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Abstract—The technological advancements of recent years have
steadily increased the complexity of vehicle-internal software
systems, and the ongoing development towards autonomous
driving will further aggravate this situation. This is leading
to a level of complexity that is pushing the limits of existing
vehicle software architectures and system designs. By changing
the software structure to a service-based architecture, companies
in other domains successfully managed the rising complexity and
created a more agile and future-oriented development process.
This paper presents a case-study investigating the feasibility
and possible effects of changing the software architecture for
a complex driver assistance function to a microservice archi-
tecture. The complete procedure is described, starting with the
description of the software-environment and the corresponding
requirements, followed by the implementation, and the final
testing. In addition, this paper provides a high-level evaluation
of the microservice architecture for the automotive use-case.
The results show that microservice architectures can reduce
complexity and time-consuming process steps and make the
automotive software systems prepared for upcoming challenges as
long as the principles of microservice architectures are carefully
followed.

Index Terms—Microservices, Automotive, Software Architec-
ture, Advanced Driver Assistance

I. INTRODUCTION

Service-oriented architectures and especially microservice
architectures (MSA) have been successfully applied to create
flexible, maintainable, and scalable web applications and
information systems. As automotive software systems are
becoming equally complex and critical to the development
of modern cars, the MSA concept may have a positive
impact on the architectures of such systems. Some potential
advantages may be: (1) Reuse of functionality, (2) focus on
data rather than actions, (3) encapsulated and independent
service behavior, (4) continuous service integration and delivery,
(5) hierarchical in-vehicle function and software architecture,
(6) clear and explicit service documentation, and (7) flexible
service distribution to electronic control units (ECUs) or cloud
servers.

To have a closer look at the possible effects for the
automotive industry by changing the software architecture style,
we conducted a case study in the context of an advanced driver
assistance system (ADAS) project. The developed system is
close to an assistance feature in production and is designed,
implemented, and tested as a microservice system. Shifting
the architecture to the new style carries also some risk and

challenges, ranging from whether an MSA is suitable for a
system or project to avoiding overhead by distributing services
in the wrong way. Potential solutions how to avoid these hazards
are discussed in this paper. Lastly, the success of the MSA is
coupled with technical progress, business aspects, and openness
for the changeover, which can be created by a full understanding
of the concept. Therefore, we provide a high-level architecture
analysis of the potential strengths and opportunities but also
the weaknesses and threats that come with this architectural
style in the automotive use-case.

The main goal of this paper is to design, transform, imple-
ment, and test an ADAS close to series production into the state
of the art microservice technique, which is used at Chalmers
University of Technology. The case study project is based on an
already existing lane detection algorithm, which is transformed
and updated to the new OpenDLV microservice environment.
The entire project implementation took place at the Division of
Vehicle Engineering and Autonomous Systems (VEAS) at the
Chalmers University of Technology and the vehicle research
laboratory Revere. The method how the ADAS was designed,
implemented, and tested during the case study is described in
this paper. Therefore, the existing services and components
were analyzed, requirements were set up, and the system was
implemented. Once the implementation phase was complete,
the system was tested and the architecture was evaluated. In
addition, background information about the concept, software
environment, and standards are given.

II. BACKGROUND AND RELATED WORK

Due to the high demands on reliability, functional safety,
robustness, and resource efficiency for automotive systems,
when for example compared to web applications, only a few
architectural styles and patterns are used. Typically, most
automotive software architectures can be considered component
based. In many cases, these components are interconnected that
tightly that the architectures should be considered monolithic.

There is work demonstrating how a monolithic application
can be transformed into a microservice system. For example,
the experience report from the banking sector dealt with
the transformation of a currency conversion system from
Danske Bank into a system based on microservices [1]. Due to
the enormous size of the system, tasks such as fault tolerance
mechanisms, concurrency handling, and monitoring gained
importance. Also the design of the system and the capability
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to manage all services was a challenging task during the case-
study.

The software environment and workflow that is used during
our case-study is based on the developments and results
from Berger et al. [2]. Benderius et al. [3] have shown that
OpenDLV in combination with Docker are a well suited
software environment for a successful microservice deployment
for vehicles and autonomous driving.

