
October 24, 1995 1

Collaboration during Conceptual Design

Lara D. Catledge

and

Colin Potts

Georgia Institute of Technology

October 24, 1995

Abstract: The conceptual design of software involves the analysis of requirements, functional

specification, and architectural design. Despite the recent interest in supporting the software development

process, conceptual design remains a largely informal and little understood activity. We studied the

conceptual design activities of a representative industrial software project, Centauri, for three months with

follow-up observations and discussions over the following six months. Our goal was to understand how

patterns of collaboration and communication in project teams affect the convergence of the project on a

common vision and a documented specification. In this paper, we present our research methodology and

findings, and the implications of the results for process and tool support. The following observations stand

out. First, convergence on a common system vision was painfully slow. The major impediment to faster

progress was the difficulty that the project team had in making critical allocation and interface design

decisions. Second, Centauri project members repeatedly raised certain issues and failed to reach closure on

key problems. Finally, we observed a persistent tension between the desire on behalf of nearly all project

members to follow a proceduralized development process and the urgency of delivering a working product.

This tension manifested itself in the creation of ad hoc processes and various dysfunctional displacement

activities. Although our findings are rooted in the specific context of a single project, we believe they are of

general import, and discuss their implications in the light of comparable findings in other studies.

October 24, 1995 2

The conceptual design of software involves the analysis of requirements, functional specification, and

architectural design. Despite the recent interest in supporting the software development process, conceptual

design remains a largely informal and little understood activity. It is open-ended and often tackles ill-defined

and poorly understood problems. In practice, “soft” factors, such as organizational culture, patterns of

collaboration, and effectiveness of team communication, play as important a role in determining

organizational culture as the “hard” engineering techniques, such as specification and validation methods,

that have been more strongly emphasized by the software engineering research community.

In this paper, we describe a study that we undertook of the conceptual design activities of a

representative industrial software project, Centauri, for three months with follow-up observations and

discussions over the following six months. Our goal was to understand how patterns of collaboration and

communication in project teams affect the convergence of the project on a common vision and a

documented specification. In this paper, we present our research methodology and findings, and the

implications of the results for process and tool support. In particular, we discuss the effects that

organizational structure and inter-team and intra-team communication practices have on design convergence

as assessed by an analysis of how Centauri documents evolved and how ideas were expressed during project

meetings.

1. Collaboration in Conceptual Design

1.1. Previous Research

A number of case studies exist that describe portions of the requirements process. By analyzing and

cataloging the kinds of questions asked in writing requirements, Kuwana and Herbsleb [19] found that most

of the questions asked related to how a particular feature would be implemented and very rarely why a feature

had been included. Olson et. al. [25] developed a method for describing the percentage of time spent in

Requirements meetings on various tasks and found that a large portion of time spent in meetings was to

clarify points already discussed. Walz et. al. [41] found that the integration of knowledge and the depth of

domain knowledge was critical to the success of early stages in the project. All of these studies indicate

that while the details, the “what” and “how”, are being discussed, the rationale, reasons and the larger vision

are being neglected.

Another set of reseach focused on surveys. Curtis et. al. [7], by interviewing key personnel in 19

organizations found that one of the most significant and pervasive features that affected the success of large

projects was the presence of what they called a “superdesigner,” a person who was responsible for holding

and supporting the project vision. Lubars, Potts and Richter [29] did a similar study of 23 organizations,

but focused on the Requirements analysis process exclusively. That study clearly demonstrated that informal

October 24, 1995 3

documentation, communication and coordination are all more important during what we now call the

conceptual design phase, than conventional notational and analytic methodologies.

1.2. Research Objectives

 We had a number of research issues that we wished to study at the start of the observation. We’ve

integrated a lot of the aspects of earlier research in an ecolically valid environment. We’ve adopted a

longitudinal approach,similar to waltz but opposed to surveys. Our data is more in-depth and comprehensive

than the Olson or Kuwana work (also less focused). Focusing on the early stages of design, as opposed to

SEI and other software improvement efforts. This is a real project with real deadlines and deliverables. Not

a toy project.

Formation & facilitation of common technical vision

As Curtis, Krasner and Iscoe [7] discovered, successful projects, even very large ones, often have a

single person who is recognized as the source and keeper of the project vision. This `super designer,' as

Curtis et al named the role, is always a senior technical figure in the project who is intimately familiar with

the problem domain, the requirements, and the design constraints imposed by the architecture, but is not

necessarily an official project leader or manager. We are interested in ways a common technical vision is

developed by teams doing original design work.

Keeping track of status & supporting project's "working memory"

It has become a commonplace to observe that effective teams and organizations `learn' from their

experiences and that an `institutional memory' is an aid to rapid problem solving in familiar situations.

Tools such as gIBIS [24] aim to provide teams with a structured record of their decisions so that they can be

reconsidered, audited, or replayed later.

We are mainly interested in the remembering and forgetting of key design considerations and decisions

during conceptual design. The duration of these memories (days or weeks, or at most months) is short by

organizational standards and within the time course of many of the design activities that could use them.

Thus these are `working' memories, not long-term memories.

Sharing and evolving informal information

During conceptual design, a design team may produce many ephemeral documents in addition to early

versions of formal Requirements and design documents. These ephemeral documents include rough sketches

of scenarios of use, system concept documents, discussion topics, white papers and memos. The

relationship of these documents to the more formal documents that are the product of the conceptual design

activities is not formally defined but they do play a vital role in the provenance of design decisions (i.e.

recording where they came from and why).

Representing & analyzing concrete system properties

Exploratory conceptual design often proceeds from the concrete to the abstract as much as from the

abstract to the concrete. In particular, many software engineering and human-computer interaction

October 24, 1995 4

researchers have recently focused on the role of scenarios in defining system Requirements and in exploring

design options [29]. This use of scenarios contrasts with their role in validating existing specifications or

designs because it is aimed at generating such documents.

