
1

SklCoin: Toward a Scalable Proof-of-Stake and
Collective Signature Based Consensus Protocol for

Strong Consistency in Blockchain
Zakwan Jaroucheh, Baraq Ghaleb, William J Buchanan

School of Computing, Edinburgh Napier University, Edinburgh, UK
z.jaroucheh@napier.ac.uk, b.ghaleb@napier.ac.uk, b.buchanan@napier.ac.uk

Abstract—The proof-of-work consensus protocol suffers from
two main limitations: waste of energy and offering only proba-
bilistic guarantees about the status of the blockchain. This paper
introduces SklCoin, a new Byzantine consensus protocol and its
corresponding software architecture. This protocol leverages two
ideas: 1) the proof-of-stake concept to dynamically form stake-
proportionate consensus groups that represent block miners
(stakeholders), and 2) scalable collective signing to efficiently
commit transactions irreversibly. SklCoin has immediate finality
characteristic where all miners instantly agree on the validity
of blocks. In addition, SklCoin supports high transaction rate
because of its fast miner election mechanism.

I. INTRODUCTION

Blockchain technology has recently attracted the attention
of the world owing to its great potential in realizing a plethora
of applications where trust is a decisive element. In fact,
Blockchain has eliminated the need for centralized third-
party verification. Instead, the centralized approach has been
replaced by a decentralized form of trust governed by multiple
entities (nodes) [1] [2]. At the heart of Blockchain is the
consensus algorithm where those multiple entities need to
reach consensus or agreement on the state of the Blockchain
(deciding which nodes are more qualified to add the next block
of transactions into the blockchain and verify the results). In
general, the consensus algorithms of Blockchain are classified
into two main classes; proof-based and voting-based consen-
sus. In proof-based consensus, a node is required to provide
the network with some sort of proof that it is the most qualified
one to add the next block. In voting-based consensus, a leader
node to suggest the next block is first elected which is then
voted on (i.e., the suggested block) by some other nodes and
finally committed into the blockchain if it has received the
vast majority of votes.

Proof-of-work (PoW) used by several cryptocurrencies in-
cluding Bitcoin is an example of proof-based consensus. The
PoW requires a node (miner) to solve a computationally
expensive cryptographic puzzle (i.e. finding a block hash with
pre-specified leading zeros) before it can add the next block
of transactions into the blockchain. A transaction processed
by means of PoW is argued to be irreversible and secure as
long as malicious miners control less than the half of the
hashing power and the age of added block is around one
hour. Key issues with the PoW includes: 1) the significant
amount of power consumed by the network to find the required

proof, 2) the one-hour latency in confirming transaction limits
Bitcoin’s suitability for real-time transactions, and 3) Bitcoin’s
consensus algorithm provides only probabilistic consistency
guarantees. Other alternative for a consensus protocol is to
provide strong consistency where all miners instantly agree on
the validity of blocks, without wasting computational power
resolving inconsistencies (forks) [3].

To address the PoW limitations, several proof-based consen-
sus algorithms have been introduced in the literature including
proof-of-stake, proof-of-elapsed time, proof-of-space among
many others. The ultimate goal of such proposals was to
remove the PoW computationally expensive proofs while
preserving its same level of security and irreversibility. For
instance, in the PoS, a miner is selected randomly based on
the amount of coins it has staked into the system. Hence,
the more the coins an account staked into the network, the
higher the possibility of being selected to produce a block
and earn the corresponding transactions fees. Theoretically, it
is assumed that the probability of selecting the next miner in
PoS is proportional to the account’s balance. However, it has
been proved in [4] that this is not entirely accurate when the
probability is only based on the amount staked. In addition,
the pseudo-random nature of PoS may generate some new
attack vectors [4]. Another issue with proof-based consensus
other than PoW is the ability of a miner to mine effortlessly in
secret as there is no associated cost with mining process. To
remedy the limitations of proof-based consensus, researchers
have investigated the potential of employing Byzantine fault
tolerant (BFT) consensus algorithms in blockchain. In BFT
consensus, the process of appending the next block to the
blockchain is no more the responsibility of single node or a
miner. Instead, the to-be-appended block should be first agreed
on and approved by a rolling committee (i.e., a group of
miners) that reaches such an agreement through rounds of
communications.