An alternative development environment is described by
Kugele et al. [4]. In their work, the throughput of the OpenDDS
software middleware is evaluated. Furthermore, a formal
mapping of services of the data distribution service (DDS) and
a case-study about fail-operational behavior are described. The
paper concludes that the used SOA technique in combination
with DCPS is suitable for the automotive industry, but some
points regarding safety, certification, and security could not be
clarified. Kugele et al. point out that a commercial version of
DDS could solve these problems. Also, DDS in combination
with the Docker platform is a suitable development method in
an agile work environment.

Another publish-subscribe middleware called Chromosome
and a centralized platform architecture for automotive applica-
tions, called Race, have similarities with the above approach
and with this work [5]. It is a central computing architecture,
which is supporting plug and play on the software and network
level.

Kugele et al. [6] presented research challenges for a future-
proof E/E architecture, which were taken into account in
the case-study and theoretical considerations in this paper.
In their paper, they discuss the relationship between future
E/E challenges and the question of how SOA could help
to overcome them based on an interview study with twelve
participants at BMW. In addition, Kugele et al. provide a formal
definition for the notion of a service in automotive software
architectures.

III. STUDY DESIGN

With our study, we aim to evaluate advantages and disad-
vantages of using containerized microservices to implement
advanced driver assistance functions. We decided to perform
this evaluation as a case study, in which we transform a lane
following function as part of an existing vehicle software
infrastructure and afterwards report our experiences. To do so,
we performed a SWOT-analysis based on our implementation
and answer the following research question:

RQ1: What are the strengths, weaknesses, opportunities,
and threats of a microservice-based ADAS architecture?

Secondly, we were interested in how far best practices and
anti-patterns from using microservices in other domains can
be transferred to the automotive domain. Thus, we analyzed
a study by Taibi and Lenarduzzi who provide a list of anti-
patterns on projects that are based on the MSA principle [7].
Their paper is based on surveys and interviews with 72
experienced microservice developers from different industries
about architectural smells, bad-practice, and anti-patterns. We

reflect this list of bad smells based on our study and analyze
which bad smells are also relevant for automotive systems.

RQ2: What are architectural smells that need to be
considered in a microservice architecture for ADAS?

In the following section, we first report on the developed
case, the environment, in which it has been realized, and how
we implemented the microservices.

IV. STUDY EXECUTION: AN MSA-BASED LANE
FOLLOWING FUNCTION

A. Study Object

The idea behind this paper is to transform an ADAS towards
a microservice architecture. The system should be close to a
system that could be used in production vehicles. With this
intention, possible advantages, disadvantages, and characteristic
of the MSA should be determined. A lane following system is
chosen, the modification and redesign is promising to provide
the desired view of the MSA technology. The core task of the
system is to detect and follow lanes on a normal road with
street boundaries, where two lines are marking the current lane.
Based on the detected lanes, the system is able to calculate
a trajectory consisting of points, which are located in the
center of the lane. This is also the preferred trajectory the car
will follow. To realize this, steering and acceleration requests
are sent with the help of a proxy representative service via
messages on the regular controller area network (CAN) vehicle
bus. The resulting signals are then processed by all addressed
ECUs. There is no difference whether those signals are created
by the driver or a system.

B. Study Environment and Constraints

The case study implementation took place at the Division
of Vehicle Engineering and Autonomous Systems (VEAS) at
Chalmers University of Technology and the vehicle research
laboratory Revere. The implementation was subject to some
constraints that were predefined by the study environment, as
described below.

1) OpenDLV and the libcluon Middleware: OpenDLV is a
modern microservice-based software ecosystem for self-driving
vehicles. The microservice based software framework is open
source and is designed to support the development, testing,
and deployment of functions that are needed for autonomous
systems such as ground vehicles and vessels. OpenDLV handles
the hardware communication, sensor fusion, and provides safety
as well as other functionality essential to autonomous systems.
The OpenDLV standard message set (SMS) standardizes the
communication in the OpenDLV framework by decoupling the
high-level application logic from the low-level device drivers
through well defined interfaces. OpenDLV is built using the
libcluon library1, which is the first and only single-file, header-
only middleware for distributed systems.

1http://github.com/chrberger/libcluon



2) Docker: The open-source platform for container-based
virtualization provides a series of tools for packaging, or-
chestration, and shipping of images. Docker provides an
isolated run-time environment, where users do not need
deeper technical knowledge about underlying levels such as
device nodes, dependendent 3rd-party libraries, or further
relevant software artifacts required to successfully execute
an application. Furthermore, a public repository and cloud
service, called Docker Hub, allows every user to access, share,
and download usable images. The service also allows users
to register externally triggered user-defined and containerized
jobs that can be used in an automated way to build, test, and
deploy software.