2. Methodology

2.1. The Centauri Project Setting

We studied the conceptual design activities of a representative industrial software project, Centauri,

within Motorola for three months with follow-up observations and discussions over the following six

months. Our goal was to understand how patterns of collaboration and communication in project teams

affect the convergence of the project on a common vision and a documented specification. In this paper, we

present our research methodology and findings, and the implications of the results for process and tool

support. In particular, we discuss the effects that organizational structure and inter-team and intra-team

communication practices have on design convergence as assessed by an analysis of how Centauri documents

evolved and how ideas were expressed during project meetings.

The Centari Project provided an ideal environment in which to study these issues because several of the

frequent constraints on development projects were missing. First, Centauri is a new development rather than

a project to manage the evolution of an existing system. Second, Centauri is not being developed for a

specific client who could constrain the problem boundary. A third reason for the open-endedness of

Centauri’s conceptual design process is that Centauri is "middleware," not application software. That is, it

is software that resides on and uses standard system software (operating system services), but it acts as a

platform itself for application software. This makes the services provided by Centauri more abstract and

difficult to understand than the services provided by an application to its end-users. The application software

developers within Motorola who will be Centauri’s direct users may use different terminology, and this

compounds the problems of communication and development of a common understanding.

2.2. Observation and Summarization of Meetings

We taped all the requirements meetings from June 30th to September 15th, 1994. This totals

approximately 40 hours videotape. These videotapes are indexed to an outline of the meeting minutes with

Synthesis [REF]. The meeting notes were kept in a loose IBIS-like format. Key issues, assumtptions,

and questions were indicated. These were subsequently catagorized by subject matter and scope.

2.3. Tracking Documentation Dependencies and Evolution

All Requirements/architecture documents from June '94 to March '95 have been collected and logged.

This includes architecture documents and diagrams, the original requirements document, formal

presentations as well as more informal white paper documents. These were cataloged on a regular basis and

cross-referenced to the meeting notes.

October 24, 1995 5

2.4. Subjective Accounts of the Designers

In order to maintain contact with the Centauri designers, we conducted in-depth interviews from

November '94 to March '95. We used these interviews both to maintain contact with the issues Centari

was struggling with in the later term and to confirm our findings from the summer.

3.Project Chronology and Criical Incidents

3.1. Background

Centauri was initially staffed in Spring 1994 with the goal to develop a common core platform that

would be portable, scalable, and extensible for a set of Motorola products. The original staffing included a

managerial team that would provide most of the managerial leadership throughout the Concept Exploration

stage. The first managerial team consisted of three components: a Reuse Team, a Product Requirements

Team and an Architecture Team.

This group developed several seminal documents that outline the basic strategy of the Centauri project

during these early phase. One of these, the Centauri Project Strategy and Concept Exploration

Requirements, listed the objective of the Centauri Project as to "provide a small, low cost platform to target

the small capacity cellular applications" The document also listed an initial list of applications to be placed

on top of Centauri. Centauri was initially thought to be producable in a very short amount of time.

Estimates as early as one year from the initial staffing were given for deliverables. The primary deliverable

of this group was the initial architecture document, finished in early April

3.2. First Team-based Organization

In early summer, the Centaui Team saw an influx of about 40 staff engineers from a cancelled project.

This event roughly coincides with our involvement in the project. The team structure would change to

include a Development Environments team, a expanded Reuse team, a Requirements team, a Core Platform

Development team and an API team. Teams were fairly stable and they were cross-staffed extensively. A

notable exception to this was the requirement team which tended to be smaller and more insular.

The Requirements team at this time was developing a System Requirements Document (SRD),

unofficially forming the lynch-pin of the Centauri development. Generally this period is characterized by

the Requirments team dividing up sections of the architecture document, going away and writing labelled

requirements based on their previous exerience and other SRDs, and finally reviewing them within the team.

3.3. The Great Process Debate

Documentation and process was one of the large issues that continued to be a problem in the

requirements team. It was considered at one point that certain sections of the SRD were complete enough

October 24, 1995 6

to start spinning off development teams. In a group meeting with the development environments/process

team to discuss this option it was determined that the requirements team was actually producing a functional

specification, kicking off a huge debate over software lifecycles, process and documentation standards. In

the end, the develoment environments spawned a subteam to examine the options, to make a decision on a

lifecycle choice and to map that choice to the existing corporate process. Interestingly, the requirement

team did not have representation on this team and, in the absense of a decision, continued to write and

review sections of SRD.

3.4. The Architecture Debate

The issue of location of functionality continued to be a thorn in everyone’s side through the middle of

the summer. Finally, the Requirements team discovered that the API team was struggling with the

architecture document's designation of the position of the API. This resulted in a series of discussions

between the two teams in e-mail and face to face meetings. From 8/2 to 8/17 the Requirements and API

teams met jointly occasionally to discuss these issues. Resulting from this collaboration was a document

“This is Centari” that outlined all of the interfaces in great detail.

3.5. Customer Involvement

The document review and subsequent changes to the document reflecting the discussion proceeded with

pretty regularity until the week of July 25th. The requirements team decided that they needed more

representation from a customer. So they decided to appoint a divisional strategy and evolution team as their

customers. They commented that the requirements needed to include system level constraints. This derailed

the Requirements team sufficiently that they decided to stop working on the Requirements document until

they resolved some of the larger issues they were facing: including reuse, customer need identification and

development cycle.

The requirements team decided to meet with representatives from likely aplication groups one-one one.

This progressed from August 17th to September 9th. A list of questions was compiled. The meetings

were video-taped and transcribed laboriously. On the basis of these interviews another system level

architecture document was written. In addition, a wish list of features was created which bore a remarkable

resemblance to the original architecture document.

3.6. Second Team-based Organization

From this wish list the Requirements team decided to spin off four sub-committees to review specific

technical problems. Each team was to publish a "white paper." The purpose of the white papers is to “to

facilitate a level of fundamental agreement on the requirements and functions of the core. The old team

structure was virtually abandonned in favor of this more flexible new approach. These white papers, along

October 24, 1995 7

with the others, were collected and compiled with a wrapper in what was intended to be the final System

Requirments Document.

