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Abstract—A complete weighted graph G = (V,E,w) is
called ∆β-metric, for some β ≥ 1/2, ifG satisfies the β-triangle
inequality, i.e., w(u, v) ≤ β · (w(u, x) + w(x, v)) for all
vertices u, v, x ∈ V . Given a ∆β-metric graphG = (V,E,w),
the ∆β -WEIGHTED DENSEST k-SUBGRAPH (∆β-WDkS) prob-
lem is to find an induced subgraph G[C] with exactly k vertices
such that the total edge weight of G[C] is maximized. For
β = 1, this problem, ∆-WDkS, is known NP-hard and admits
a 1

2
-approximation algorithms. In this paper, we show that for

any β > 1/2, ∆β-WDkS is NP-hard. We also show how to
modify any α-approximation algorithm for ∆-WDkS to obtain
a δα,β-approximation algorithm for ∆β-WDkS with δα,β > α
for every β < 1. Moreover, we prove that ∆β-WDkS can be
approximated to within a factor 1

2β
for any β > 1

2
.

I. INTRODUCTION

Various real-world systems can be modeled as graph-based
representation. Many applications in social networks, com-
munication networks, mobile ad hoc networks, World Wide
Web (WWW) communities, bioinformatics are related to find
a dense subgraph from a large graph [26]. In particular, on
studying social networks, detecting cohesive subgroups is a
very important task. It helps sociologists to understand the
structures of networks. A cohesive subgroup can be defined
as a complete graph (clique) [37]. However, it seems too
restricted to consider a clique as a cohesive subgroup in real
networks. The concept dense subgraph is a density-based
clique relaxation model for defining cohesive subgraphs in
social networks.

Given an undirected unweighted graph G, a densest k
subgraph of G is an induced subgraph G[C] of G with exactly
k vertices such that the number of edges is maximized. If G
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is a weighted graph, a densest k-subgraph of G is an induced
subgraph G[C] of G having exactly k vertices satisfying that
the total edge weight is maximized. The concept of densest
k-subgraph is often used to define cohesive subgroups in a
social network. In the following, we list the formal definition
of the DENSEST k-SUBGRAPH problem.

DENSEST k-SUBGRAPH PROBLEM (DkS)
Input: An undirected graph G = (V,E), an integer k > 0.
Output: A vertex subset C ⊆ V , |C| = k such that the

number of edges in G[C] is maximized.

WEIGHTED DENSEST k-SUBGRAPH PROBLEM (WDkS)
Input: An undirected weighted G = (V,E,w), an integer

k > 0.
Output: A vertex subset C ⊆ V , |C| = k such that the total

edge weight of G[C] is maximized.

Known results. A densest k-subgraph is also called a k-
cluster [25]. The problem of finding a densest k-subgraph in
an undirected graph was introduced by Corneil and Perl [25].
It is a generalization of the maximum clique problem. The
DkS problem is NP-hard on general graphs [25] and remains
NP-hard on chordal graphs [25], bipartite graphs [25], planar
graphs [32], even on graphs of maximum degree three [27].
Some exact exponential time algorithms were given for solving
the DkS problem in general graphs [17], [18].

It has been shown that the DkS problems does not admit a
Polynomial Time Approximation Scheme (PTAS) for general
graphs under a complexity assumption [33]. There are PTASes
given for graphs of minimum degree Ω(n) and dense graphs
(of Ω(n2) edges) when k is Ω(n) [3], stars of cliques [35]
and interval graphs [39]. Many approximation algorithms were
developed for the DkS problem on general graphs and special
graphs. Feige et al. gave an approximation algorithm with ap-
proximation ratio O(nδ), for some δ < 1

3 for the DkS problem
on general graphs [28]. Bhaskara et al. improved the ratio to
be O(n1/4+ε) for any ε > 0 [7]. Asahiro et al. presented a
simple greedy algorithm for this problem on general graphs



and showed that the approximation ratio is O(n/k) [4]. Chen
et al. gave constant factor approximation algorithms for a large
family of intersection graphs [19]. In [36], Liazi et al. gave a 3-
approximation algorithm for chordal graphs. Backer and Keil
gave a 3

2 -approximation algorithm for proper interval graphs
and bipartite permutation graphs [5]. For WDkS, it was shown
NP-hard for metric graphs [40]. There are two approximation
algorithms with approximation factors 4 [40] and 2 [29] for
the WDkS problem in metric graphs.