Complex microservice systems are mostly composed of
multiple encapsulated services in distributed containers. With
the help of the docker-compose tool such multi-container
applications can be defined, configured, run, and monitored
throughout their entire life-cycle. All required images are
collected and specified in a YAML-formatted docker-compose
file. Finally, a single command is sufficient to start or stop the
complete system.

3) Alpine Linux and the Linux Kernel Patch PREEMPT_RT:
Alpine Linux is a Linux distribution that has the main focus
on simplicity, security, and resource efficiency. Hence, it is
well fitted for images that are operating in embedded systems.
With the help of Alpine Linux a fully functional Docker image
with all necessary tools and libraries included typically result
in a size of only 3–8 MB. The Preempt RT kernel patch
allows time critical processes to interrupt lower prioritized
processes at any time and to occupy all resources to ensure
that the timing constraints will be met. In addition, the patch
allows to lock specific resources for sensitive processes. It
ensures that no lower prioritized process can utilize the needed
resources simultaneously. Real-time patched Linux kernels are
well tested and can be found in many embedded systems in
different application areas.

C. Study Implementation

The system implements a lane following function, which is
already used at the vehicle laboratory Revere, realized with
the use of the open source library for computer vision and
machine learning, OpenCV. Fig. 1 illustrates the design of the
lane following driver assistance function. The dashed arrows
represent communication via the APIs, while the solid arrows
represent physical connections. The component shared image
shows exemplary parameters that are needed to exchange data
via a shared-memory. More details about the system and the
used microservices, which are shown in the figure as blue
boxes, are presented hereafter.

The camera proxy microservice: The camera proxy
microservice connects with any selected OpenCV accessible
camera device. It is responsible for the data input of the system
and delivers a video stream enriched with necessary metadata
such as timestamps and sender id. In a production-ready system,
the camera would likely be accessed via an internal vehicle
bus. In this experimental set-up however, an Ethernet network

Fig. 1. Architecture of the lane following system

camera is used, which is accessible via the on-board Ethernet
network built into the experimental platform Volvo XC90.
According to the microservice principles, any camera can be
used as long as the input format, resolution, and update rates are
supported. The camera name, the name of the shared memory
section, the resolution, and other parameters have to be given
as command line arguments when starting the microservice.

The camera service updates the shared memory when a new
frame is captured, and any consumer service may momentarily
lock and copy the data to local memory for further processing.
If the frame rate of the producer is faster than any consumer,
the consumer will simply lock and copy data as soon as ready
(i.e. processing will run at a slower rate, but will not affect
the rate of the producer), and if the consumer is faster it will
simply wait for data as the shared memory lock is blocking.

The lane detection microservice: The fundamental lane
detection algorithm was realized as a student project at the
Chalmers University of Technology. Later on, the algorithm was
tuned and used at the Chalmers Revere laboratory in different
projects. In our case study, we further transformed and adapted
the algorithm to run as a microservice with OpenDLV as
the software environment. The algorithm uses different image
processing methods from the OpenCV library such as the
Canny edge detection, intensity thresholds, and the Hough
transformations in order to detect lanes.

For the case study, we had to apply many changes to the
image processing function. Several parts had to be changed due
to recent changes in OpenDLV and libcluon, including datatype
conversions, OpenDLV SMS compliance, timestamping, and
initialization operations. During testing and tuning, relevant
parameters are given as command line arguments through
the Docker-compose file. The return parameter of the image
processing algorithm are center points for the lane which should
be followed and are located between the detected road markings
or road edges. This data is transmitted through UDP multicast,
which is the default transmission method of libcluon. The
message specification is part of the OpenDLV SMS.