Practical Byzantine Fault Tolerance (PBFT) [5], was the first
practical approach that allowed for Byzantine fault tolerant
applications with low-overhead [6]. This work introduces
SklCoin, a cryptocurrency based on the principles of PBFT
algorithm. PBFT brings strong consistency (ensuring that
clients need to wait only for the next block rather than the
next several blocks, e.g. in bitcoin, to verify that a transaction
has been committed). By leveraging the strong consistency
of PBFT, SklCoin addresses three main challenges: (1) open

2

membership, (2) scalability in terms of the number of nodes,
and (3) transaction commitment rate.

In this paper we make the following key contributions:
• To address the openness issue, SklCoin introduces a new

software architecture where the consensus and signing
groups are determined dynamically in every time-slot as
will be seen later.

• SklCoin implements Byzantine consensus using collec-
tive signing scheme. We adopt the idea of ByzCoin [3],
to build SklCoin as PBFT atop CoSi. However, this
collective signing scheme could be replaced by another
scheme.

• Finally, SklCoin creates a new mechanism that allows all
miners to agree on the slot-leader in every time-slot. This
allows all miners to instantly agree on the validity of the
proposed block and on the validity of the leader who
proposed the block, rendering the verification process
scalable.

II. RELATED WORK

There have been numerous recent studies with the goal to
alleviate the shortcomings of both proof-based and Byzantine-
based consensus algorithms. For instance, [7] introduce the
FastBFT consensus algorithm that integrates several technolo-
gies including lightweight secret sharing, trusted execution
environments (TEEs), tree topology, optimistic execution, and
failure detection, hence, realizing a low latency infrastructure.
The authors of [8] argued, however, that weakly synchronous
consensus algorithms are ill-suited for environments where
messages are not guaranteed to be delivered in a certain
amount of time. Hence, they introduce a leaderless consen-
sus protocol that uses a novel atomic broadcast protocol to
guarantee liveness in asynchronous environments. Crain et al
[9] propose another leaderless consensus protocol with the aim
to overcome the problem of a faulty coordinator (i.e. leader)
in asynchronous environments. The rational here is that a
synchronous round can be declared completed by a process
upon receiving a pre-specified threshold of messages which
nullifies the need to wait for potentially slow messages from
the leader.

Overcoming the scalability issue in proof-based consensus
algorithms was the focus of several research efforts. For
instance, Bitcoin-NG [10] proposes a new consensus algorithm
that combines Byzantine fault tolerance with PoW aiming
to lower the latency of transaction processing in PoW-based
blockchain. The key idea is to decouple the process of miner
election from transaction verification by introducing two dif-
ferent blocks types; Keyblocks and Microblocks. Keyblocks
serve the purpose of leader selection by means of PoW. The
leader then will take the responsibility of creating Microblocks
of transactions that need only to be signed by the leader with-
out the need for the power-hungry PoW. However, Bitcoin-NG
is still susceptible to several issues including forking, even
deliberately and history rewriting. ByzCoin [3] proposes to
overcoming aforementioned problems by introducing the idea
of collective signing to achieve consensus in blockchain. A
block is considered valid if collectively signed by a group of

recently-successful block miners. However, ByzCoin inherits
the power-inefficient PoW algorithm. In addition, it only gives
the chance for recently successful miners to be leaders; that
prevents new joining nodes from being elected.

In Schnorr signing, we can aggregate public keys of P
participants into a single signing key [11], and uses the non-
interactive version of the Fiat-Shamir heuristic [12]. Using
Elliptic Curve methods, to sign a message we take a random
value (k) and a private key value (d) and a generator point G
(G is a base point on an elliptic curve) and compute:

Q = dG (1)

and:

R = kG (2)

For it to be non-interactive we then calculate:

e = H(R ‖M) (3)

and then:
s = k − ed (4)

The signature is then (s, e). To verify we compute:

rv = sG+ eQ (5)

and then:

ev = H(rv ‖M) (6)

We then check that rv = ev .
Each participant has a private key (ai) and a public key

Ai = aiG. We can then determine the aggregate public key
with:

A =
∑
i∈P

Ai (7)

III. BACKGROUND

A. Byzantine Fault Tolerance

BFT consensus algorithms focus on building fault tolerance
in the face of unreliable systems provisioning mainly for
fail-stop faults. In the face of such failures, these algorithms
guarantee progress and consistency in the data structures that
were replicated across the nodes. The number of nodes needed
in such networks are 2f + 1 to be able to tolerate f fail-stop
failures. Tolerating Byzantine faults, increases the complexity
of the consensus protocol by adding several extra layers of
messaging into the system [13]. Practical Byzantine Fault
Tolerance (PBFT) [5], was the first practical approach that
allowed for Byzantine fault tolerant applications with low-
overhead.