In this paper, we focus on solving the WDkS problem in
∆β-metric graphs. A complete weighted graph G = (V,E,w)
is called ∆β-metric, for some β ≥ 1/2, if w(u, v) ≥ 0
for u, v ∈ V , and G satisfies the β-triangle inequality, i.e.,
w(u, v) ≤ β · (w(u, x) +w(x, v)) for all vertices u, v, x ∈ V .
For β = 1, it defines the so-called metric graphs. The formal
problem definition is listed in the following.

∆β -WEIGHTED DENSEST k-SUBGRAPH PROBLEM
(∆β-WDkS)
Input: A ∆β-metric graph G = (V,E,w), an integer k >

0.
Output: A vertex subset C ⊆ V , |C| = k such that w(C) =∑

u,v∈C w(u, v) is maximized.

For β = 1, i.e., the input graph is a metric graph, we use
∆-WDkS to denote ∆1-WDkS.

The design of approximation algorithms for the ∆-WDkS
problem is related to the concept of stability of approximation
for hard optimization problems [11], [15], [30], [31], [34].
It is similar to that of the stability of numerical algorithms.
Suppose there is a small change in the specification (some
parameters, characteristics) of the set of problem instances.
It is of interesting to see that what the approximation ratio
would be changed accordingly. We say an algorithm is stable
if the change of the approximation ratio is small for every
small change in the set of problem instances. There have been
many research results on the concept of stability of approx-
imation for solving fundamental hard optimization problems.
E.g. in [1], [2], [6], [9]–[12], [38] it was shown that one
can partition the set of all input instances of the Traveling
Salesman Problem into infinitely many subclasses according
to the degree of violation of the triangle inequality, and for
each subclass one can guarantee upper and lower bounds on
the approximation ratio. Similar studies demonstrated that the
β-triangle inequality can serve as a measure of hardness of
the input instances for other problems as well, in particular for
the problem of constructing 2-connected spanning subgraphs
of a given complete edge-weighted graph [13], and for the
problem of finding, for a given positive integer k ≥ 2, and
an edge-weighted graph G, a minimum k-edge- or k-vertex-
connected spanning subgraph [14], [16]. Moreover, β-triangle
inequality is also applied to measure the hardness of several
hub allocation problems [20]–[23].

In Section II, we prove that for any β > 1
2 , the ∆β-

WDkS problem is NP-hard. In Section III, we show how
to modify any α-approximation algorithm for ∆-WDkS to
obtain a δα,β-approximation algorithm for ∆β-WDkS with

δα,β > α for every β < 1. In Section IV, we show that a 1
2 -

approximation algorithm given in [29] for solving the WDkS
problem in metric graphs can be applied to solve the ∆β-
WDkS problem for any β > 1

2 and the approximation ratio is
1
2β . The concluding remarks are given in Section V.

We close this section with some notation and definitions. For
a vertex subset C of a weighted graph G = (V,E,w), we use
w(C) to denote the total edge weight of G[C], i.e., w(C) =∑
u,v∈C w(u, v). We use n to denote the number of vertices

in a graph G. The approximation ratio used in this paper is
APX
OPT where APX is the size of the approximation solution
and OPT is the size of the optimal solution. Notice that the
∆β-WDkS problem is a maximization problem, APXOPT ≤ 1.

II. NP-HARDNESS

In this section, we prove that for β > 1
2 , the ∆β-WDkS is

NP-hard. This shows that even in subclasses of metric graphs
β < 1 (e.g., β = 1

2 + ε for any 0 < ε < 1
2 ), the ∆β-WDkS is

still NP-hard.

Theorem 1. For any β > 1
2 , the ∆β-WDkS problem is NP-

hard.

Proof. We prove that the ∆β-WDkS problem is at least as
hard as the NP-hard problem, the DkS problem.

For an input graph G = (V,E) of the DkS problem,
construct a ∆β-metric graph G′ = (V,E,w) such that
w(u, v) = 2β if (u, v) ∈ E, otherwise w(u, v) = 1. It is
easy to see that G′ is a ∆β-metric graph satisfying the β-
triangle inequality for β ≥ 1

2 . We show that the ∆β -WDkS
problem is as hard as the DkS problem.

