit developed
by the AI-enhanced codesign framework.

A. Tunnel Diodes

Fig. 2: Tunnel Diode characteristics. (a) Schematic diagram
of a tunnel diode, and transport curve taken from a discrete
component tunnel diode (MP1103 from M-Pulse Microwave).
The regions of tunneling current and thermionic emission are
shown. (b) Pulsing the current near the peak (black arrow in
(a)) produces the stated probability of being found in either the
low voltage or high voltage branch. Error bars are associated
with the number of samples.

The venerable tunnel diode (TD) has historically been used
in high-speed analog applications, and is a great candidate
for a practical nanoscale random number generator. They can
be integrated into a standard CMOS (Complementary Metal-
Oxide-Semiconductor) fabrication process, can be shrunk to
nanoscale dimensions [12], and have CMOS-compatible cur-
rent densities and voltages [13]. As shown in Figure 2 (a),
a TD consists of a strongly n-doped and p-doped junction,
and conducts either by tunneling through or by thermionic
emission over the narrow depletion region. Under current bias,
the random occupancy of charge traps in the depletion region
determine whether the device conducts through tunneling (∼
0.05 V) or thermionic emission (∼ 0.45 V). Interpreting
tunneling as tails, and thermionic emission as heads, tuning the
TD can be accomplished by tweaking the bias current near the
region of the peak, where lower currents bias the TD towards
tunneling, and higher currents towards thermionic emission,
as shown in Figure 2 (b). The resulting coin flips have been
shown to pass established tests of statistical quality [14]. While
the data shown in Figure 2 was taken with a large discrete
component device at the MHz speed of our data acquisition,
both scaled and high-speed devices have been demonstrated in



the literature. The device in Ref. [12] has a dimension under
100 nm, and consumes a power of 13 nW for tunneling, and
38 nW for thermionic emission. The time to generate a flip
can be determined by the time taken to charge the junction
capacitance (0.25 fF) twice - once to reset it, and once to
charge it for the coin flip - 1.2 ns. Assuming no additional
overhead from parasitics, this produces an energy consumption
of 0.05 fW for a heads, and 0.02 fW for a tails. The device
in Ref. [13] worked at time scales as short as 50 ps, but is
larger at 600 nm a side. The correspondingly larger 0.8 mA
current makes it simpler to integrate, with the short operation
time counteracting the larger power dissipation, limiting the
energy consumption to 50 fJ for heads and 20 fJ for tails. We
use this last TD device for resource estimation later in this
manuscript.

B. Magnetic Tunnel Junction

Magnetic tunnel junctions (MTJs) have recently become
a crucial component of memory, in-memory computing, and

Fig. 3: a) Schematic illustration of the VCMA-MTJ stochastic
device structure with various knobs to control the switching
probability. T2-T4 applies a biased voltage on the MTJ struc-
ture. Spin transfer torque (STT) (T1-T2) or spin Hall effect
(SHE) (T1-T3) can bias the switching probability. b) A and AP
states are stable without applying a voltage. A biased voltage
eliminates stable states with a precessional switching to the
middle in-plane state. c) After removing the bias voltage,
the device recovers to the stable states with an unpredicted
switching towards A or AP state.

probability bit (p-bit) device applications [15]–[17]. An MTJ
consists of an insulating tunnel barrier between two thin
ferromagnetic layers; due to spin-dependent electron transport,
the MTJ has a high and low resistance state depending
on the P (parallel) and AP (anti-parallel) orientation of the
magnetization of the two ferromagnetic layers. One of these
layers is held at a fixed magnetization, while the other, the
free layer, can be switched via voltage, current, and heat. The
thermally-driven, stochastic nature of the switching of the free
layer can lead to generation of streams of random bits [18].
The MTJ can be set up as a stochastic read device, by having
a low-anisotropy magnetic free layer, near the superparamag-
netic limit, that randomly switches its magnetization at room
temperature. The random fluctuations of the MTJ resistance
can then be read. Alternatively, the MTJ can be set up as a
stochastic write device, with a stable-anisotropy free magnetic
layer that has a probability of switching its magnetization,
and therefore the MTJ resistance, depending on the amplitude
and duration of an applied current pulse. In both of these
configurations, the weight of the probabilistic bit, i.e. how
much time it spends in P or AP states, can be controlled using
constant applied fields and/or DC bias voltages or currents. As
an alternative to spin transfer torque (STT), the spin Hall effect
(SHE) can be used to change the state of the MTJ with low-
energy switching behavior as shown in Fig. 3 (a). We will
refer to these devices as MTJ-SHE.