4. Conceptual Design in Centauri

In this section, we present our observations about the Centauri project. The first two subsections (on

organizational working memory and convergence on a unified vision) deal with team collaboration; the

second two (on concreteness of expression and architectural interfaces) deal with design issues.

4.1. Organizational Working Memory

4.1.1. Meetings

For the period of two months the requirements team reviewed and revised the large, 14,000 word

system requirements document. The content of this original document was derived from a number of other

documents. Only 2,000 words were added in the two months of our involvement during which the

requirements document was also active.

Meeting notes collected over that period indicate that numerous topics were repeatedly discussed

without reference to or awareness of previous discussions. In most cases the meetings were arranged as

document reviews for particular sections of the requirements document. During the discussion of some of

the smaller scaled items, larger issues would often present themselves. For instance, on 6/30, the issue of

backwards compatibility with existing systems came up in a discussion of the first customer for the core

platform. However, at the next meeting on 7/5 there was no mention of it. The discussion centered around

what functionality belongs in the core software and what belongs above the API. While these issues are

not unrelated, there was no mention of the previous week’s discussion. Backwards compatibility did not

come up in a meeting again until 7/12 during a discussion of the possibility of designing a platform that

would support more than one product without any noticeable progress being made on an answer and

apparently without any memory of the previous discussions.

Other issues, such as the decision of what belongs in the core as opposed to what belongs in the core

were omnipresent. In this case, however, continuity from meeting to meeting was still lacking. The

difference in this case was that it was recognized as an large issue and eventually did see a sub-team staffed

with members of the requirements team and members of the API team. The issue in this case was that it

took two months for the group to determine that a different kind of action was called for.

One could argue that these issues were remembered, they just weren’t acted upon. Another possibility

is that the issues needed to achieve some sort of critical mass before the issue could be acted on. A third

speculation is that this team did not have the resources (whether power, knowledge, or manpower) to solve

October 24, 1995 8

the particular problem at hand. The answer to all of these is that we do not have any indication that the

team even noticed how often the issues came up.

During this period, there was also a tendency for the requirements team to spin off issues like the great

process debate. While this tended to make work in other areas of the project, the requirements team itself

was not often involved in the nitty-gritty details of solving these roadblocks and they seemed perfectly

happy to keep working on the reviews and meetings as if the issue had not come up.

4.1.2. Documentation

Proving that items were forgotten from meeting to meeting in the absence of any physical artifact is

difficult. After all, our meeting notes are selective and subject to interpretation. However, we can indicate

where and when changes were made to the primary artifact, the System Requirements Document, and how

these are related to the content of the discussions. It is interesting to note that during this document review

period, very few changes were actually made to the SRD. The changes that were made generally fall under

minor edits to incorporate suggestions made in meetings (often word changes), narrative sections and

illustrations that back-filled the detail like illustrations of how a core platform would work. Very rarely

were significant changes to requirements made after the group review. There is a notable exception to this

in the case where reorganization of the SRD would take place. Overall, however, these changes amounted

to less that a 14% change in the size of the document over two months.

October 24, 1995 9

Evolution of SRD

Date

W
or

d
C

ou
nt

0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

1 4 0 0 0

1 6 0 0 0

7
/6

7
/9

7
/1

2
7

/1
5

7
/1

8
7

/2
1

7
/2

4
7

/2
7

7
/3

0
8

/2
8

/5
8

/8
8

/1
1

8
/1

4
8

/1
7

8
/2

0
8

/2
3

8
/2

6

In the beginning of the summer, sections were being reviewed every week. Common User Interfaces,

Resource Management, Timer Management and State Table Support were all reviewed by 7/7. There

continued to be small revisions made to these documents through the next week, usually 3-5 small

revisions over that time period. Major ideas, like the suggestion presented at one of the meetings that the

method for extending core should mimic the Macintosh operating system, seemed to be ignored completely.

As the summer wore on, edits to documentation dwindled until the point where no edits were made to the

Operating System Interfaces section or to the Message Management section after they were reviewed.

Even though the team continued to have bi-weekly meetings, there were no further changes made to the

System Requirements Document after August 1st. The requirements team started a series of two “tiger

team” meetings with the API team to determine the life between the core and applications. Documents

were written after this meeting, but not by the requirements team. The SRD was as a document, for all

practical purposes, abandoned. The project would not start working on unifying document again for several

months.

4.1.3 Comparison

October 24, 1995 10

In contrast to the period described above, the next month was characterized by a profusion of smaller,

informal documents that were not reviewed or controlled. Overall, there were six customer interviews, two

system architecture documents, and four white papers written in the same amount of time as the SRD

review. The customer interviews were transcribed laboriously. Each transcript entailed hours of reviewing

the video-tapes. In contrast to the System Requirements Document which tended to have a large number of

place holders for information to be added later, the customer interview transcripts contained detailed accounts

of how customer’s systems operated and what customers expected from a core platform. The content in

these documents helped the requirements team to start answering the questions that had plagued them in the

early part of the summer.

Based on these interviews, the requirements team was able to specify a number of troublesome areas

and recommend subteams to study these areas. Each sub team was to produce a white paper examining the

options. Once again, these white papers were not vacuous. But they were also not reviewed or controlled

until they were combined with a wrapper document that tied all the white papers together. This

conglomerate document was intended to be the next requirements document.

Interestingly, the original SRD was not referred to in this second requirements process, and different

members of the team perceived the contribution of the SRD differently. Most of the engineers felt that the

effort on the first SRD had been spinning their wheels. As one engineer said: “We didn’t use much of what

was in the requirements document.” Management, however, reported that large bodies of text had been cut

from the original SRD and pasted into the later document. Our analysis of the documentation shows that

the engineers were right about the text, but wrong about the ideas. Very little text actually got carried over,

providing ample opportunity for loss of information, but many of the significant ideas explored during the

writing of the first document show up transformed in the second. The effort that went into the first

document was certainly not wasted.

4.1.4. Conclusion: An amnesic process
Discussions on certain problematic issues recurred, often without team members’ recognition.