Let C be an optimal solution of the ∆β-WDkS problem in
G′ and w(C) = 2β · p+

(
k
2

)
− p, i.e., G′[C] has p edges with

weight 2β and (
(
k
2

)
− p) edges with weight 1. Since the edge

cost in G′ is either 2β or 1, we see that G[C] has exactly p
edges. Suppose that there exists a vertex subset D of size k
such that G[D] has more than p edges. It is easy to see that
in G′, w(D) > 2β · p +

(
k
2

)
− p, a contradiction. Thus, if C

is an optimal solution of the ∆β-WDkS problem in G′, then
C is an optimal solution of the DkS problem in G. Notice
that w(u, v) ≥ 0 for u, v ∈ V since G satisfies the β-triangle
inequality.

By the fact that the DkS problem is an NP-hard problem,
this implies that the ∆β-WDkS problem is also an NP-hard
problem. This completes the proof.

Remark 1. Theorem 1 shows that the ∆β-WDkS problem is
already NP-hard on the class of ∆β-metric graphs where all
the edge costs are in {1, 2β}.

III. USING ∆-WDkS APPROXIMATION ALGORITHMS FOR
∆β -WDkS

In this section we show how to modify any α-approximation
algorithm for ∆-WDkS to obtain a δα,β-approximation al-
gorithm for ∆β-WDkS with δα,β > α for every β < 1.
The advantage of this approach is that any improvement on
the approximation of ∆-WDkS automatically results in an



improvement of the approximation ratio for ∆β-WDkS. The
idea of this approach is to reduce an input instance of ∆β-
WDkS to an input instance of ∆-WDkS by subtracting a
suitable cost from all edges.

Lemma 1 ( [9]). Let G be a ∆β-metric graph for 1
2 ≤ β < 1.

Let cmin and cmax be the minimum edge cost and maximum
edge cost in G respectively. Then cmax ≤ 2β2

1−β · cmin.

Theorem 2. Let A be an approximation algorithm for ∆-
WDkS with approximation ratio α, and let 1

2 < β < 1.
Then A is an approximation algorithm for ∆β-WDkS with
approximation ratio1 α+ (1− α) · (1−β)

2

β2 .

Proof. Let I = (G, cost) be a problem instance of ∆β-WDkS,
1
2 < β < 1. Let c = (1−β)·2·cmin where cmin is the minimum
edge cost in G. For all e ∈ E(G), let cost′(e) = cost(e)− c.
Then the WDkS instance I ′ = (G, cost′) still satisfies the
triangle inequality: Let x, y, z be the costs of the edges of an
arbitrary triangle of G. Then z ≤ β · (x+ y) holds. Since

c = (1− β) · 2 · cmin ≤ (1− β) · (x+ y)

it follows that z ≤ β · (x+ y) ≤ x+ y − c and thus

z − c ≤ (x− c) + (y − c).

Furthermore we know that a k-subgraph is optimal for I ′

if and only if it is optimal for I . Let Hopt be an optimal
k-subgraph for I . Let H be the k-subgraph that is produced
by the algorithm A on the input I ′. Then cost′(H) ≥ α ·
cost′(Hopt) holds and thus

cost(H)−
(
k

2

)
· c ≥ α · (cost(Hopt)−

(
k

2

)
· c).

This leads to

cost(H) ≥ α · cost(Hopt) + (1− α) ·
(
k

2

)
· c

= α · cost(Hopt)

+ (1− α) ·
(
k

2

)
· (1− β) · 2 · cmin

≥ α · cost(Hopt) + (1− α) ·
(
k

2

)
·(1− β) · 2 · 1− β

2β2
· cmax (by Lemma 1)

= α · cost(Hopt)

+ (1− α) · (1− β)2

β2
·
(
k

2

)
· cmax

≥ α · cost(Hopt)

+ (1− α) · (1− β)2

β2
· cost(Hopt)

=

(
α+ (1− α) · (1− β)2

β2

)
· cost(Hopt)

which completes the proof.

1Observe that the approximation ratio tends to 1 with β approaching 1
2

and
it tends to α with β approaching 1.

According to Theorem 2, we have the following corollary.

Corollary 1. For 1
2 ≤ β < 1, Algorithm 1 is a ( 1

2 + (1−β)2
2β2 )-

approximation algorithm for ∆β-WDkS.

Note that Corollary 1 provides a weaker approximation ratio
than Theorem 3 in the next section.

