
HAL Id: hal-04101242
https://hal.science/hal-04101242

Submitted on 19 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Migrating Legacy Software Systems to
Microservice-based Architectures: a Data-Centric

Process for Microservice Identification
Yamina Romani, Okba Tibermacine, Chouki Tibermacine

To cite this version:
Yamina Romani, Okba Tibermacine, Chouki Tibermacine. Towards Migrating Legacy Software Sys-
tems to Microservice-based Architectures: a Data-Centric Process for Microservice Identification.
ICSA-C 2022 - IEEE 19th International Conference on Software Architecture Companion, Mar 2022,
Honolulu, United States. pp.15-19, �10.1109/ICSA-C54293.2022.00010�. �hal-04101242�

https://hal.science/hal-04101242
https://hal.archives-ouvertes.fr


Towards Migrating Legacy Software Systems to
Microservice-based Architectures:

a Data-Centric Process for Microservice
Identification

Yamina Romani∗, Okba Tibermacine∗, Chouki Tibermacine§
∗ Computer science department, University of Biskra, Algeria

{yamina.romani, o.tibermacine}@univ-biskra.dz
§LIRMM, Univ Montpellier, CNRS, France

chouki.tibermacine@lirmm.fr

Abstract—“Microservice-based architecture” is an architec-
tural style exploited to develop software systems with the
main concern of independent maintainability, deployability and
scalability. These important capabilities in modern software
development and operation settings led many companies to mi-
grate their existing (legacy) monolithic software systems towards
microservice-based architectures. The migration process is a
challenging task. It requires splitting the system into consistent
parts that represent the set of microservices. Existing works focus
mainly on functional aspects in this splitting. We argue in this
work that it would be beneficial to start this splitting by decom-
posing the database into clusters, where the data in each cluster
is associated to a microservice’s own independent database. This
is commonly known as the “database-per-service” pattern in
microservice architectures. This paper proposes our preliminary
work on a data-centric process to identify microservices. This
process performs database schema analysis and clustering in
order to make topic identification. It aims at identifying a set
of topics which correspond to potential microservices.

Index Terms—Microservices, Database-per-service pattern,
Software Architecture, monolithic to microservice migration,
topic identification, clustering.

I. INTRODUCTION

The context of this work is software maintenance and
reengineering and more particularly the migration of legacy
systems into modern microservice architectures. This archi-
tecture style offers many qualities like maintainability, agility
in development and delivery, and independent deployability
& scalablity. Many companies develop their applications by
instantiating this style. But a lot of legacy applications, still
profit-making for their owners, need to be migrated instead
of being redeveloped from scratch [9], [2]. This migration
is conducted according to a process that can be divided
roughly into two phases: microservice identification and code
transformation/refactoring.

A plethora of works have been conducted these last years
on this subject [10]. Most of these works tackle the problem
of microservice identification from a business-logic point of
view, using as a driver functional points (see related works for
details). In this work, we propose to rearchitect a monolithic

software system to a set of microservices from a data-centric
point of view. We focus on splitting the data model (e.g.
a database schema) to a set of cohesive and semantically
related sub-models (i.e. a set of tables/documents) that are
packaged with their corresponding business logic to a set of
microservices. We argue that this way of splitting enables
a better modularization of the software system. Indeed, in
most development settings, the design of data is one of the
first conducted activities. Considering this artifact (i.e. data
models) as a starting point will make it easy to drive the
rest of the software system splitting. In this way, we obtain
a set of microservices each of which having its own data,
being thereby able to host them on whatever storage service,
to implement/migrate them with/to whatever DB-technology
vendor, or to populate them from whatever sources.

We present in this paper the first step towards this goal. We
propose a microservice identification process that analyses a
database model, pre-processes its symbols and enriches these
symbols with their semantically-related terms using lexical
databases (e.g. WordNet / WordWeb), and finally classifies
these symbols into a set of clusters that we consider as labels
for microservice candidates. The process finishes by assigning
database sub-models (sets of related tables/documents) to
each identified microservice. In our work, the problem of
microservice identification is seen as a problem of topic
identification/modeling using an enriched set of symbols
describing the data of the software system. The upcoming steps
consist of migrating data and rewriting queries or persistence
API client code, refactoring the code related to the data model
(entities and repositories), the business logic (services and
controllers) and the front-end of each microservice. These
steps are not covered in this paper.

The remaining of the paper is organized as follows: Sec-
tion II presents in depth the proposed data-centric microservice
identification process. Section III provides the application of
the process on a real-world small monolithic application.
Section IV discusses related work and Section V concludes
the paper and sketches the forthcoming work.