PBFT uses the concept of primary and secondary replicas,
where the secondary replicas automatically check the sanity
and liveness of decisions taken by the primary and can collec-
tively switch to a new primary if the primary is found to be
compromised [14]. PBFT brings strong consistency (ensuring
that clients need to wait only for the next block rather than the

3

next several blocks, e.g. in bitcoin, to verify that a transaction
has committed).

PBFT relies upon a primary node (leader) to begin each
round and proceeds if a two-thirds quorum exists. Three
distinct phases happen in every round of PBFT:

1) Pre-prepare phase: The current primary node (leader)
announces their proposal that the nodes should agree
upon. Once received, every node validates the proposal
and multicasts a prepare message to the group of nodes.

2) The nodes wait until they receive (2f + 1) prepare
messages and then publish a commit message.

3) The nodes wait until they receive (2f + 1) commit
messages to make sure that enough nodes have agreed
on the proposal and committed themselves to it.

Since the leader is a potential attack vector, PBFT imple-
ments a view-change protocol that ensures liveness in the
face of a faulty leader. The nodes initiate a view-change (i.e.
changing the leader) if they detect either malicious behavior
or an unsatisfactory progress. If a quorum of (2f + 1) nodes
agrees that the leader is faulty, then a next leader takes over.

PBFT has the following limitations:
• PBFT was not designed for scalability in large consensus

group of nodes. Each PBFT node normally communicates
directly with every other nodes during each consensus
round, resulting in O(n2) communication complexity.

• PBFT normally assumes a well-defined, closed group
of nodes. Thus it is not suitable for decentralized open
networks.

• In order to confirm the transaction has been committed,
the client has to communicate with a super-majority of the
nodes to ensure that the transaction is confirmed, making
secure transaction verification unscalable.

B. Collective Signing

Within legal infrastructures, we might have several wit-
nesses W , and we ask a number of the witnesses W ′ to verify
that something is correct. If one of the witnesses cannot verity
the information, we would highlight a problem. Let us say
we have a controller on a network, and a number of selected
trusted witnesses. Each of the witnesses can then check all of
the messages sent by the nodes on the network, and if one
of them determines a problem, they can tell the rest of the
network. In this respect, every message (M) is collectively
signed by W witnesses.

The collective signing (CoSi) algorithm is defined by Syta et
al [15]. With CoSi (collective signing), there are four phases
involving P participants and where the leader has an index
value of zero. Each participant has a private key (ai) and a
public key (Ai = aiG, and where G is a base point on an
elliptic curve). We then determine the aggregated public key
with [15]:

A =
∑
i∈P

Ai (8)

Announcement: Initially the leader broadcasts a message
(M) that it wants the participants to sign.

Commitment: Each node i will pick a random scalar
(vi) and determines their commitment (Vi = [vi]G). Each
commitment is then sent to the leader, who will wait for a
specific amount of commitments (P ′) to be received. The
leader then creates a participant bitmask and aggregates all
the received commitments:

V =
∑
j∈P ′

Vj (9)

and creates a participation bitmask Z. The leader then
broadcasts V and Z to the other participants.

Challenge: Each of the participants computes the collective
challenge (using the hash function H):

c = H(V ||A||M) (10)

and send the following back to the leader:

ri = vi + c× ai (11)

Response: The leader will wait until the participants in P ′

have sent their responses. Once received, the leader computes
the aggregated response:

r =
∑
j∈P ′

rj (12)

and publishes the signature of the message (M) as:

(V, r, Z) (13)

Each node can then check their own signature value and
agree with the leader.

IV. SYSTEM ARCHITECTURE

SklCoin is designed for untrustworthy networks that can
arbitrarily delay, re-order, drop or duplicate messages. We
assume the network has a weak synchrony property. The
SklCoin system is comprised of a set of N block miners.
At any time t a subset of miners M(t) could be faulty
or controlled by a malicious attacker. Unlike honest miners,
Byzantine miners can attack the system, diverting from our
consensus protocol which we call SklCoin.