The lane follower microservice: The lane follower mi-
croservice calculates the steering angle and the acceleration
request given the current perceptual state of the vehicle,
determined by using the center points of the detected lane
from the lane detection microservice. The lane follower is
also checking the validity of the detected lanes by comparing



TABLE I
SUMMARY OF THE EVALUATION PRESENTED AS A SWOT-MATRIX

Strengths Weaknesses
Modularity and reuse Shifting complexity
Scalability Change of team structure
Independent development, deploy-
ment, testing

Introduction costs

Opportunities Threats
Shorter time to market Smells and anti-pattern
Mastering rising complexity Security
Reduced dependency errors Technology backlog
Redundant system deployment

timestamps of messages at different sections. This safety query
could inform the driver and switch off the system as soon as the
images are no longer available on time. The actuation request
messages sent from the lane follower microservice is part of
the OpenDLV SMS, and is standardized between vehicles and
vehicle types allowing for microservice reusability between
platforms.

The CAN proxy microservice: The CAN proxy mi-
croservice is the connection between the high-level OpenDLV
software components and the low-level software layers of the
hardware platform. The requests for steering and acceleration
are converted to CAN-messages and sent on the associated
bus combined with other essential information and parameters.
All necessary ECUs, which are part of the powertrain and
steering system, are addressed by message identifiers. The
ECUs process the incoming data and calculate new states. The
computed state consist of different request which are executed
by the corresponding vehicle actuators. These requests and
messages do not differ from the regular operating state, in
which they are controlled by a human driver. Therefore, the
signals can be processed the same way down the line.

V. STUDY RESULTS

A. RQ1: Strengths, Weaknesses, Opportunities, and Threats

We evaluate our implementation based on a SWOT analysis.
Table I provides an overview of the aspects that we detail in
the following:

1) Strengths: Modularity and Reuse One of the core
characteristics of microservices leads directly to one of the
most valuable strengths. Since microservices are containerized
and communicate only via messages or through specified APIs,
the underlying hardware is secondary. In addition, each service
can be combined as needed to create new systems or to
support existing ones. Another benefit of modularity is the
fact that single points of failure are easier to avoid. When
the architect implements services with resilience in mind, the
system is still functional if a service breaks down. Since most
automotive functions are realized in layered or component-
based architecture style, this benefit is not completely new, but
is further strengthened and can be simplified by the MSA. The
characteristics of high modularity could also benefit the trend of
vehicle features being activated and installed over the Internet.

On a technical level this is realized with standard ECUs and
components, which are built into every production vehicle
from scratch. Through downloading and installing the software
and adding this component to the overall vehicle system, the
feature will be activated. The electric car manufacturer Tesla
is already using this process to add new or delayed features to
cars already sold. Because of the small size, clearly defined
APIs, and the resulting modularity, microservices are a good
match to cover the software part of this process.

Scalability Cloud computing, big data processing, and
artificial intelligence are becoming increasingly important
within vehicle systems. Due to the amount of data or poor
network quality however, not all of this operation can be
processed externally. For this reason, it would be desirable
to have unused computing resources on demand. To achieve
this, it would be necessary for the software to be able to adapt
to the needs of both the vehicle and the driver, especially
in the event of bottlenecks. For this purpose, containerized
microservices could be cloned automatically and distributed
to ECUs, which are not fully utilized. For this task, a load
balancing unit could be integrated into the system with little
effort. Containerization makes it possible to clone a Docker
image and call the additional service from the Docker-compose
file without further modifications. The scalability was also
proven during the vehicle test. For this purpose, the lane
detection service was cloned and both containers were executed
simultaneously. The same method can also be applied to the
external back-end, where individual services can be scaled
up or down depending on the system load. The strength of
scalability leads to a higher degree of utilization of the available
resources, which results in cost savings.

Independent development, deployment, and testing In
an MSA, each service can be developed and deployed by
independent teams. Since the deployment units are smaller
and independent from each other, every service can be built,
tested, and deployed without affecting the system in place. In
addition, containerized microservices offer the possibility to
compare different versions of a service, by simply using the
same input data and by monitoring the output. Another benefit
of small software modules is that parts of the deployment
workflow could be automated, versioned, and again developed
independently of other services, which leads to a faster
integration of software functions or updates. This strength was
also validated during the case study. Existing services could
easily be accessed via the Revere source code repository, while
other services could be changed and developed independently.
In addition, it was possible to test different versions of the
individual services without having to apply major changes to
the overall system structure.