Data model / 

Database schema


Document Construction
(Symbol Collection
& Pre-processing)

Document Semantic
Enrichment

Clustering

# of Clusters identification

3

Cluster Construction

DB Table Assignment & Microservice Name inference

Entity 1

Management Service


Entity 3	 

Management Service


Entity 2

Management Service


3

4

21

Fig. 1. Proposed Process for Microservice Indentification.

II. PROPOSED PROCESS

In this section, we present the proposed process to identify
microservices. Fig. 1 depicts this process which takes as input
a data model of the monolithic software system. This can be an
Entity-Relationship/class diagram or a SQL/No-SQL database
schema. In order to process this data model, we propose to
consider each table as a symbol document and the set of tables
as a collection of documents.

The first step in this process is the document construction
and pre-processing, where we pre-process the collected sym-
bols from the database schema, which are the names of tables
and their attributes/columns. At the end of this step, we obtain
a set of cleaned documents.

The second step is Document Enrichment, which is intended
to extend the words of each document with their synonyms and
other semantically-related symbols.

The next step is clustering. It involves the document vec-
torization, the identification of the optimal number of clusters
and at last classification. Finally, the output is a set of clusters
that represent groups of symbols corresponding to topics that
we consider as the set of labels for the potential microservices.

The last step refers to the microservice name inference
based on the generated clusters of symbols. In the following
subsections, we explain in depth all these steps.

A. Document Construction and Pre-processing

Based on the database schema model of the monolithic
software system, we create a set of documents. Each document
represents a collection of symbols derived from a given
relational table (or No-SQL document1) in the data model.
A symbol can be a table’s name, a table’s attribute, or a
relationship between two tables. Each symbol is “modeled”
according to its importance, where:

• The table’s name is repeated many times in the document.
This repetition gives it a heavier weight, since it is an
important symbol characterizing a given data structure.

1The reader should not confuse the “document” constructed in our process,
which is composed of symbols (names/identifiers), and the document that is
described in a No-SQL database, which is a data structure in this kind of
databases. For simplicity reasons, we use the term Table to refer to both a
relational database table and a No-SQL document.

• A relationship between tables represents the existence of
a foreign key (or a reference) which is a significant sym-
bol that describes a functional or structural relationship
between tables.
According to our analysis of some database schema
models, we distinguish two types of foreign keys.

1) The first one is a singleton foreign key. It relates
a source table to only a single target table. This
type describes a strong relationship between the
two documents. So, we model it by duplicating the
foreign key and the name of the source document
many times in the target document. Similarly, we
duplicate the name of the target document in the
source document. An example that illustrates the
singleton foreign key is presented in Figure 2, where
the “country” table links only the “customer” table
with a foreign key.

2) The second type is a non singleton foreign key,
it relates the source table with more than a single
target table.
This type indicates a less strong relationship be-
tween the documents compared with the first type.
Consequently, we model it by repeating the foreign
key and the name of the source document less times
than the first type in the target documents. We do
the same for the name of the target documents in the
source document. We have an example of this type
of foreign keys in Figure 2: the “customer” table
that is linked to two tables, the “shopping cart” and
“orders” with a non singleton foreign key.

Note that the number of times these symbols are repeated is
fixed empirically.

After this step, the document symbols are processed and
cleaned using some NLP (Natural Language Processing)
techniques as follows:

Tokenization, this procedure takes each document symbol
and divides it into separate words (tokens). The separation is
based on the existence of some characters between tokens like
- and or capital letters [11].

Lemmatization, it is the process of transforming each word
into its lemma (root) using a morphological analysis. For
example, the words studies or studying are transformed
into study, which is their root [11].

B. Document Semantic Enrichment

Since we use unsupervised machine learning that requires
a lot of data to produce good results, we need to extend
our documents (a technique known as “data augmentation”),
by enriching them with semantically-related symbols. These
symbols are related to our symbols by the following two links:
“part of” and “type of”, which are the mostly pertinent symbol
relations for our problem of data modeling.

This enrichment step uses a lexical database, like WordNet.



C. Clustering

In this step, we classify all the symbols in clusters, where
each cluster contains the most similar symbols.

In our process the clustering stage consists of three steps:
Document Vectorization, it is the procedure of transform-

ing each document symbol into a vector space model. This
procedure provides a weight for each symbol, which indicates
the value of this symbol in its document and also considering
the collection of all documents.

Number of clusters identification. Several clustering tech-
niques require the number of desired clusters as an input.
Thus, in this step, we calculate the optimal number of clusters
according to our input data using an appropriate method such
as Elbow [8] or Silhouette [5].

Cluster construction, it is the leading step that requires
the selection of an appropriate clustering technique, such as
hierarchical clustering or K-Means.