We assume that we have a group of n = 3f+1 PBFT nodes.
As in PBFT, at any given time, one of these nodes is the leader,
who proposes transactions and drives the consensus process.
These nodes collectively maintain the blockchain, collecting
transactions from clients and adding them in blocks. SklCoin,
our consensus protocol, guarantees that only one blockchain
history ever exists and that it can never be rolled back or
rewritten. The safety and liveness is guaranteed as long as at
most f nodes are faulty.

Subsequent sections describe how to build the SklCoin using
the following steps:

1) We create a mechanism to allow miners to determine the
consensus and signing groups in every mining round.

2) We leverage the idea of proof-of-stake to create a
mechanism to elect the leader.

4

Fig. 1. The SklCoin Approach

3) We leverage the collective signing technique used in
ByzCoin to reduce per-round communication complex-
ity to O(log n) and reduce typical signature verification
complexity from O(n) to O(1).

A. The SklCoin Protocol
Conventional BFT schemes rely on a well-defined con-

sensus group to guarantee safety and liveness. Sybil attacks
can break any open-membership protocol involving security
thresholds. For example, PBFT assumes that at most f out of
3f + 1 members are not honest. To remedy this situation,
the proof-of-work mechanism used in Bitcoin, allows only
miners who have dedicated resources to become a member of
the consensus group. In proof-of-stake, only miners who have
shares in the system can become part of that group. Here, we
adapt the proof-of-stake mechanism to maintain the “balance
of power” within the BFT consensus group over a given fixed-
time slot.

The proof-of-stake (PoS) algorithm is the most important
part of the SklCoin protocol. It defines how the nodes reach an
agreement about the state of the ledger. The idea of PoS is not
new and it has been already used in several approaches such
as [16] [17] [18] [19]. The core idea of PoS is that instead of
wasting energy as the case in proof-of-work, a node is elected
to generate a new block with a probability proportional to the
amount of stake this node has. If a node is elected to generate
a new block it will be called "slot leader".

Similar to the approach in [20], every SklCoin is associ-
ated with two fields: a balance and a stake. Balance is the
real amount of "coins" that each user has. Similar to any

cryptocurrency, any user can send any amount of SklCoins
(within this balance), to other users, as well as receive any
amount of SklCoins from other users. Stake, on the other hand,
gives a user the power to contribute in the evolution of the
ledger. For example, only nodes with positive stakes (we call
them stakeholders or miners) can participate in running the
SklCoin protocol. We differentiate here between two types of
transactions: normal transactions where the transferred coins
are associated with a balance, and stake transactions where the
transferred coins are associated with a stake.

The SklCoin protocol divides the physical time into slots.
A slot is a relatively short period of time (e.g. 10sec). Each
slot corresponds to one and only one slot-leader which has a
sole right to produce one and only one block during his slot.
If slot-leader missed their slot (for example, went offline), the
right to produce a block is lost until they are elected again. In
this case, as will be seen later, SklCoin allows miners to elect
the next slot-leader(s).

Coming to a consensus between the miners in the SklCoin
protocol boils down to (Fig.1):

1) Determine the consensus group.
2) Select one of the miners to mine a new block in a way

that is fair (not biased toward any miners with specific
characteristics).

3) Determine the signing group (a subset of the consensus
group).

4) Efficiently broadcast the new block to the signing group
who verify the content of the block and the eligibility
of the slot-leader before adding the new block to their
local blockchain.

5

B. How is Consensus Group Determined

We consider here that any miner that has at least one
SklCoin with stake is eligible to be a slot-leader. The idea here
is that, at the beginning of each block-mining round (time-
slot), each miner can determine who is the slot-leaders in the
coming slots. Ideally, at the beginning of the time-slot, each
miner has to know only who will be the slot-leader of that
slot. However, as some miners may become unavailable, a
timeout mechanism is used that allows the miners to know
the slot-leaders of the coming slots in case the slot-leader of
the current slot went offline.