An alternative way to generate stochastic bit streams
with MTJs is using voltage-controlled magnetic anisotropy
(VCMA), where the anisotropy of the free magnetic switching
layer of the MTJ is modulated using voltage; this effect
has been extensively explored for memory applications. The
VCMA effect can exert unpredictable magnetization dynamics
on the free layer at room temperature, but it has not yet been
fully explored for generating controllable random bit streams.
Here, we build numerical models of both the VCMA-MTJs
and the MTJ-SHE based on the Landau-Lifshitz-Gilbert (LLG)
equation [19], [20], modeling a standard perpendicular MTJ
stack comprised of CoFeB (free layer)/MgO/CoFeB (fixed
layer), as shown in Fig. 3a. Fig. 3b-c depicts the operation of
the device using VCMA to generate a random bit stream: first,
a voltage is applied that reduces the perpendicular magnetic
anisotropy and sends the magnetization from out of plane to
in-plane through precessional oscillations (Fig. 3b). Then, the
voltage is turned off, and when the anisotropy pops back, the
magnetization must choose one of two out-of-plane directions
to stabilize the MTJ in either a P or AP state (Fig. 3c). We
will refer to this device as MTJ-VCMA. Similarly, the MTJ-
SHE uses the SHE to send the magnetization to a middle-state
when the SHE is on, and subsequently the magnetization must
recover to either a P or AP state.

The developed abstract models for both the MTJ-SHE and
MTJ-VCMA capture the devices functionality and energy
consumption. These device models are utilized when eval-
uating the fitness function of our evolutionary method and
generated bit stream from this analytical code is provided to
the probabilistic circuit.



IV. PROBABILISTIC CIRCUITS

An important application for probabilistic circuits is to
generate RNGs from a given distribution. There are many
potential methods for taking a series of two-state random
outcomes, such as those produced by an MTJ or TD, and
converting them into a sample from a desired distribution.
One approach would be to utilize classic flipping methods
[21]. Though, taking such approaches may lead to tossing an
unbounded number of arbitrarily tuned coins [21]. Another
approach could come from identifying outcomes of a series of
tossed to coins to either a discrete distribution or a discretized
continuous distribution. Such an approach would guarantee a
finite number of tosses provided the distributions have finite
support or are truncated in some fashion. We will focus on
sampling from discrete, finitely supported distributions using
such an identification. We will not review all such methods of
sampling nor argue that this is a superior one in any metric.
However, this test case demonstrates an important feature: we
are able to produce correlation among independent coin tosses
to sample from a distribution that cannot be sampled from two
independent coin flips alone.

To mimic coin tossing, we consider the Bernoulli distri-
bution. This distribution is defined on two events, 0(T) and
1(H). We will say P(1) = p and P(0) = 1− p. If we wish to
sample from a distribution with just two events, or a discretized
continuous distribution with two effective events, we need only
make an identification of H with event 1 and T with event 2
and assign the probability p accordingly. Note, for a discretized
continuous distribution, this would mean assigning p to be the
integral of the probability density function (pdf) over the bin
corresponding to event 1. If we have more than two events,
more care may need to be taken. For example, if we have
four events, we may toss two coins in a row. Let p be the
probability of heads for coin 1 and q be the probability of
heads for coin 2. Since there are four distinct outcomes (HH,
HT, TH, and TT), we need only solve the appropriate system
of equations to solve for the probabilities p and q. If you
have three events, however, you will need to arbitrarily select
two of the four outcomes to represent a single one. In such
instances there may be many non-unique representations. This
methodology extends easily to any finite number of states.

However, situations may arise where there are no solutions
for the coin heads probabilities. In these situations, we will
need to enforce correlation among the outcomes of the coin
tosses. There are many ways to correlate coin flips. One way
to correlate the output of coin flips among Bernoulli random
variables is through a hidden dependence model.

The “Hidden Dependence” model creates dependent random
variables that are connected by some underlying, possibly
hidden, random variable as illustrated in Fig. 4. This hidden
variable can be thought of in many ways. It could, for instance,
represent some physical model. The dependence may induce
correlation among outputs. Relating this to COINFLIPS, the
hidden variable could be the physics of a device such as an
MTJ or a TD. In our test case, the hidden variable could

be another coin whose outcome determines which set of two
additional coins are flipped. Hidden dependence coins can be
flipped simultaneously or in any order. This means from an
outside viewpoint, the coins appear to be independent tosses
even though they represent dependent random variables.

Hidden Dependence Bernoulli Coins

In the “Hidden Dependence” scenario, there is a hidden pro-
cess, stochastic or deterministic, that controls the probability
of heads among a collection of coins, as shown in Fig. 4.