D. Database Table Assignment and Service Name inference

The result of the previous step is a set of clusters containing
simple symbols. In this step, we distribute database tables into
their corresponding clusters. The simplest case is where the
name of a table and all its attributes/columns are in the same
cluster. In this case, we assign that table to this cluster. But
sometimes, clustering may rise some issues if for example, a
given table name together with a subset of of its column names
are in one cluster and the other column names of this table are
in a different cluster. In this case, the developer should decide
whether : i) we ignore this distribution of column names into
different clusters and thereby group them in the cluster where
the name of the table appears, or if ii) we split the table into
distinct tables according to the result of clustering. At the end
of this step, database tables are assigned into clusters.

Consequently, each potential microservice will be
named with the dominant symbol in the related cluster.
By convention, if the symbol name corresponds to a
well-identified entity, like Product or Customer,
the microservice will be named by appending the
symbol with the word ManagementService, like
CustomerManagementService.

III. ILLUSTRATIVE EXAMPLE

To illustrate our proposed process for microservice iden-
tification, we used an E-commerce application called auto-
parts [1]. The application was written with Java using the
Spring boot framework. It consists of three modules (Admin,
Client, Library), 63 classes, 14 interfaces and 14 database
tables.

We first examined the database schema model of this
application, then we collected all the extracted symbols in
a text file based on the previously explained steps (in the
Document Construction and Pre-processing steps). Figure 2
shows the Entity-Relationship Diagram of the application’s
database. After that, we cleaned the set of documents in the
generated file using the NLP techniques as explained before.
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Fig. 2. Entity Relationship Diagram of the Auto-parts Application

Then, we enriched our document symbols focusing on the
synonyms of the table’s name which is considered as a signif-
icant term in the document. We used the WordWeb2 English
dictionary and thesaurus to obtain the semantic relationships
of the table names “part of” and “type of”.

The next step is clustering. We first transform the pre-
processed documents into a set of vectors. We used TF-IDF
method [5] to vectorize our documents. We chose this method
because it gave us good results with many testing examples.

TF-IDF is measured using two scores:
TF(t) = (Number of times term/symbol t appears in a docu-
ment) / (Total number of terms in the document).
IDF(t) = loge (Total number of documents / Number of
documents with term t in it).
Then, TF-IDF is calculated as follows:
TF-IDF(t)=TF(t)*IDF(t). Finally, we obtain a set of vectors
that represent the weights of the terms in each document.

Then, for the purpose of identifying the optimal number of
clusters, we exploited a widely used method named “Elbow”.
This method calculates the cost function generated using
several values of k (number of clusters) to the sum of the
squared distance between the documents and their assigned
cluster centroids (this corresponds to a measure of variance in
the input data that we want to minimize through clustering).

Typically we choose the number of clusters where the curve
of the sum of squared distance begins to form an elbow [8].
Figure 3 shows the curve obtained with Elbow method. Based
on this result we select five as the number of clusters.

The last step of this stage relies on a clustering method. The
k-means clustering algorithm was used to group the documents

2https://www.wordwebonline.com/

https://www.wordwebonline.com/


Fig. 3. Elbow Result

represented by the generated vectors. K-means is a straight-
forward method for grouping a collection of observations
according to a specified number of clusters (k) [4].

The basic idea in this algorithm is to select randomly k cen-
troids that correspond to the number of clusters, then it assigns
each observation to the closest center based on similarity. Then
the algorithm iterates by updating the centroids until no further
changes to the partitioning are seen. Table 1 shows the result
of clustering where each cluster consists of a set of documents
(Tables), as well as a set of topics that symbolize each cluster
from which the name of the microservice is selected.

According to the obtained results3, we observed that each
cluster consists of a set of tables that are working perfectly
together. We are aware that this will not be always the case.
In some situations, splitting large tables should be considered.
This is why we proposed in our process that the developer
intervenes to validate the clusters.

IV. RELATED WORK

In the literature, different approaches for microservice iden-
tification and monolithic software decomposition have been
recently conducted. Selmadji et al. [16] proposed a semi-
automatic approach for microservice identification from mono-
lithic Object-Oriented (OO) applications based on source code
examination and the engineering’s knowledge of the system
to migrate. The goal of this migration is to make monolithic
applications deployable on the cloud and respect DevOps
practices. This approach splits the monolithic software classes
based on the micro service characteristics using the ISO/IEC
25010:2011 model to measure the relevance of the obtained
microservices.

Carvalho et al. [7] presented a multi-objective search-based
approach to obtain microservices automatically from a legacy
system. The approach takes into account five criteria: cohesion,
coupling, feature modularization, reuse and communication
overhead. The input of this approach is the source code of a
Java legacy system, a list of features related to each execution
of this legacy system and the number of microservices to

3Source code, documents and results can be found here: https://bit.ly/
31ySia7

be identified. The source code is represented as a graph
where each vertex indicates a method of the legacy system
corresponding to its respective feature and each edge indicates
a relationship between methods. Then, Non-dominated Sorting
Genetic Algorithm III (NSGA-III) was applied to identify the
microsevices based on the objective function of each criterion.