Similar to the "fair lottery" idea, the selection mechanism
should guarantee that any stakeholder can become a slot-
leader. However, it should also guarantee that the more stakes
the miner has, the more its chance to be elected. In that respect,
each miner parses all stake transactions available in all blocks
starting from the genesis block and calculates the stakes of
each stakeholder (miner). This way, the stakeholders will be
sorted according to their appearance in the blockchain. This
list of stakeholders can be cached in the miner’s machine
and it can be updated when a new block is appended to the
blockchain. The result is that all miners will end up with the
same ordered list of stakeholders (consensus group) along with
their number of stakes.

C. How is Slot-leader Selected

Each miner follows the following steps:
Step 1: After the new block has been added to their local

blockchain, each miner calculates the hash of the last added
block; we call that hash the "common seed" (CS). This CS
is used as a seed to a random number generator to generate
a sequence of random numbers with a length equals to the
total amount of coins staked into the network. For instance, if
the amount of total coins staked to the network is 100, then
the random number generator must create a sequence of 100
numbers.

Step 2: Each miner maintains a memory map where
each memory location corresponds to a specific stakeholder’s
(miner) public key. Suppose we have N stakeholders. Each
stakeholder i has Si stakes. Therefore, the memory map will
have L =

∑
Si locations in the memory. Each location

contains the stakeholder’s public key. The more stakes the
stakeholder has the more memory locations they will have, and
the more chance they will be elected. The question now is how
to distribute these locations in memory. We need to ensure that
all miners end up with creating the same memory map in their
local machines. Each miner will use the same CS, produced
in Step 2, as an input to a deterministic pseudo-random
numbers function which returns random numbers between 1
and L. Because all miners use the same CS, all miners will
end up with the same sequence of random numbers. This
sequence of numbers specifies the memory locations of each
of the L stakes. The first random number of that sequence
specifies the memory location where we add the public key
of the stakeholder that corresponds to the first stake available
in the list of Step 1. The second random number specifies
the memory location where we add the public key of the

stakeholder that corresponds to the second stake available in
the list, and so on. If the random number specifies a memory
location that has been already taken, we move to the next
random number. The result is that all miners will generate the
same memory map that contains a randomly distributed list of
stakeholders’ public keys.

Step 3: At this point we need to have a mechanism that
allows miners to know who is the winning leader in the current
time slot, and the next time slots in case the current leader
went offline. Each miner calculates the value (CS modulo L)
to be used as a seed to a random number generator which
produces a series of random numbers between 1 and L,
and which determine the sequence of next leaders. The first
randomly generated number specifies the memory location of
the winning leader in the current time-slot. If for some reason
the winning miner went offline, other miners will wait till the
time of the current slot times out, and then the next randomly
generated number is used to determine the next leader, and so
on.

D. How is Signing Group Determined

In order to ensure the scalability and feasibility of SklCoin,
a maximum number of miners M should be selected to form
the signing group. That group is responsible of validating
and agreeing on the block proposed by the slot-leader. For
this objective, the list of miners (resulted in Step 1) is sorted
according to their stakes and the top M is selected to become
the signing group of the current slot.

The slot-leader prepares a new block and broadcasts it to
the signing group as will be seen in the next section. If the slot
leader produces a block that gets included in the chain, they
receive a block reward equal to the total fees of all transactions.

E. Agreeing on the New Block

The slot-leader starts generating a new block which will
contain the transactions it received. In the standard PBFT pro-
tocol, there exist two phases: 1) the pre-prepare phase in which
the leader obtains attestations from a super-majority quorum of
signing group members (two-thirds) that the leader’s proposal
is safe and consistent with all previously committed history,
and 2) the commit phase in which the leader obtains attes-
tations from a super-majority that all the signing members
witnessed the successful result of the prepare phase and they
committed to remember the decision.

We adopt the collective signing approach taken in [3]. To
implement the pre-prepare phase, the slot-leader announces
the first collective signature (CoSi) round. The resulted CoSi
from the prepare phase provides a proof-of-acceptance of
a proposed block of transactions by the slot-leader. In the
second commit round, the slot-leader announces the proof-
of-acceptance to all members, who then validate it and col-
lectively sign the block’s hash to produce a collective commit
signature on the block. This way a Byzantine leader cannot
rewrite history or double-spend.