Fig. 4: In the “Hidden Dependence” model, there is a hidden
process, stochastic or deterministic, that controls the proba-
bility of heads among a collection of coins. In this cartoon,
the hidden process chooses which set of coins is flipped. The
observer only sees a single set, the effective flipping set.

The hidden process that controls the dependence among the
effective visible Bernoulli coins could be one of many options.
It could be a deterministic process that shuffles the used coin
set; it could be a knob that tunes the probability of heads
among all coins; or it could be some more complicated random
determination. However, the key feature for this scenario
is that the effective visible set of coins can be flipped in
any desired order (or all at once). Any causation of output
correlation and dependence is absorbed by something a viewer
does not see.

As an analogy, one could imagine a person that has two
sets of coins in their pocket, each set has a coin labeled coin
1 and a coin labeled coin 2. The person encounters a series
of individuals. When encountering an individual, the person
selects a set of coins and the individual is obliged to flip them.
If the person is strategic in how they choose the set of coins
for each individual to flip, they can induce a correlation in the
effective output of coin 1 and coin 2.

We now define a concrete example that we will develop a
circuit for. Suppose the distribution we would like to sample
from is that of a four-sided die that rolls 0 with probability 1/2,
and rolls 1, 2, 3 with probability 1/6 each. It’s easy enough to
identify these outcomes with the outcomes of two coin flips:
0 corresponds to HH, 1 to HT, 2 to TH, and 3 to TT. If p is



(a) ω1 (b) ω2 (c) ω3

Fig. 5: Impact of multi-objective weights ω1, ω2, ω3 on the KL divergence and energy usage of MTJ-SHE devices.

the probability of H for coin 1 and q is the probability of H
for coin 2, then we need the following to hold:

pq =
1

2
,

p(1− q) =
1

6
,

(1− p)q =
1

6
,

(1− p)(1− q) =
1

6
.

(1)

Despite the simple nature of this distribution, it is a quintessen-
tial example of a system that requires the use of a hidden
process. As hinted above, there is a problem with this setup.
This system of equations has no solution for p or q. In order
to realize the desired die roll, we will need to employ a
mechanism that alters the probabilities p and q.

The set of equations (1) are ill defined as p and q are over-
constrained. To rectify this, we can relax the constraints by
adding in additional variables, namely by adding in a second
set of coins. Returning to our heuristic, we want our person
handing out the sets of coins to hand out set 1 for a fraction
w of the time and set 2 for the remainder of the time. Set 1
has coin 1 with probability of heads p1 and has coin 2 with
probability of heads q1. Set 2 has probabilities of heads p2 and
q2 respectively. This yields the following system of equations.

wp1q1 + (1− w)p2q2 =
1

2
,

wp1(1− q1) + (1− w)p2(1− q2) =
1

6
,

w(1− p1)q1 + (1− w)(1− p2)q2 =
1

6
,

w(1− p1)(1− q1) + (1− w)(1− p2)(1− q2) =
1

6

(2)

By altering between coin sets with probability w, we have
induced a new hidden process that controls the observed
outcomes among the effective observed coins. Notably, this
introduction allows the system to be solved for some choices
of w. However, given that we have a choice in w, this means
we may not have a unique global solution for p1, p2, q1, and
q2.

While we concede that this exemplar is not tied to any
specific application, any practical distribution will not likely
have outcome probabilities that may be represented in a system
similar to (1). This exemplar is meant to showcase how one
might correlate output and generate circuits to deal with such
problems. If the future of probabilistic computer design can
use distributions formed in such a manner, we will need the
algorithmic expertise to handle these types of over-constrained
situations.

We model equation set (2) in Section V, and include the
functional models of the various emerging devices we studied
in this work.

V. AI-ENHANCED PROBABILISTIC CIRCUITS

We modeled the equations described in Section IV and
leveraged LEAP to generate the hidden weight (w) and
probability weights (p1, q1, p2, and q2) for the coinflip
devices, where w, p1, q1, p2, q2 ∈ [0, 1]. For our examples we
used LEAP’s traditional evolutionary algorithm with a real
representation, where the parameters to be evolved represent
parameters associated with emerging devices, namely TD,
MTJ-SHE, and MTJ-VCMA devices. We used tournament
selection, uniform crossover, and Gaussian mutation with a
standard deviation of 0.001 and one expected mutation per
individual. For our use-case this is to find the optimal value of
w, p1,q1, p2, and q2 such that our desired objective is achieved.
In this case, we have three key objectives, described in our
fitness function below.