2) Weaknesses: Shifting complexity: One problem often
found by changing the software architecture to microservices
according to different experience reports is that complexity
shifts from module-level to a higher level [1]. The challenge of
creating, controlling, and monitoring the system is increasing.
The larger the number of individual services active in a system,
the more complicated it is to keep track. In addition, the test



complexity shifts, since services are smaller and contain only
a sub-task which leads to simpler module tests. In addition,
comparing the output with the same input data makes it easier
to test different versions of a module. On the other hand,
however, it is much more challenging to test the interaction
between dozens of services at the integration or system test
level. In summary, the complexity is shifting from the individual
module complexity to a higher level, where architectural design,
interaction between services, and monitoring takes place [8].

Change of team structure: Old business structures must
be changed to enable successful service development. This
is typically a major challenge for most established car man-
ufactures. Structures and responsibilities are usually divided
according to the technical vehicle domains up to board level.
This division was created in the past, when a clear separation
was still possible. Furthermore, project management, supplier
contracts, and budget planning are based on these structures. If
restructuring is only partial or is still directed to the domains,
the MSA will not be able to take advantage of the benefits.
It needs freedom of action, willpower as well as ambition
in order to break these structures and make full use of the
MSA advantages and to simplify inter-domain communication
and accelerate development. Furthermore, a team responsible
for a service must cover the entire life cycle of the product.
It follows that each team needs knowledge about the entire
product cycle. This structure is not common in traditional
automotive software-teams and it requires courage to transform
teams adapted to the microservice principles.

Introduction costs: Fundamental technology changes are
usually associated with high costs. For example, microservices
and containerization come along with an overhead in terms
of memory consumption. Since the ECUs used for ADAS
usually have to handle complex tasks, they are among the
most powerful in a vehicle. However, when planning a new
microservice system, it must be taken into account that
MSA usually requires more memory and computing power
for communication processing. In addition to the possible
hardware modifications, cost of structural changes will affect
manufacturing. It takes resources to restructure existing teams,
contracts, and business structures. Furthermore, since the MSA
advise that teams cover the entire product cycle, the resulting
cost can no longer be directly allocated to the conventional
cost centers. This could lead to an MSA system style to be
more expensive in the beginning. The majority of these costs
are attributable to the introduction, personnel training, and
restructuring.

3) Opportunities: Shorter time to market As mentioned
above in the introduction, it is the time to market to be
shortened to keep track with innovations and competitors.
Customers are no longer satisfied with only experiencing a new
vehicle functions or a new software system when purchasing
a new vehicle generation. Since microservices are modular,
they provide optimal conditions for simplified and accelerated
update procedure. The prerequisite for this is that the vehicle is
equipped with over-the-air update functionality and connection
to the Internet.

Reduced dependency errors In most vehicle software
architectures, such as component-based architectures, there
is a multitude of dependencies between functions and sub-
functions. This is however not only in contrast to the intention
to design internal vehicle systems as modular as possible, but is
also very error-prone, since changes to a sub-function can have
effects on other elements. Vogelsang and Fuhrmann discussed
this problem [9], showing that the high degree of dependency
leads to that a function developer is only aware of about 50% of
the dependencies. While this is also a problem for microservice
architectures, there are already available solutions developed
and applied even at the scale of, for example, Netflix and
Spotify.

Master rising complexity of inter-domain systems The
case study has shown the procedure to split the function
complexity among services. The result is an ADAS that consists
of four domain-independent microservices. Each service has
a fixed task that corresponds to a capability. In a monolithic
approach, the entire function would have been handled in one
large component. Even if the system had been implemented
with a component-based architecture, there would be strong
dependencies between the different sub-components. Thus, the
complexity of the inter-domain basic function was significantly
reduced with the MSA.

Redundant system deployment Autonomous driving in-
cludes a high number of safety critical systems. Even when
a subsystem of a function like steering or braking fails, the
vehicle has to be able to manage the situation without risking
the life of the passenger or other road users. Microservices
provide an opportunity to clone the relevant services to
an identical hardware to detect deviations and errors. A
logic component can then decide, which alternative is more
trustworthy and can ensure continued system operation.

4) Threats: Microservice smells and anti-patterns When
MSAs are used, they should be checked for sub-optimal
design and potential sources of undesired behavior, so called
architectural smells. These smells may lead to increased need
of resources and in worst case could lead to the failure of the
entire project. This could pose a threat to the new architecture,
especially in pilot projects, which are often used to demonstrate
the potential and feasibility of new technologies.