Validating the slot-leader’s proposal comprises two points:
1) The content of the block in the proposal must be correct.
That includes the list of transactions and that the block is

6

cryptographically linked with the last block. 2) The originator
of the proposal is the correct slot-leader of the current time
slot. After validating the new block, each member of the
signing group (including the slot-leader) adds that block to
its local blockchain. In addition, the slot-leader broadcasts the
new block along with the collective signature to the miners
of the consensus group who did not participate in the signing
group. The result is that all miners end up with the same
blockchain state.

V. DISCUSSION

It is inherently difficult to analyze such complex system, and
therefore we only consider some common attacks and leave
remaining more formal security analysis for future work.

A. Attacks

It is important to ensure that our consensus model functions
correctly in normal as well as adversarial conditions. In a
permission-less environment, the number of miners is expected
to be large, and these miners are anonymous and untrusted
since any node is allowed to join the network. Consensus
mechanisms for such environments have to be resilient the
following attacks:

Sybil attacks: Sybil attacks on a blockchain network can
allow a single or group of entities to generate several (millions)
online identities that they control to influence and manipulate
the consensus process. Having such dominance allows these
entities to confirm the transactions and blocks as per their rules
or to include double-spend transactions.

In SklCoin, generating multiple (millions) identities by the
attacker is useless because: 1) participating in the mining
process (consensus group) requires the attacker to stake some
coins into the network; it is unlikely that miners play against
their interest, 2) the probability of selecting the leader is
a function of the amount of stakes rather than the number
of identities, and 3) since participating in the signing group
depends on the number of stakes, generating multiple identities
does not help the attacker to be elected as a member of the
signing group.

Selfish and deliberately malicious nodes: selfish mining
occurs when the normally honest miners are incentivized to
support the attacker and join in carrying out an attack. In
this attack, the attacker performs erratic mining, at the cost
of his short term revenue by maintaining a separate private
blockchain in parallel to the Bitcoin blockchain. He selectively
publishes many blocks all at once, forcing rest of the network
to discard their blocks and ultimately losing revenue.

It is true that the attacker can be part of the consensus group
by having as low as one SklCoin (stake); however, because
the chance of being elected as a leader is proportional to the
numbers of stakes, the attacker will have a slim chance of
mining new blocks. But what if the attacker has been elected
to be the leader? In that case, SklCoin reduces the risk by 1)
electing the attacker for only one time slot, and 2) any attempt
to add a malicious block will be noticed by the witnesses.

Nothing-at-stake attack: This attack refers to the case
when a miner (aka forger) forges on every possible fork.

BN256 Edwards 25519 P256

0

200

400

600

800

1,000

48.8 28.9 21.9

360.2

242.9 253.7

958.7

512.3

821.3

A
ve

ra
ge

tim
e

(m
s)

10 signers 50 signers 100 signers

Fig. 2. The performance evaluation - Average time

In fact, proof-of-stake is susceptible to forks being created
accidentally or maliciously giving the miner the chance to
mine on more than one fork simultaneously, thus, enabling
double spending attacks. This is impossible with PoW as a
miner will consume power mining when mining on two forks
simultaneously. However, with PoS, forging on multiple chains
costs the miner nothing and will be rewarded no matter which
fork wins. In SklCoin, there is no chance for the network to
generate multiple forks, thus, eliminating the risk of mounting
the nothing-at-stake attack.

An experiment on an AMD Phenom II running at 2.8 GHz
produced the results defined in Fig.2. This uses differing
elliptic curves of: BN256 [21]; Edwards 25519 (with Blake-
SHA256) [22]; and P256 (with BlakeSHA256) [23], and
uses the Golang Kyber library [24]. The experiment uses a
number of signers for each run. We create a new key pair
for each signer, create a new mask for the signing process,
and then create an aggregated commitment and mask. Finally
the commitments and responses are created for each signer.
It can be seen that Edwards 25519 and P256 produces faster
signing than BN256. The efficiency of scale can be seen with
the Edwards 25519 curve. There are some worries around the
current security levels of BN256 [25], where the security level
may drop to 96 bits of security.

B. Limitations of the SklCoin protocol

Recently, it turned out that, according to [26], CoSi was not
proved secure. The authors introduced mBCJ, a secure two-
round multi-signature scheme. Their results show that mBCJ
is only marginally less efficient than CoSi, so that any protocol
based on the insecure CoSi scheme should instead be built on
the provably secure mBCJ scheme. In the SklCoin approach,
replacing the collective signature scheme does not affect the
approach itself and the plan is to replace CoSi with the mBCJ
scheme as the next step.