Although groups met regularly (in the case of the requirements team twice a week), they kept no meeting

notes that would have helped them recover previous discussions. In addition, the matrix organization led to

parallel attacks on same problem. Cross-staffing among teams reduced this redundancy of effort to some

extent, but teams often worked on the same problems without knowledge of the other’s activities. The

emphasis on completed products, rather than on informal documentation, tended to further isolate teams

since documents were not controlled until reviewed; informal notes and annotations were seldom shared. The

issues most affected by the absence of an effective organiational working memory included the allocation of

functionality between applications and Centauri, process issues such as documentation standards, team

responsibilities and leadership, and customer identification.

October 24, 1995 11

4.2. Convergence on a Unified Vision

Not surprisingly, the issues that tended to be forgotten were also the ones that exhibited slow

convergence. The Centauri team used a number of methods to achieve faster convergence once an issue was

recognized as a stumbling block. These are each described below.

4.2.1 .Responsibility for decision making

Decision making in Centauri was dispersed among the subteams. The matrix organization and cross-

staffing of the subteams arose out of a desire to make the designers closest to the problems responsible for

technical decisions. Many issues, however, fell somewhere between being technical and strategic; subteam

members often waited in vain for management to make up its mind, while management waited for the

subteams to make faster progress.

The absence of a “superdesigner” during this phase of the project further compounded the lack of

convergence on a unified vision, especially regarding the scope of the system and the nature of the interface

between Centauri and its applications. Everyone recognized that the failure to decide where key functionality

was to reside (in Centauri or in the applications) was significantly blocking progress. In response, several

teams spawned subteams to discuss that issue and hold joint meetings as a “tiger team,” with the goal that

their recommendations would be elevated to a strategic level. It was not until the sub-teams were formed

that significant progress was made. However, the process involved much thrashing and loss of time between

organizational levels while the decision making responsibility migrated from the internal teams, to their

sub-teams, to upper management, and finally back down to sub-teams again.

4.2.2. Team Membership

The staffing and team allocation on Centauri was fluid and encouraged the informal cross-fertilization of

design ideas. Although the primary teams remained a fairly constant set of eight, sub-teams and tiger-teams

were spawned on a regular basis: Over an eight month period, 11 such teams were formed to address issues

in the process arena and to write the white papers. Given that there were approximately 40 people working

on Centauri at any one time and that most of the team leaders were each members of only one team, this

total figure of 19 teams means that the average project member served on more than two teams.

Management generally approved and help organize these efforts, viewing its role as coordination, rather than

executive authority. This “organic” view of the project (as one manager called it) diverged from the

company’s normal procedures, but Centauri differed from most of the company’s projects.

Eventually, sub-teaming became such a common method for solving difficult issues that a process was

written on how to be a sub-team. It included recommendations that the goals of the sub-team be clearly

stated up front, that exit criteria be set and an evolution for the outputs be managed. Effective inter-team

communication made great demands on the engineers, and led to a piecemeal and reactive approach to

October 24, 1995 12

problems that one designer said was reminiscent of “a flock of fishes:” The teams organized around a

particular issue, and once they had solved that one they moved on to the next in a swarm. They lacked a

common vision of the big picture and a sense of continuity from one problem to the next.

4.2.3. Conclusion: Diffused responsibility and diluted vision

Overall, then, the project did not converge on a unified vision as quickly as the developers and

management thought it would. No single person emerged as the principal architect until much later in the

project. Instead, the spawning of multiple subteams led to a diffusion of responsibility for the core ideas of

the system and a dilution of the resulting vision.

4.3. Concreteness and the Effects of Vagueness
4.3.1. Early commitment to detail

The history of the project reflects an architecture-centric view of Centauri and a desire by all concerned

to get down to engineering details as soon as possible. The project proper therefore started with an

architecture proposal, not a conceptual overview of the requirements that Centauri would meet. In an end-

user application, this rush to architectural decisions before the requirements were clear might have been

premature. The Centauri designers, in contrast, were developing a software infrastructure whose justification

rested on the architectural benefits for future applications.

Next, the requirements document was incrementally reviewed, and, as we showed in Section 4.1.2, it

was only modified slightly during this process. But detail is not the same as concreteness. Ironically, the

urge to stay detailed coexisted with a persistent unease among the team that they were not getting to grips

with the real problems. Despite not going back to review or reconceptualize their architecture at a high

level, team members continually questioned the direction of the project. Table 1 shows the distribution of

issues raised in the meetings during this period over the categories listed in Section 2. The data are broken

into three groups: the first 10 review meetings (up to mid-August, 1994), the next six meetings, and the

eight meetings of the architecture sub-team with application experts (contemporaneous with the second

group of six review meetings). Issues about the process being followed and the documentation standards

dominated the review meetings, amounting to more than one third of those raised in the earlier set and over

one half of the later set. Moreover, the high-level process issues (of the type: “what are we trying to

accomplish in this team?”) actually increased in the review meetings at the very time that the document

stopped being changed much as a result of the substantive issues also raised.

The team’s attention to detail acted almost like a shield, letting the team ignore its concerns about

overall direction while making apparent progress. Several months later, one member of the team blamed

this growing sense that the team was addressing minutiae and not getting to grips with the bigger issues as

October 24, 1995 13

follows: “We really didn’t know what we were doing. We were inventing requirements without any idea of

who the customer was.”
4.3.2. Envisionment of applications

Recall that system was middleware, and so had no direct end-user, but rather should be generic for a

range of applications. How broad the application coverage should be and what functions should be provided

in the Centauri core and what would be continued to be supplied and reimplemented in the applications were

recurrent issues (see Section 4.4). One of the pervasive impediments to the Centauri conceptual design

activity was not so much that there was no customer, and therefore no definitive source of requirements, but

that Centauri is an infrastructure and there were no clear requirements distinguishing the applications that

would use it.