IV. A 1
2β -APPROXIMATION ALGORITHM FOR ALL β > 1

2

In [29], a 1
2 -approximation algorithm was given for solving

the WDkS problem in metric graphs. We list this algorithm in
Algorithm 1. In this section, we show that Algorithm 1 can be
applied to solve the ∆β-WDkS problem for any β > 1

2 and
the approximation ratio is 1

2β . It means that the algorithm can
be applied to solve the problem not only restricted to the input
graph being a metric graph but also in a graph belonging to a
super graph class of metric graphs.

Algorithm 1 Approximation algorithm for ∆β-WDkS (G,w)

1: Initially, C := ∅
2: while |C| ≤ k − 2 do
3: Select (u, v) such that w(u, v) is of maximum weight

in G;
4: C := C ∪ {u, v};
5: Remove all edges incident to u or v in G;
6: end while
7: if k is odd then
8: Add an arbitrary vertex to C.
9: end if

10: return C.

Theorem 3. For β ≥ 1
2 , the ∆β-WDkS problem can be

approximated to within a factor 1
2β in O(n2 + k2 log k) time.

Proof. Let Ck be the solution returned by Algorithm 1 for
the ∆β-WDkS. Let C∗k be an optimal solution of the ∆β-
WDkS problem in G. Let e = (u, v) be the edge of maximum
weight in G and let G′ = G[V \ {u, v}]. Let Ck−2 be
the approximation solution on G′ returned by Algorithm 1.
Assume that Ck−2 = Ck \ {u, v}. Let C∗k−2 be an optimal
solution on G′. The proof is by induction on k.

If k = 2, we see that

w(C∗2 ) = w(x, y) ≤ w(u, v)

(since w(u, v) is of maximum weight in G)
= w(C2)

≤ 2β · w(C2).

Thus w(C2)
w(C∗

2 )
≥ 1

2β . The theorem is true.

Suppose that k = 3. Let C∗3 = {x, y, z}. We see that



w(C∗3 ) = w(x, y) + w(y, z) + w(z, x)

≤ 3 · w(u, v)

(since (u, v) is of maximum weight)
≤ w(u, v) + 2 · β · (w(u, t) + w(t, v))

(by β-triangle inequality)
≤ 2β(w(u, v) + w(u, t) + w(t, v)))

(by β ≥ 1
2 )

= 2β · w(C3).

Thus, w(C3)
w(C∗

3 )
≥ 1

2β . The theorem is true for k ≤ 3.
Suppose that the theorem is true for k − 2. Now we prove

it for k. Notice that (u, v) is a maximum weight edge in G.
There are three cases.

Case 1: u, v ∈ C∗k . Let e = (u, v).
Case 2: u ∈ C∗k and v 6∈ C∗k . Arbitrary pick x ∈ C∗k and let

e = (u, x).
Case 3: u, v 6∈ C∗k . Arbitrary pick x, y ∈ C∗k and let e =

(x, y).

Next we prove the ratio w(Ck)
w(C∗

k)
≥ 1

2β .

w(C∗k) ≤ w(e) + 2(k − 2) · w(u, v) + w(C∗k−2)

≤ w(u, v) + 2(k − 2) · w(u, v) + 2β · w(Ck−2)

(by induction hypothesis)

≤ w(u, v) + 2
∑

t∈Ck−2

β · (w(u, t) + w(v, t))

+2β · w(Ck−2)

(by β-triangle inequality)

≤ 2β · (w(u, v) +
∑

t∈Ck−2

(w(u, t) + w(v, t))

+2β · w(Ck−2) (by β ≥ 1
2 )

= 2β · w(Ck).

Thus, we obtain that w(Ck)
w(C∗

k)
≥ 1

2β . This shows that ∆β-
WDkS problem can be approximated to within a factor 1

2β .
It is not hard to see that a straightforward implementation

of Algorithm 1 is O(kn2). It was proved in [29] that by
applying a linear time selection algorithm [8] and a heap data
structure [24], Algorithm 1 can be executed in O(n2+k2 log k)
time. This completes the proof.

Corollary 2. The approximation ratio 1
2β of Algorithm 1 is

asymptotically tight.

Proof. We give an example to show that the approximation
ratio 1

2β of Algorithm 1 is asymptotically tight. The example
can be construted by the following steps:

1) Construct a graph G of n = 4h vertices, consisting of a
left half GL and a right half GR. Let k = 2h.