In addition, SklCoin does not have a mechanism that
prevents a leader miner from producing a block that will not

7

get included in the blockchain. That mechanism is necessary
to stop miners from producing blocks that won’t get included
in the main chain. This could happen when one or more
malicious entities are trying to slow the throughput rate by
producing fake or malicious blocks, or not producing blocks
at all. However, SklCoin reduces this risk by: 1) requiring the
leaders to have stakes, and 2) the leader is not allowed to mine
more than one block during the leader-slot.

C. Advantages of the SklCoin protocol
The advantages include:
• The leader is selected from the consensus group which

is formed from all miners who have stakes. In order to
ensure scalability, the leader is responsible of choosing
the signing group which is a subset of the consensus
group.

• No Blockchain Fork: A blockchain fork can result in
different nodes in the system converging on different
blocks as being part of the blockchain. Unlike Bitcoin
where temporary forks may exist due to network la-
tencies, SklCoin has immediate finality characteristics
i.e. once the transaction is included in the block, it is
confirmed and will not be rolled back.

• Transaction rate is higher with platforms that can confirm
transactions immediately and reach consensus fast. Wait
time between blocks can be significant e.g., up to 10 min-
utes using Bitcoin’s difficulty tuning scheme. Whereas,
in SklCoin one block is produced in each time slot. The
time slot is a configurable parameter and it could depends
on the network size. Unlike PoW approaches which are
probabilistic and have to spend significant amount of time
solving a cryptographic puzzle, SklCoin supports higher
transaction rate because of a faster mechanism for leader
election.

• Scalability of the protocol: The scalability of SklCoin
comes from: 1) the mechanism of electing the leader
is fast and does not depend on the number of available
miners, and 2) electing a subset of the consensus group
to become the signing group.

VI. CONCLUSION

SklCoin is an attempt to solve the scalability and low-
throughput rate in open decentralized blockchain systems.
By leveraging the ideas of proof-of-stake and the collective
signature, SklCoin provides strong consistency and prevents
common attacks on the consensus and mining system such
as blockchain forks and selfish-mining. SklCoin allows open
membership in the consensus group i.e any node can become
a member of the miners as long it gets some stakes. The con-
sensus group and signing group are determined by the miners
in each time slot. Future work includes creating a penalty
mechanism to punish the malicious leaders who is either not
adding any blocks or adding malicious blocks, and finding
fairer mechanism of choosing the signing group that does not
depend only on the number of stakes. In addition, more formal
security analysis of the proposed protocol considering how it
is able to mitigate some known attacks in the permissionless
setting is needed.

REFERENCES

[1] T. Dinh, R. Liu, M. Zhang, G. Chen, B. Ooi, and J. Wang, “Untangling
blockchain: A data processing view of blockchain systems,” IEEE
Transactions on Knowledge and Data Engineering, vol. PP, 08 2017.

[2] F. Tschorsch and B. Scheuermann, ““bitcoin and beyond: A technical
survey on decentralized digital currencies,” IEEE Communications Sur-
veys Tutorials, vol. 18, no. 3, pp. 2084–2123, 2016.

[3] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,
“Enhancing bitcoin security and performance with strong consistency via
collective signing,” in 25th {USENIX} Security Symposium ({USENIX}
Security 16), 2016, pp. 279–296.

[4] S. Popov, “A probabilistic analysis of the nxt forging algorithm,”
LEDGER, vol. 1, 2016.

[5] M. Castro and B. Liskov, “Practical byzantine fault tolerance,”
in Proceedings of the Third Symposium on Operating Systems
Design and Implementation, ser. OSDI ’99. Berkeley, CA, USA:
USENIX Association, 1999, pp. 173–186. [Online]. Available:
http://dl.acm.org/citation.cfm?id=296806.296824

[6] A. Baliga, “Understanding blockchain consensus models,” 2017.
[7] J. Liu, W. Li, G. O. Karame, and N. Asokan, “Scalable Byzantine

consensus via hardware-assisted secret sharing,” IEEE Transactions on
Computers, vol. 68, no. 1, pp. 139–151, 2018.