Security Since the system is more loosely coupled and
composed of many services with many open interfaces, the
surface for attacks is increasing. In traditional architectures,
architects and developers had to secure systems, which con-
sisted of only a few elements. It is different with systems that
are created with the component-based architecture, where it
also occurs that a system consists of many components. Since
components are units of functionality and not containerized,
they are, however, generally more tightly coupled [10]. In both
cases, it is comparatively easier to keep track of the entries
for a possible attack. On the other hand, however, when a
component within a traditionally designed system breaks down
through an attack, it is very likely that the whole functionality
collapses. This scenario can be mitigated by the MSA by using



TABLE II
SMELLS

Smell Relevant for
automotive

Hard-coded endpoints no
ESB usage no
Not having an API gateway no
Too many standards no
Cyclic dependency yes
Wrong cuts yes
Shared persistency yes
API versioning yes
Inappropriate service intimacy yes
Shared libraries yes
Microservice greedy yes

the architecture, every developer has to be more conscious of
security and being aware of attack scenarios.

Technological backlog To unlock its advantages, the MSA
depends on further developments and introducing of supporting
technologies. The main drivers thereby are Ethernet for the
internal data transfer, the fifth generation (5G) of cellular mobile
communications for external data exchange, and more powerful
ECUs. Vehicles need to exchange an ever-growing amount of
data to update the internal software, release bug-fixes, process
data, and provide vehicle-to-everything (V2X) connectivity.
Hence, communication channels with high data throughput
and area-wide network expansions are necessary. In addition,
high-speed data exchange is required as some information must
be transmitted in real-time. Driven by the entry of computing
power-consuming image processing, pattern recognition, and
other AI functionality, ECU hardware becomes more powerful
nowadays. This trend will extend to other domains in the future.
Since the memory or computing overhead of the architecture
is low compared to functions such as image processing or
AI functionality, software architectures with overhead benefit
from this progress and it becomes easier for the architect to
use a service-based software architecture. However, without
the simultaneous development and broad introduction of these
technologies into series production, MSA will not be able to
exploit all advantages. The effort for changing the architecture
style would probably not be worth it.

B. RQ2: Architectural Smells

Taibi and Lenarduzzi provide a list of anti-patterns in projects
that are based on the MSA principle [7]. Their paper is based
on surveys and interviews with 72 experienced microservice
developers from different industries about architectural smells,
bad practice, and anti-patterns. The identified microservice
smells are not completely applicable to automotive software
or embedded systems. Table II provides an overview of the
smells and whether they also applied to the case discussed
here.

Hard-Coded Endpoints: This smell occurs if hard-coded
IP addresses are used to connect microservices. This smell did
not apply to our case study because the technical infrastructure
in vehicles differs from web or information systems. In both

setups, messages are transferred via signals over communication
systems. The difference is in the method of message transfer.
Most automotive systems use broadcasting as the method for
transferring messages. This means, to execute the required com-
mand, every message is provided with an identifier to address
the corresponding ECU and is sent to all ECUs. Then, each
microcontroller decides depending on the identifier, whether
the message is processed or dropped. In web or information
systems, direct message with hard-coded IP addresses and
ports can be used. Since mostly broadcast messages are used
in automotive systems, hard-coded endpoints rarely occur.

ESB Usage: This smell occurs if microservices commu-
nicate via an enterprise service bus (ESB). An ESB is a
communication method between mutually interacting software
applications. The ESB is providing a central place where
services, application, and resources can be connected. Due to
the automotive specific ECU distribution and communication
mechanism (broadcasting), it would require an enormous
amount of effort to integrate such a central controller. Besides
that, it would be a single point of failure component. For this
reason, this smell does not need to be taken into account.

Not having an API Gateway: The data needed by con-
sumers is usually different from the data provided by the
various APIs of each service. In a worst case scenario, the
service consumers would communicate directly with different
microservices, increasing the complexity of the system and
decreasing its ease of maintenance. An API gateway is the
entry point for all clients and is handling all requests. This
makes it easier to orchestrate, monitor, and secure the system.
Automotive companies will face with this problem less as most
hardware components and interfaces associated therewith have
already been determined at the planning stage of the vehicle.
In addition, manufacturers have more decision-making power
over the devices they use within the car, which leads to the
fact that the variety of access types and devices is smaller than
in the web domain. Furthermore, an API gateway is like the
ESB a potential single point of failure component and will
increase the system overhead concerning computing-power.