It became important to the team to anticipate the first few applications so that it could accurately

understand the requirements for the infrastructure. Despite the team’s appreciation that too great an emphasis

on the specific details of applications could tempt them to compromise the generality of the Centauri

architecture, they very soon started talking about the “First Application” as if it held secrets that they needed

revealed before they could make any significant progress. Certainly, there were differences in emphasis

among the applications that could have rendered any concrete work premature if the team were to have

anticipated the wrong application. For example, one candidate application would have required mainly

offline data access, whereas another would have required real-time access to distributed copies of data - a

complex set of requirements that the team wanted to defer if possible. Team members were acutely aware

that a commitment from an application project to use or even to consider using their architecture would be

shot in the arm for the project as a whole, and they did not want to make too many architectural decisions

before Centauri had a commitment from an application project. Several potential first applications came and

went during the months of our involvement, and on several occasions we were told that a decision about the

“First Application” had been made, only for that decision to turn out to be tentative.

Members of the team had eagerly dived into detail regarding the requirements without waiting for a

commitment from an application project and without having access to detailed customer requirements, but

they were reticent to make significant architectural decisions that they thought would depend on the “First

Application” before management made a decision. The result was a mild paralysis and a replacement of

design work with process busywork. When the first application eventually committed to use Centauri, its

specific needs might easily have been anticipated earlier by studying any of several existing systems as if

they were to be Centauri clients.
4.3.3. Scenarios

A form of concrete design thinking that we expected to observe was the use of scenarios to refine and

validate general design ideas. We expected the team to communicate ideas through concrete scenarios

because descriptions of the interactions between Centauri and the proposed applications would otherwise be

very general and abstract. However, the use of scenarios was uncommon.

October 24, 1995 14

Not only was the documentation general, a property encouraged by the standard adopted, but the

discussions of the requirements did not tend to occur at the level of concrete cases or exceptions. Most of

the review discussions we recorded were driven by general questions, not imagined use. When specific

scenarios came up, they were not named or referred back to later. For example, during one meeting the team

discussed the need for applications to set timers. The discussion included a scenario that further explored the

issues of clock resolution and the effect that the event notification mechanism would have on the system’s

architecture. Apart from temporarily clarifying some hitherto cloudy issues, this discussion was not returned

to and did not materially affect the contents of the requirements document because the insights arrived at,

being too concrete, did not belong there.
4.3.3. Process improvement

The company has a strong process quality culture. Engineers have a tradition of following standard

processes. They will follow willingly processes that constrain their creative freedom provided that there is a

strong management commitment to quality measurements and there is some evidence that the process they

are asked to follow will have the desired result. Accordingly, the Centauri project set up both a process

subteam and a development environments subteam that were responsible for defining development processes

and tool requirements. All the previously documented and adopted processes in the organization had been

designed for evolutionary development of long-lived, multi-version systems. Centauri was quite different: It

was a first development, and it was not being developed under contract to an external customer. The process

subteam in consultation with project management therefore recommended that Centauri follow an external

standard (IEEE 1074), with provision for a “conceptual exploration” phase prior to requirements

specification.

The original architecture document (which predated the subteam epoch) had many of the characteristics

of a software requirements document, although it was organized around a proposed system architecture, so

the requirements subteam tried to specify the requirements very exactly and in great detail. The result, as

they periodically acknowledged, more closely met the company standard for a software functional

specification than it did the IEEE 1074 recommendations for conceptual exploration.

The requirements subteam spent a lot of time during their meetings discussing what type of document

they were writing and what the standard meant. Throughout the summer, about half the issues they

discussed were about their process, document structure and goals. In contrast, the architecture subteam

formed later only spent about 20 percent of its time on these process-related issues.

The extraordinary focus on process design that we observed in most subteams of the project and

throughout our period of involvement bears many of the hallmarks of a displacement activity. This is the

term used by ethologists to refer to functional behavior applied dysfunctionally, particularly in response to

stressful or constraining situations (for example, an animal grooming when trapped in a headlight beam, or

a computer user compulsively procrastinating by responding to e-mail). Designing and keeping to

standardized processes is an important component of any quality improvement program, and it plays an

October 24, 1995 15

essential role in the company’s drive to reduce product defects and accelerate the engineering process.

Nevertheless, we observed many occasions when the team took refuge in process discussions rather than

attempting to resolve substantive issues that required commitments or risky assumptions.

Some team members came to the conclusion that much of this emphasis on process standardization

was a poor substitute for making design progress:

“Whenever anybody tells me to read 1074 I tell them to forget it. I see a lot of people reading it

and thinking they know what they’re doing. I see that as academic knowledge, which misses another

key point of knowledge: experience.... We have a lot of academic domain knowledge.”

It is important not to confuse this concern with a cavalier desire to dispense with planning and get on

with the job. The Centauri designers wanted as much process guidance as they could get; they were just

skeptical about the process they were supposed to follow.

A look at the staffing of the process and development environments subteams bears out the skepticism

that many designers expressed about the relevance of the Centauri development process. Although

management encouraged inter-team cross-fertilization by assigning the same people to several subteams, in

the case of the two process-related subteams.

“Half of [Centauri] is working on process and procedure, which is incredible in my opinion. We do

not have a good balance between product and process right now. Most engineering is based on

business. I don’t hear many people asking how does this fit in with our customers’ needs.”

In conclusion, even in as process-conscious culture as Centauri, the process and development

environments subteams were seen by many designers as external advisors who unaware of the constraints of

the real design process. Much of the work of these teams to acquire and customize tools and to develop

policies for tool use affected Centauri only after the conceptual exploration phase and for activities where

careful document management and review processes were widely acknowledged to be necessary and thus

already part of the company culture. The process definition effort had little effect during the conceptual

design activities, and so the project floundered initially.
4.3.4. Conclusion: Illusory precision

In some ways the Centauri project plunged into engineering details too soon, while in others it

remained aloof from concrete commitments for too long. There is no contradiction here as long as we

distinguish between concreteness and detail. On several scores, the Centauri team appeared to make quick

progress toward detail and precision, only to find that it had not developed sufficiently the goals and

abstractions on which these details would depend. For example, the requirements team submerged itself in

detailed documentation before the goals for the system were really understood; and similarly the process

teams’ effort to standardize the project’s process was well intentioned but too detached from the development

effort to affect it strongly. Many of the design and process issues that the team resolved were spuriously

detailed because they were not grounded in the context of use (how applications would use Centauri

functions and how developers would use the process). Undoubtedly these tendencies were accentuated in

October 24, 1995 16

Centauri by the need for Centauri to be a generic system and by the company’s strong quality-conscious

culture, but we suspect they are inevitable during conceptual design when the need to structure and accelerate

an engineering process clashes with the need to explore broadly system goals and options.