Kalia et al. [12] presented the Mono2Micro approach de-
veloped at IBM to migrate monolithic applications towards a
microservice architecture. The purpose of this migration is to
shift enterprise production workloads to the cloud and benefit
from its capabilities. Mono2Micro employs a hierarchical
spatio-temporal decomposition using well-defined business use
cases (the space dimension) and its runtime traces (time
dimension) to partition the application classes. This approach
takes into consideration cohesion and coupling criteria to split
Java legacy software systems.

Barbosa et al. [3] introduced a manual approach to identify
microservice candidates using business rules which are exe-
cuted in stored procedures. This technique identifies the system
requirements using an expert and examines the source code to
map the stored procedures that correspond to the implemen-
tation of these business requirements. Then, database artifacts
(stored procedures) are analysed to detect all business rules,
where the rules that handle the same business requirements
should be merged in the same microservices.

In Zhang et al. [17], the authors present an automated
microservice identification approach that aims to partition
software systems into parts using execution and performance
logs of the legacy system. It considers two types of objects:
controller objects (COs) and subordinate objects (SOs). Based
on the measured relation between each pair of CO and SO, the
system classes are grouped into microservices using NSGA by
optimizing the objectives associated with functional (coupling
and cohesion) and non functional (load balance) metrics.

Shanshan et al. [14] presented a semi-automatic decomposi-
tion of a given monolithic software system into microservices
using dataflow diagrams. This approach creates a use case
and business logic specification by means of a business
requirement analysis, then, it generates the fine-grained Data
Flow Diagrams (DFD) and the process-datastore version of
this DFD which designates the business logic. The depen-
dencies between processes and data stores are extracted into
decomposable sentence sets that are grouped into individual
modules to formulate the microservice candidates.

[16], [7], [12] and [17] take a functional perspective to
split a monolithic software into microservices. Each study
uses its own interpretation of microservices to evaluate the
microservice relevance. Per contra, authors in [3] and [14]
combine business-logic view and data flow exploitation to
identify microservice candidates in monoliths.

Topic Modelling has been adopted in [6] to detect mi-
croservices based on domain terms, where it extracts relevant
terms from the source code and uses them to obtain topics.
Then a weighted graph is generated based on the structural
dependencies and the distribution of topics among classes.
At last, microservices are identified by applying the Louvain

https://bit.ly/31ySia7
https://bit.ly/31ySia7


Clusters Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

First three topics country, customer, region user, role, customer order, detail, commercial cart, shopping, item category, make, product

Tables customer
country

user
role

customer role
user role

order
order detail

cart item
shopping cart

product
category

make
model

Microservice
Name

CustomerManagement
Service

UserManagement
Service

OrderManagement
Service

CartManagement
Service

ProductManagement
Service

TABLE I
CLUSTERING RESULTS

community detection algorithm on the generated graph.
In contrast to the previous works which are based on source

code analysis or which take as drivers functional aspects,
our proposal takes a data model-centric perspective. The
identification of microservice candidates is performed using
the data model, which is an artifact that exists in all situations
in enterprise applications. We argue that relying solely on these
artifacts as a starting point simplifies greatly microservice
identification.

In [15], Newman proposed solutions (patterns) to decom-
pose manually a database to fit a microservice architecture.
This work considers a set of already identified microservices;
it does not deal with their identification. In another work [13],
the authors take databases into consideration, where they
regard the monolithic enterprise system as a set of small
subsystems, each of which has its own business responsibilities
and its own data. This process is based on building a depen-
dency graph for each subsystem, which is used to identify
microservice candidates (dependencies include relations in
source code and between database tables). The main limitation
of this work is that it does not migrate all subsystems.
Those that are independent (with no external dependencies)
are transformed into microservices and the others remain as a
monolith.

V. CONCLUSION

We presented a data-centric process for the identification
of microservice candidates as a first step for migrating legacy
software systems into a microservice-based architecture. The
process relies on topic modelling applied to documents con-
structed from data model symbols and enriched by semanti-
cally related words. We applied the process on a small real-
world example to show how it can be used for identifying
microservice candidates. Though we used in the illustrative
example WordWeb dictionary, Elbow and K-means methods
in the process of microservice identification, the proposed pro-
cess is generic and other dictionaries and clustering techniques
can be used.

The ongoing work consists of proposing a process for
automating as much as possible data migration by rewriting
queries, and refactoring the code related to the data model, in
addition to the rest of the application for each microservice.
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