Too Many Standards: This smell occurs if different
development languages, protocols, frameworks, and the like
are used. Due to strict definitions, standards, and requirements
during the development of a vehicle, the scenario is very limited.
Furthermore, microservice frameworks such as OpenDLV often
provide basic conditions and rules for the planning and design
of a system. Especially for safety critical systems, this smell
is not very relevant.

Wrong Cuts: This smell occurs if microservices are split
based on technical layers (e.g. presentation, business, and data
layers) instead of business capabilities. As a result, wrong
separation of concerns and increased data-splitting complexity
occurs. The prospected solution to that is to perform a clear
analysis of business processes and the need for resources.

The capabilities in the car industry are mostly separated
along domains, for example: Powertrain, chassis, comfort,
entertainment systems, etc. Embedded systems that run in just
one of those domains should barely suffer from this problem



because responsibilities are clearly separated. In addition, the
teams are mostly independent and, except for data exchange,
no cross-functionality is required. This clear separation is
becoming increasingly blurred, so a new challenge is that
functions are increasingly being distributed across domain
boundaries. For this type of functions, it is important to split
the responsibilities within the departments, according to the
capability, to reduce potential complexity and error sources.
Cross-domain communication and team structures are needed
to ensure that a team can work autonomously and is able to
focus on the value of the system. Traditional team borders and
responsibilities have to be softened and reassembled to make
the microservice approach successful in the vehicle industry.
For projects like our case study, competences from different
research domains need to be grouped together. The first services
can be assigned to the perception area followed by the logical
part, in which the image-processing takes place. In the end,
action services receive the commands and transfer them into
state changes of the vehicle. This processing chain can only
be successfully implemented and deployed when the work is
independent from other projects and with clear responsibilities
according to capabilities.

Cyclic Dependency: This smell occurs if a cyclic chain of
calls between microservices exists. Microservices involved in
a cyclic dependency are difficult to spot at first place and hard
to maintain or to reuse in isolation. A solution is to refine the
cycles according to their shape and apply the API gateway
pattern.

Due to the reasons mentioned above at the point not having
an API gateway, to use an API gateway is not an optimal option
to prevent this smell in vehicle-systems. This relation between
modules exists also in other software architectures and can
usually be avoided by a smart and well thought through system
architecture and design. For instance, by trying to analyze the
data flow, possible cycles could be detected and refined. This
smell is well known at Revere and is prevented by trying to
design the system in such a way that a directed flow is always
clearly identifiable. Moreover, a cyclic loop is prevented at
Revere by the requirement that a microservice should never
receive its own message.

Shared Persistency: This smell occurs if different mi-
croservices access the same relational database. In the worst
case, different services access the same entities of the same
relational database. This smell results in strong coupling
between microservices connected to the same data, reducing
team and service independence. There are three possible
solutions to this smell: (1) use independent databases for each
service, (2) use a shared database with a set of private tables
for each service that can be accessed by only that service, or
(3) use a private database schema for each service.

Mainly due to cost pressure in the automotive domain,
it is not always possible to give each microservice its own
storage data-space. It must be carefully considered in which
case a common data-space could be used. On the other
hand, a separated and private data area could give advantages
to highly safety-critical systems. A service may be cloned

multiple times or just scaled and split on several ECUs with
own databases. In addition, the processing power of ECUs,
especially in inter-domain functions, is constantly rising. All
these individual requirements lead to the fact that the proposed
solutions cannot be assigned completely and have to be adapted
partly for the automotive sector. To summarize, the system
components, which could lead to the shared persistency anti-
pattern, have to be reviewed strictly during the system design
phase and after coupling of microservices. For the case-study at
Revere, the shared-memory technique with a lock mechanism
is used to reduce a potential risk of this microservice smell.
Since the Volvo XC90 is a test vehicle, it is well-resourced
with additionally computing power. Thus, a possible resource
constraint played a subordinate role in the case study.

Shared Libraries: This smell occurs if different microser-
vices share libraries. In this case, microservices are tightly
coupled, leading to a loss of independence between them.
Moreover, teams need to coordinate with each other when
they need to modify the shared library. There are two possible
solutions: (1) accept the redundancy that increases the depen-
dency among teams, or (2) extract the library to a new shared
service that can be deployed and developed independently by
the connected microservices.