4.4. Architectural Interfaces

It is natural to think of middleware as the filling in a sandwich. On top are the applications; underneath

are the platform and operating system. Most of the substantive design issues raised during the Centauri

conceptual exploration phase concerned the thickness or scope of these three layers and employed similar

spatial and visual terms.
4.4.1. Architectural vision

Architecture and requirements were inextricably intertwined because the scope of the requirements for

Centauri directly affected the thickness of the filling of the architectural sandwich and the nature of the

interfaces on both sides of the filling. Conversely, constraints afforded by the available operating systems

and preexisting applications would affect the requirements. At one extreme, Centauri could be seen as a

grandiose virtual machine for its application domain, so that applications would instantiate it and plug in

extra, application-specific functionality. At the other extreme, Centauri could be seen as a toolkit for

application developers, consisting of loosely connected services that they might or might not use. In the

absence of a clear technical leader for the project who might have advocated a single approach, team

members adopted widely differing views. This made it difficult for the requirements and API teams to

coordinate their work.

During our involvement in the project, no single person or team was responsible for drawing up a

single architectural vision, and at no time were competing architectures set side by side and analyzed. Later,

a series of meetings were held that led to “This is Centauri,” an architecture overview document. One

manager described the process as follows:

“Over the last few months [i.e. Fall, 1994] people have been putting out their own proposals

about how it should work... Everyone with different ideas put down their ideas and had some meetings

to build consensus.... “This is [Centauri]” is pretty much the conclusion of these meetings.”

Earlier in the project there had been a prevailing background discussion about the architecture, but our

analysis of the issues that arose in meetings obscures this issue in the details (this is a good example of the

need for triangulation methods in this type of empirical study). The issue was essentially whether Centauri

should be big and fat or clean and lean. Ultimately, this issue was decided in favor of the clean and lean

alternative, but only when external architecture experts intervened. The eventual architecture was prefigured

in one of the requirements meetings when one of the participants (probably the quietest) had the insight that

Centauri should be for its application what the Macintosh interface was to end users. This view was

unheralded at the time.
4.4.2. Function allocation

October 24, 1995 17

Very early, it was decided that some functions fell in the Centauri “core” while others were provided in

the API. Most functions could not be allocated this easily. There remained significant issues about function

allocation (for example, application-specific device handling) to the core and the API and OS interface

components. Many of these issues arose from different conceptions of what architecture diagrams denoted:

“The way people look at it is different so the boundary is different. What different people mean by

the application differs: they could mean [company] applications or services specific to a class of

products. It’s made it difficult to discuss the system because of this.”

Centauri was intended to promote extensibility and portability, so it had to run on a number of

platforms and provide a common interface. An important requirements issue was whether this

standardization was to be accomplished by Centauri itself (in a multi-version OS interface, one version for

each platform type) or by designing Centauri to run on only one standardized virtual platform (such as

POSIX). Many of the applications of the kind that Centauri would support ran on proprietary OSs, and

whether they would eventually migrate to an industry standard OS was not a question that the requirements

team could answer. In the absence of a first application that would have forced the team to take a stand one

way or the other, this issue resurfaced continually.

Although we discuss these issues as if they were separate, there were times when it seemed to the

designers that everything was related to everything else. For example, during one meeting the application

question: “What are the applications’ timing requirements likely to be?” could not be discussed without

considering the requirements question: “Should applications be given an interface to set the system

clock(s)?” and the architecture question “Can there be multiple system clocks?” Inevitably, these substantive

issues led to a process question: “Are we making premature implementation decisions?” Such bouncing

back and forth between the general and detailed, the factual and the optative, and the substantive and the

meta-level was very typical.
4.4.3. Architectual reasoning

Many different looking architectures were proposed during the conceptual design phase. These were

documented as informal (though frequently elaborate and colorful) diagrams. Unfortunately, the diagrams

were embedded in documents that often became obsolete before the diagrams themselves did. Most team

members therefore carried the architectures around in their heads and referred to them descriptively by such

terms as “the cloud diagram” or the “bubble diagram,” referring to the most salient (but superficial) visual

properties of the diagrams.

In general team members tended to talk about the architecture in spatial terms. The layout of diagrams

really mattered even though the diagrams had no formal meaning and the people invented notation as they

went. Their concepts of function allocation and responsibility were cast in terms of what box was on top in

a diagram, what boxes were inside others, and what boxes were connected. As one engineer said “We could

not figure out if this block should be touching that box, etc.”

October 24, 1995 18

In contrast, dynamics (such as when an architectural component was invoked, or which could be

running and interacting asynchronously) played a minor role in their discussions, a finding consistent with

the surprisingly low incidence of scenarios in the review process.
4.4.4. Conclusion: Architecture as vision

What was lacking during the conceptual design of Centauri was a common vision of the way the

system worked in its environment and how its components would work together. The need for such a

common vision of Centauri’s architecture, in the broadest sense, was manifested in the prevalence of box

and arrow models. While they had no strict meaning, these diagrams acted as a focus for wide-ranging

discussions (often spanning requirements, implementation and process issues).

 5. Discussion and Implications

We now summarise the results and conclusions from this study, state what the implications are for

practice, and relate our findings to previous research.