[8] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of bft protocols,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, pp. 31–42.

[9] T. Crain, V. Gramoli, M. Larrea, and M. Raynal, “Dbft: Efficient
leaderless Byzantine consensus and its application to blockchains,” in
2018 IEEE 17th International Symposium on Network Computing and
Applications (NCA). IEEE, 2018, pp. 1–8.

[10] I. Eyal, A. E. Gencer, E. G. Sirer, and R. V. Renesse, “Bitcoin-ng:
A scalable blockchain protocol,” in 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16). Santa
Clara, CA: USENIX Association, Mar. 2016, pp. 45–59. [On-
line]. Available: https://www.usenix.org/conference/nsdi16/technical-
sessions/presentation/eyal

[11] K. Ohta and T. Okamoto, “Multi-signature schemes secure against active
insider attacks,” IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. 82, no. 1, pp. 21–31,
1999.

[12] “Fiat-shamir heuristic,” 2019. [Online]. Available:
https://en.wikipedia.org/wiki/Fiat-Shamir_heuristic

[13] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman,
“Solida: A Blockchain Protocol Based on Reconfigurable Byzantine
Consensus,” in 21st International Conference on Principles of
Distributed Systems (OPODIS 2017), ser. Leibniz International
Proceedings in Informatics (LIPIcs), J. Aspnes, A. Bessani, P. Felber,
and J. Leitão, Eds., vol. 95. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2018, pp. 25:1–25:19. [Online].
Available: http://drops.dagstuhl.de/opus/volltexte/2018/8640

[14] K. Kulkarni, in Learn Bitcoin and Blockchain: Understanding
Blockchain and Bitcoin Architecture to Build Decentralized Applica-
tions. Packt, 2018.

[15] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford, “Keeping authorities" honest or bust"
with decentralized witness cosigning,” in 2016 IEEE Symposium on
Security and Privacy (SP). Ieee, 2016, pp. 526–545.

[16] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Advances in
Cryptology – CRYPTO 2017, J. Katz and H. Shacham, Eds. Cham:
Springer International Publishing, 2017, pp. 357–388.

[17] W. Li, S. Andreina, J.-M. Bohli, and G. Karame, “Securing proof-
of-stake blockchain protocols,” in Data Privacy Management, Cryp-
tocurrencies and Blockchain Technology, J. Garcia-Alfaro, G. Navarro-
Arribas, H. Hartenstein, and J. Herrera-Joancomartí, Eds. Cham:
Springer International Publishing, 2017, pp. 297–315.

[18] F. Saleh, “Blockchain without waste: Proof-of-stake,” 2019. [Online].
Available: http://dx.doi.org/10.2139/ssrn.3183935

[19] T. Duong, L. Fan, and H.-S. Zhou, “2-hop blockchain: Combining
proof-of-work and proof-of-stake securely,” 2017. [Online]. Available:
. https: //eprint.iacr.org/2016/716.

[20] P. L. Seijas and S. Thompson, “Marlowe: Financial contracts on
blockchain,” in International Symposium on Leveraging Applications of
Formal Methods. Springer, 2018, pp. 356–375.

[21] P. S. Barreto and M. Naehrig, “Pairing-friendly elliptic curves of prime
order,” in International Workshop on Selected Areas in Cryptography.
Springer, 2005, pp. 319–331.

8

[22] H. Hisil, K. K.-H. Wong, G. Carter, and E. Dawson, “Twisted edwards
curves revisited,” in International Conference on the Theory and Ap-
plication of Cryptology and Information Security. Springer, 2008, pp.
326–343.

[23] M. Adalier et al., “Efficient and secure elliptic curve cryptography
implementation of curve p-256,” in Workshop on Elliptic Curve Cryp-
tography Standards, vol. 66, 2015.

[24] DEDIS, “DEDIS Advanced Crypto Library for Go,”
https://github.com/dedis/kyber, 2019, [Online; accessed 20-Oct-2019].

[25] T. Kim and R. Barbulescu, “Extended tower number field sieve: A
new complexity for the medium prime case,” in Annual International
Cryptology Conference. Springer, 2016, pp. 543–571.

[26] M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss, G. Neven, and
I. Stepanovs, “On the security of two-round multi-signatures,” 05 2019,
pp. 1084–1101.