For this smell, both solutions are transferable and should
be considered in exceptional circumstances, for example, in
data-space critical environments. However, solution 1 should
be considered even more carefully as the shared library could
result in a single point of failure. In the worst case, this means
that a faulty library can have negative effects on several services
and subsystems. In addition, the Docker environment advises
that each container should be as independent and self-contained
as possible. By fully integrating the required libraries into each
independent Docker image, we avoided shared libraries during
our case-study.

API versioning: This smell occurs if APIs are not semanti-
cally versioned. In case of new versions of non-semantically
versioned APIs, API consumers may face connection issues.
For example, the returning data might be different or might
need to be called differently. Therefore, APIs need to be
semantically versioned to allow services to know whether
they are communicating with the right version of the service
or whether they need to adapt to a new contract.

The Revere team is using Git as a tool for version control,
and the Git commit hash key is used to keep track of the
code version. This key is also used in the Docker image tag to
achieve traceability between the current version of source code
and deployable software bundle which also includes the API-
version. This naming procedure also improves the overview
for frequent testing and for comparing different versions. To
integrate the lane detection system into the existing Revere
code base, the procedure for version control was adopted for
the case-study.

Inappropriate Service Intimacy: This smell occurs if a
microservice keeps on connecting to private data from other
services instead of dealing with its own data, which increases
coupling between microservices or, in the worst case, might



introduce unwanted couplings or dependencies, that are not
explicit.

This architectural smell is often a hint that two services are
too tightly coupled. One goal of a good MSA is to minimize
dependencies between services by well designed interfaces and
service contracts to be transferable to different systems and
to cooperate with various versions. However, it is a balancing
act between too few and too many services, which will be
described in the next microservice smell. In general, single
functions in automotive systems do not store much data, as
they are mainly reactive and data-driven. However, a common
(bad) practice is to use global variables instead of properly
defined interfaces to access other function’s internal state or
data. This is an instance of the Inappropriate Service Intimacy
smell. Therefore, we did not use any global variables in our
case study.

Microservice Greedy: This smell occurs if teams tend to
create new microservices for each feature, even when they
are not needed. This smell can generate an explosion in the
number of microservices, resulting in a huge system that is
hard to maintain because of its size.

In the automotive industry, costs and resources per unit for
engineering and development of a car play an important role.
Therefore, architects and software developers are anxious to
save resources and should try to reduce unnecessary elements,
where ever it is possible. This circumstance weakens the
microservice greedy smell for the automotive use-case. The
design and structure of the system are well coordinated
with experienced microservice architects, which results in a
manageable number of services. Therefore, there was no risk
of getting into this bad-practice during the implementation of
our case study.

VI. CONCLUSIONS

The goal of this paper was to examine whether the MSA
can be used as a technically advanced and problem solving
software architecture in the automotive industry. We conducted
a case study to promote understanding and examine the
feasibility of the architectural change. A modern development
and test environment was available at Chalmers University of
Technology and the Revere research laboratory to conduct the
case study.

The lane following ADAS system worked as planned with
the microservice architecture and the specified requirements
were met. Like in other software architecture styles, there are
code or architectural smells in the MSA that could trigger
solution patterns that do not benefit the project development.
We described smells, the corresponding problem that may
arise, and possible solutions as well as additional adaptations
to the automotive use-case. Finally, we performed a high level

evaluation of the MSA to identify the strengths, weaknesses
as well as potentials and threats to the automotive industry. At
several points of the analysis, experience and observations from
the case study were included. The outcome of the case-study
shows that the architecture in combination with a simple and
powerful software environment is a promising approach to the
automotive industry for mastering current challenges and to
be prepared for upcoming tasks. The MSA is advantageous in
areas, where maintainability of source code, easy scalability,
and high modularity are required. However, project architects
must be aware that they must individually evaluate the software
architecture for each project in terms of usage, size, and scope.
Service-based approaches are not a panacea for all software
related problems in the automotive industry. Furthermore, the
architect must be aware of possible weaknesses and threats in
the changeover of the software architecture to microservices.
After all, both, architects and software developers, should
keep an eye on any smells within source code that could
cause problems. Once these points are not only considered, but
actively refactored, the MSA is ready for successful application
in complex ADAS and autonomous driving functions.
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