5.1. Summary of Results and Conclusions

We integrate our findings in terms of three general phenomena: nonmonotonic convergence, amnesic

teamwork, and contextual aloofness.
5.1.1. Nonmonotonic convergence

Not only was the convergence on a common vision among Centauri team members slower than they

wanted it to be, it was also nonmonotonic. Progress, or apparent progress, was punctuated roughly every

few weeks or month by a stepping back to reconsider what had been done. During the first year of the

project, its goals and architecture were rethought fundamentally several times. With the benefit of hindsight,

we can say that this convergence process was inefficient and could have been accelerated if only the

designers had considered this factor or that at critical junctures in the process. We suspect, however, that

punctuated and occasionally nonmonotonic progress is inevitable in the early design process and should be

planned for.
5.1.2. Amnesic teamwork

One reason for slow and nonmonotonic convergence (but not the only one) is that issues are allowed to

linger unresolved for too long. This in turn can happen because the team is unable or unwilling to commit

to decisions that fall outside its area of competence, about which it lacks crucial information, or in areas

where it is not empowered to act. All of these factors were at work in Centauri, and they contributed to an

amnesic set of work practices. So many threads were continually left hanging that the individual team

members could not easily remember where they were, what issues depended on others, what they had already

decided, and what they needed to do or find out. As a team, they lacked tools, procedures and support

mechanisms that could compensate for these inabilities. Far from regarding this phenomenon as a

limitation of this particular team of designers, we regard amnesic teamwork as an inevitable side-effect of

October 24, 1995 19

the cognitive limitations of individual designers, the complexity of large software systems, and the

immaturity of processes for intellectual teamwork.
5.1.3. Aloofness from context

Perhaps the most pernicious general phenomenon of the three was the failure of the team to relate the

abstractions with which it was dealing - whether general or specific, product-related or process-related - to

concrete contexts that gave these abstractions their meaning. Because they lacked clear commitments from

other projects, they could not easily ground their explorations of desired features and architectural constraints

in the concrete needs and details of applications. Because they usually worked on evolving systems, where

new features are grafted onto an existing system with detailed, formal design documentation, they were not

able to relate to their actual experience the conceptual exploration standards that the process team was

developing. This failure to get down to brass tacks may seem ironic in an engineering community, but it is

not really that odd given that Centauri was conceived as a middleware system without direct end-users and

that many of the developers were inexperienced at starting a completely new project. Once more, we need to

stress that this was not a inadequacy of the Centauri project, but an intrinsic difficulty in conceptual design.

There is an inevitable conflict during conceptual design between the need to stay abstract and general (and

not to plunge prematurely into implementation commitments) and yet to ground one’s ideas in the concrete

contexts in which they will be applied (and not to remain in an ivory tower).

5.3. Recommendations

Several procedures and tools could have helped Centauri and by extension should be of value in similar

design settings. Our experience working with this project and others like it convinces us that the most

effective interventions are likely to be minor modifications of current practice rather than radical new

proposals, and so we concentrate on low-tech interventions.

The first type of improvement would be to externalise the team’s working memory and thereby reduce the

likelihood and impact of amnesic teamwork practices. One way to accomplish this might seem to be the

use of design rationale tools, such as gIBIS [REF], or structured notetaking and multimedia indexing

systems, such as Synthesis [REF] and Where Were We [REF]. We have tried to “get designers to use”

design rationale tools before, and attempted briefly to encourage the Centauri team to use Synthesis.

(Actually, they did in a very limited way, but that is another story). But these tools never seem to work as

well as they should; in part because of theoretically uninteresting but practically significant limitations of

any research prototype, but in part because such tools (design rationale tools especially) defer the benefit of

their use [REF] and force people to structure their ideas and collaborative processes in ways that they may

think artificial [REF]. A better first stab at externalizing the team’s working memory would be some

simple organizational and meeting management practices. Centauri team members often took notes at

meetings, but these were very sketchy and the team did not collate their notes as a joint product. Simply

October 24, 1995 20

having one team member act as scribe and have a summing-up period at the end of every meeting to

summarize what had been decided, what issues were raised and left pending, who was responsible for finding

out information, and whose advice was to be sought would be a good first step.

Nonmonotonicity of progress was first reported by Guindon [REF] in her study of the verbal protocols of

experienced software designers solving realistic problems. She observed that constant oscillation between

abstraction and detail was not only common but useful: It was frequently only after thinking about a

relevant detail (including implementation possibilities) that a designer had a general insight at the abstract

level. According to traditional measures of design progress, in which design is a linear refinement from the

general to the concrete, these designers were making slow, painful and frequently punctuated progress.

Really, however, they were coming to understand the problem better through their nonmonotonic process.

However, what happens in the mind of an individual designer during a two-hour experimental session

cannot parallel too closely what happens in a multi-person team over the course of several months.

The absence of a single architectural visionary, already referred to as a “superdesigner,” echoes Curtis et al’s.

[REF] finding that successful projects usually have such a person in the team. When Centauri floundered

most it did so because it lacked such a person.

The slow and nonmonotonic convergence on a project vision is best addressed organizationally. A project

like Centauri should have a small core team of very experienced people. The knowledge that is needed and

was lacking in the Centauri team spans several areas, including the application domain and knowledge of

architectures of similar or related systems. Bright, professional-minded people are not enough.

Understanding the customer is important. As Carmel and Keil [REF] show, there is no substitute for direct

access to the customer; intermediaries and analysts may introduce noise. Centauri’s potential customers

were future application projects, and the Centauri team had no mechanism for reliably tapping the

application expertise, even though such expertise existed within the company and did not relate sufficiently

well the requirements they were developing to contexts of use. Having application experts on the team, as

recommended in the previous paragraph, would be one way to address this issue.

A complementary strategy would be to organize the acquisition of customer requirements and application

expertise around concrete scenarios or use cases [REFS]. As reported in Section 4.3, the detail of the SRD

was largely illusory and the document did not survive. The requirements team became hidebound by the

formality and structure of the document and were unable to step back and ask the questions about the

requirements that they were writing: why is this required, and how would it work in practice? We believe

that being able to refer to a number of standard usage scenarios would have made their work more effective

and convergent.

October 24, 1995 21

Our final recommendation is perhaps the most controversial. Although we believe that product quality can

be improved by standardizing design processes, most process improvements concentrate on regularizing

clerical activities and responsibilities (such as documentation standards, configuration management, and

formal reviews). For conceptual design, these types of control are heavy-handed and counterproductive. What

are needed instead are lightweight process enhancements that emphasize the production, dissemination, and

timely destruction of the interim results of work in progress. The place to look for these ideas is not the

software engineering literature, but the popular creative design literature, and the technologies likely to be

most useful are large whiteboards and post-it notes.