Fitness function: The fitness function defines the objective
of the evolutionary algorithm. In this work, we leverage a
multi-objective fitness function, where we seek to have LEAP
find the appropriate values for these that result in minimizing
the KL divergence value from the desired distribution while
simultaneously minimizing the difference between the weights
of coins and 0.5 (a fair coin), as well as minimizing energy
usage (based on the particular device). The KL divergence
objective is specifically measuring the difference from the
given distribution. In particular, we calculate the following:



v(0) = wp1q1 + (1− w)p2q2

v(1) = wp1(1− q1) + (1− w)p2(1− q2)

v(2) = w(1− p1)q1 + (1− w)(1− p2)q2

v(3) = w(1− p1)(1− q1) + (1− w)(1− p2)(1− q2)

(3)

We then set p(0) = 1
2 , p(1) = 1

6 , p(2) = 1
6 , p(3) = 1

6 .

The KL divergence is then calculated:

KL =

3∑
i=0

v(i) log
v(i)

p(i)
(4)

For the given device model (MTJ-SHE, MTJ-VCMA or
TD), we then calculate the energy usage for devices with
probabilities p1, p2, q1, and q2. We sum these energy values
and produce a single energy usage, EN . To allow us to in-
vestigate the tradeoff between different objectives, we include
three objective weights ω1, ω2, ω3. Thus, our overall fitness
function is:

f(w, p1, p2, q1, q2) = ω1KL(w, p1, p2, q1, q2)

+ ω2

(
2∑

i=1

|pi − 0.5|+
2∑

i=1

|qi − 0.5|

)
+ ω3EN(p1, p2, q1, q2)

(5)

A. Tradeoffs and Performance Evaluation

In Fig. 5, we can see the impact on the KL-divergence
and the energy use for different values for the three objective
weights ω1, ω2, ω3 for the MTJ-SHE device. Here, we
can clearly see that by setting the values for each weight
differently, we can achieve different varying levels of KL-
divergence and energy usage. For example, a larger ω1 for
the minimizing KL-divergence objective and a smaller ω3 for
the minimizing energy usage objective result in sets of device
parameters that achieve smaller KL-divergence values at the
expense of using more energy. For future co-design efforts,
we can leverage this multi-objective approach to tune the
performance of our devices to achieve our desired tradeoffs
in performance and energy usage. We omit the plots for MTJ-
VCMA and TD, where there is less impact of the weight of
the coins on the energy usage. In the remainder of the paper,
we focus on primarily minimizing KL divergence, resulting in
a focus on the following weight sets: ω1 = 7500, ω2 = 0.005,
and ω3 = 0.5.

B. MTJ-VCMA Results

We selected the device configuration for MTJ-VCMA that
gave the lowest KL-divergence value. This device was op-
timized using ω1 = 7500, ω2 = 0.005, and ω3 = 0.5.
The resulting parameters found through optimization over
1000 generations in LEAP for this device were w = 0.233,
p1 = 0.237, p2 = 0.781, q1 = 0.199, and q2 = 0.805. Fig. 6
plots the KL divergence and energy usage for the n samples for

this MTJ-VCMA device across 10 different sets of samples.
As seen Fig. 6, increasing the number of samples lowers
the KL-divergence from the desired probability distribution.
However, more samples come at the cost of increased energy
consumption. One of the resulting distributions with 2000
samples is shown in Fig. 7.

Fig. 6: KL divergence and energy usage vs. number of samples
for the given distribution with the MTJ-VCMA device. There
were 10 trials conducted per sample. Sample sizes investigated
include 10, 50, 100, 200, 500, 1000, 1500 and 2000.

Fig. 7: Empirical distribution using MTJ-VCMA for 2000
samples in a single run. The optimized values generated were:
w = 0.306, p1 = 0.448, p2 = 0.746, q1 = 0.439, and
q2 = 0.749.

C. MTJ-SHE Results

We also selected the device configuration for MTJ-SHE
that gave us the lowest KL-divergence value. This device was
optimized using ω1 = 7500, ω2 = 0.005, and ω3 = 0.5.
The resulting parameters found through optimization over
1000 generations in LEAP for this device were w = 0.306,
p1 = 0.448, p2 = 0.746, q1 = 0.439, and q2 = 0.749. Fig. 8
plots the KL divergence and energy usage for the n samples
for this MTJ-SHE device across 10 different sets of samples.



Fig. 8: KL divergence and energy usage vs. number of samples
for the given distribution with the MTJ-SHE device. There
were 10 trials conducted per sample. Sample sizes investigated
include 10, 50, 100, 200, 500, 1000, 1500 and 2000.