2) The weights in G are constructed as follows:

(a) Identify a perfect matching of the 2h vertices in GL,
and give each of the edges of the matching weight
2β. All other edges in GL have weight 1.

(b) All edges in GR have weight 2β.
(c) All edges between GL and GR have weight 1.

It is not hard to see that G is a ∆β-metric graph. An optimal
solution of the ∆β-WDkS problem in G can be obtained by
selecting all vertices in GR. We have OPT =

(
k
2

)
· 2β. If

Algorithm 1 chooses all vertices of GL into the solution, the
solution returned will be APX =

(
k
2

)
+ k

2 · (2β − 1). This
implies

APX

OPT
=

(
k
2

)
+ k

2 · (2β − 1)(
k
2

)
· 2β

=
1

2β
+

2β − 1

2β
·

k
2(
k
2

)
≤ 1

2β
+

1

k − 1

≈ 1

2β
(since k = n

2 ).

This shows that the approximation ratio 1
2β of Algorithm 1

is asymptotically tight even when the edge weights have only
two distinct values.

V. CONCLUDING REMARKS

In this paper, we prove that for β > 1
2 , the ∆β-WDkS

problem is NP-hard. It implies that for 1
2 < β < 1 (subclasses

of metric graphs), the ∆β-WDkS problem is still NP-hard.
We show that a 1

2 -approximation algorithm given for solving
the WDkS problem in metric graphs can be applied to solve
the ∆β-WDkS problem for any β > 1

2 and its approximation
ratio is 1

2β . It is of interesting to see that whether ∆β-WDkS
problem can be approximated to within a factor better than
1
2β for any β, especially for β < 1. Moreover, it is also of
interesting to know whether the ∆β-WDkS problem has a
PTAS. If not, we must show that there exists a function r(β)
such that to approximate the ∆β-WDkS to within a factor
r(β) is NP-hard.

REFERENCES

[1] T. Andreae: On the traveling salesman problem restricted to inputs
satisfying a relaxed triangle inequality. Networks, vol. 38 (2001), pp. 59–
67.

[2] T. Andreae, H.-J. Bandelt: Performance guarantees for approximation
algorithms depending on parameterized triangle inequalities. SIAM
Journal on Discrete Mathematics, vol. 8 (1995), pp. 1–16.

[3] S. Arora, D. Karger, and M. Karpinski, Polynimial time approximation
schemes for dense instances of NP-hard problems, In Proceedings of the
27th Annual ACM Symposium on Theory of Computing, pp. 284–293,
1995.

[4] Y. Asahiro, K. Iwama, H. Tamaki and T. Tokuyama, Greedily finding a
dense subgraph, Journal of Algorithms, vol. 34 (2000), pp. 203–221.

[5] J. Backer and J. M. Keil, Constant factor approximation algorithms for
the densest k-subgraph problem on proper interval graphs and bipartite
permutation graphs, Information Processing Letters, vol. 110 (2010),
pp. 635–638.



[6] M.A. Bender, C. Chekuri: Performance guarantees for the TSP with a
parameterized triangle inequality. Information Processing Letters, vol.
73 (2000), pp. 17–21.

[7] A. Bhaskara, M. Charika, E. Chlamtac, U. Feige, and A. Vijayaraghavan,
Detecting high log-densities: an O(n1/4)-approximation algorithms for
the densest k-subgraph, In Proceedings of the 42nd ACM Symposium
on Theory of Computing (STOC’10), pp. 201–210, 2010.

[8] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan, Time
bounds for selection, Journal of Computer and System Sciences, vol. 7
(1973), pp. 448–461.
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[31] J. Hromkovič: Algorithmics for Hard Problems - Introduction to Com-
binatorial Optimization, Randomization, Approximation, and Heuristics.
Second Edition, Springer 2003.

[32] J. M. Keil, and T. Brecht, The complexity of clustering in planar graphs,
Journal of Combinatorial Mathematics and Combinatorial Computing,
vol. 9 (1991), pp. 155–159.

[33] S. Khot, Ruling out PTAS for graph min-bisection, dense k-subgraph,
and bipartite clique, SIAM Journal on Computing, vol. 36 (2006),
pp. 1025–1071.

[34] R. Klasing and T. Mömke, A modern view on stability of approximation.
In: Adventures Between Lower Bounds and Higher Altitudes - Essays
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