October 24, 1995 22

Acknowledgements

References

References

[1] Baecker, Ronald M., Groupware and Computer-Supported Cooperative Work:
Assisting Human-Human Collaboration.

[2] Bergland et. al. "Improving the Front End of the Software-Development Process
for Large-Scale Systems", AT&T Technical Journal, March/April 1990.

[3] Blomberg et al " Ethnographic Field Methods and their Relation to Design", 1993.

[4] Boehm, Barry W. "A Spiral Model of Software Development and Enhancement",
IEEE Software, May 1989.

[5] Boehm, Barry W. Software Engineering Economics. Prentice-Hall, 1981.

[6] Christel et. al. "AMORE: The Advanced Multimedia Organizer for Requirements
Elicitation", Technical Report, CMU/SEI-93-TR-12 , June 1993.

[7] Curtis, B., H. Krasner, and N. Iscoe (1988), "A Field Study of the Software
Design Process for Large Teams," Comm. ACM, 31(11): 1268-1287.

[8] Dahlbom and Mathiassen, Computers in Context: The Philosophy and Practice of
Systems Design. NCC Blackwell, Cambridge: 19??.

[9] Dobson and Strens, "Organisational Requirements Definition for Information
Technology Systems", IEEE Computer, 1994.

[10] Eason, Ken, “Information Technology and Organisational Change.” Taylor &
Francis, New York, 1998.

[11] Fafchampts, Danielle. "Organizational Factors and Reuse", IEEE Software, Sept.
1994.

October 24, 1995 23

[12] Fagen, M.E., “Design and Code Inspections to Reduce Errors in Program
Development,” IBM Systems Journal, Vol. 15, No. 3, 1976. pp. 182-221

[13] Goguen and Linde "Techniques for Requirements Elicitation", IEEE Software,
1992.

[14] Grudin, Jonathan, "Computer-Supported Cooperative Work: History and Focus",
IEEE Computer, May 1994.

[15] Grudin, Jonathan, "Eight Challenges for Developers", Communications of teh
ACM, Jan. 1994.

[16] Heninger, Kathryn L. "Specifying Software Requirements for Complex Systems:
New Techniques and Their Application", IEEE Transactions on Software
Engineering, Vol. SE-6, No. 1, January 1980.

[17] Herbsleb, James D. et. al. "Object-Oriented Analysis and Design in Software
Project Teams" [unpublished].

[18] Holtzblatt and Jones, "Comtextual Inquiry: A Participatory Technique for System
Design", 1993

[19] Hsi, Idris and Colin Potts, "Integrating Rationalistic and Ecological Design
Methods for Interactive Systems", [unpublished].

[20] Kuwana and Herbsleb, "Representing Knowledge in Requirements Engineering:
An Empirical Study of what Software Engineers Need to Know", IEEE Software,
1992.

[21] Lubars, Mike, Colin Potts and Charles Richter. “Developing Initial OOA Models.”
The 15th International Conference on Software Engineering, Los Alamitos, CA,
IEEE Computer Society Press, 1993. p. 255

[22] Luff et al "Work, Interaction and Technology: The Naturalistic Analysis of Human
Conduct and Requirements Analysis", 1994.

[23] Markus and Keil, "If We Build It, They Will Come: Desiging Information Systems
That People Want to Use", Sloan Management Review, Summer 1994.

October 24, 1995 24

[24] Moran, Thomas P and John M. Carroll. Design Rationale: Comcepts, Techniques
and Use. Lawrence Earlbaum Associates, 1995. [in press]

[25] Olson, McGuffin, Kuwanna and Olson, "Designing Software For A Group's
Needs: A Functional Analysis of Synchronous Groupware," User Interface
Software, 1993.

[26] Onoe and Kuwana, "Communication analysis of Argument Structure-based
Collaborative Design", NTT Technical Report.

[27] Perry, D. E. and Michael Evangelist, "An empirical study of software interface
errors," Proc. International Symposium on New Directions in Computing,
Trondheim, Norway, 1985, 32-38.

[28] Perry, D. E. and Michael Evangelist, "An empirical study of software interface
errors: An update," Proc. Twentieth Hawaii International Conference on System
Sciences, Kailua-Kona, 1987, 113-126.

[29] Potts et. al. "Inquiry-Based Requirements Analysis" IEEE Software, March 1994.

[30] Potts et. al., "An Evaluation of Inquiry-Based Requirements Analysis for an
Internet Service," [forth-coming in REI '95]

[31] Potts, Colin "Software Engineering Research Revisited", IEEE Software 1993.

[32] Potts, Colin, Al Badre and Jay David Bolter. “Synthesis: A Computer System for
the Rich Recording and Indexing of Collaborative Ideas.” 1993.

[33] Potts, Colin. “Invented Requirements and Imagined Customers: Requirements
Engineering for Off-the-Shelf Software.” Second IEEE International Symposium
on Requirements Engineering, Los Alamitos, CA, IEEE Computer Society Press,
1995. p. 128

[34] Randall et al "Steps towards a Partnership: Ethnography and System Design",
1994.

[35] Sakamoto and Kuwana, "Toward integrated support of synchronous and
asynchronous communicatino in cooperative work: an empirical study of real group
communication", ACM COOCS 1993.

October 24, 1995 25

[36] Schon, Donald A. The Reflective Practitioner: How Professionals Think in Action.
Harper Collins Publishers, 1983.

[37] Simon, Herbert A.,

[38] Sommerville et al "Integrating Ethnography into the Requirements Engineering
Process" 1993.

[39] Truex, Duane P. and Heinz K. Klein, "A Rejection of Structure as a Basis for
Information Systems Development", Collaborative Work, Social Communications
and Information Systems, 1991.

[40] Waltz, Elam and Curtis, “Inside a Software Design Team: Knowledge Acquisition,
Sharing, and Integration.” CACM, Oct. 1993. Vol. 36, No. 10.