As seen Fig. 8, increasing the number of samples lowers
the KL-divergence from the desired probability distribution.
However, more samples come at the cost of increased energy
consumption. One of the resulting distributions with 2000
samples is shown in Fig. 9.

It is observed that there is an orders of magnitude energy
reduction when SHE is used compared to VCMA. In practice,
SHE can require a DC external magnetic field. In the model
used, the SHE current is polarized perfectly in-plane; experi-
mentally, this is not always the case. The VCMA effect could
provide robustness at the cost of energy, since when VCMA
is used, the magnetization is dependent on anisotropy instead
of spin current.

Fig. 9: Empirical distribution using MTJ-SHE for 2000 sam-
ples in a single run. The optimized values generated were:
w = 0.306, p1 = 0.448, p2 = 0.746, q1 = 0.439, and
q2 = 0.749.

D. TD Results

Again, we selected the device configuration for TD that
gave us the lowest KL-divergence value. This device was

optimized using ω1 = 7500, ω2 = 0.005, and ω3 = 0.5.
The resulting parameters found through optimization over
1000 generations in LEAP for this device were w = 0.714,
p1 = 0.891, p2 = 0.107, q1 = 0.766, and q2 = 0.419.
Fig. 11 plots the KL divergence and energy usage for the n
samples for this TD device across 10 different sets of samples.
As seen Fig. 11, increasing the number of samples lowers
the KL-divergence from the desired probability distribution.
However, more samples come at the cost of increased energy
consumption. One of the resulting distributions with 2000
samples is shown in Fig. 12.

E. Conclusions

We leveraged LEAP to generate optimal device parameters
for a given probability distribution given in equations (2).
These parameters were then plugged into device models to
generate empirical distributions as shown in Figs. 7, 9 and 12.
In Fig. 10, we show the 20 different sets of weight values
that were optimized for each device type for ω1 = 7500,
ω2 = 0.005, and ω3 = 0.5. Here, we see that the weights
are customized for the device’s behavior to target the best
performance in terms of KL divergence and energy usage.

One of the challenges in optimizing for both algorithms
and devices was appropriately abstracting the device models
and algorithmic constraints. The functional models developed
will also be evolved in time as new device data and research
emerges. Our framework is set up so as to accommodate such
changes.

VI. FUTURE WORK

In this work, we leveraged LEAP for parameter optimiza-
tion; however, LEAP does not allow for network topology
optimization. For future work, for both topology and parameter
optimization, we will leverage Evolutionary Optimization for
Neuromorphic Systems (EONS) [7], [8] for evolving both non-
neuromorphic and neuromorphic circuits of these devices. In
this work, we specifically explored a “Hidden Dependence”
method. Future work will include other methods to evaluate
correlation and rank them based on performance tradeoff.
We will also explore the tradeoffs in circuit size, number of
devices, sampling rates, topology, and performance. We also
plan to expand our optimization technique to include system
design and architecture design.

Modeling complex problems such as nuclear and high
energy physics, climate models with high precision, and
novel AI techniques require simulating probabilistic behaviors.
However, doing so in conventional digital hardware has a
high energy cost. In this work, we explored drawing samples
directly from a simple, non-uniform distribution using true
random number generating (TRNG) device models. We chose
a simple distribution among four outcomes that cannot be
represented by the outcome of two independent coin tosses
alone. Rather, we employed probabilistic mixing through a
hidden process that can be represented as a probabilistic
circuit. Our choice of distribution was important to demon-
strate a methodology to correlate output among independent



Fig. 10: Optimized weight values for each device over twenty optimization runs using LEAP.

Fig. 11: KL divergence and energy usage vs. number of
samples for the given distribution with the TD device. There
were 10 trials conducted per sample. Sample sizes investigated
include 10, 50, 100, 200, 500, 1000, 1500 and 2000.

Fig. 12: Empirical distribution using TD for 2000 samples in a
single run. The optimized values generated were: w = 0.714,
p1 = 0.891, p2 = 0.107, q1 = 0.766, and q2 = 0.419.

tosses. Leveraging correlation of output is critical in direct
drawing from non-trivial distributions. We demonstrated this
method using three device models, namely MTJ-SHE, MTJ-
VCMA and TD. Direct random number generation leveraging
nanoscale devices promise significant energy and latency ad-
vantages for scientific computing applications.

Our ultimate goal is to achieve a billion random number
per microsecond using TRNG devices and computing on
distributions with low latency and energy footprint as seen in
the brain [5]. The results presented in this paper are a step in
that direction. Our research intends to develop probabilistic
neural computing, which will be relevant for both AI and
scientific computing applications.
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