
Microservice Logical Coupling: A Preliminary
Validation

Dario Amoroso d’Aragona1, Luca Pascarella2, Andrea Janes3, Valentina Lenarduzzi4, Davide Taibi1,4
1Tampere University — 2ETH Zurich — 3FHV Vorarlberg University of Applied Sciences — 4University of Oulu

dario.amorosodaragona@tuni.fi; lpascarella@ethz.ch; andrea.janes@fhv.at;
valentina.lenarduzzi@oulu.fi; davide.taibi@oulu.fi

Abstract—Coupling is one of the most frequently mentioned

metric in software systems. However, to measure logical coupling

between microservices, runtime information is needed or the

availability of service-log files to analyze the calls between services

is required. This work presents our emerging results, in which

we propose a metric to statically calculate logical coupling

between microservices based on commits to versioning systems.

We performed an initial validation of the proposed metric with

a dataset containing 145 open-source microservices projects.

The results illustrate how logical coupling affects every system

and increases overtime. However, we did not find a correlation

between the number of commits or the number of developers and

the introduction of logical coupling. In future, we investigate why,

how, and when logical coupling is introduced in a system.

Index Terms—Microservices, Logical Coupling, Empirical

Software Engineering

I. INTRODUCTION

Coupling and cohesion are two fundamental metrics in
software engineering: coupling measures the degree of interde-
pendence between modules (low is preferred) and the cohesion
of a module indicates the extent to which its individual
components are needed to perform its task (high is preferred)
[1]. Low coupling and high cohesion are often mentioned in
connection with maintainable code: code with low coupling
means that one module can be modified without impacting
other modules; a highly cohesive module means that that
module has a single, well-defined purpose.

In this paper, we study how well “low coupling” is re-
spected for microservice-based systems. Microservices should
be loosely coupled since coupling increases maintenance effort
and—particularly in the context of microservices—increases
the need for synchronization between teams. Service teams
should need to know as little as possible about other services.
Highly coupled services might require synchronizing with
other services before deploying new features, reducing the
benefits of microservices. Coupling not only slows down the
development process but also impacts other qualities e.g.,
performance since communication between services is slow
compared to communication within a service. Along the same
lines, microservices should be highly cohesive, keeping all the
related logic in one service instead of splitting it into multiple
ones [2].

Practitioners agree on the importance of low coupling
between microservices referring to “independence between

teams” [3], “independent deployment” [4] or “no need to
synchronize between teams before deploying” [5].

However, besides agreeing that coupling is one of the
most important attributes affecting the quality of designs,
there is no standard way to measure it [1]. Various metrics
were proposed in research (e.g., [6], [7], [8]) and low
coupling is often mentioned by practitioners as a main benefit
of microservices [9], [10] but practitioners are still often
using their gut feeling to structure a system into services,
causing an uncontrolled degree of coupling. Possible reasons
for not adopting the proposed metrics are over-optimism,
inadvertence, or the unavailability of data. As an example,
[8], [11] assume the availability of log files describing calls
to software components, used to extract usage processes,
which are then used to propose microservices. Such logs are
not always available or might require major changes in the
system under development. Moreover, the measurement of
coupling proposed in the literature is based on the static [12]
or dynamic analysis [13] of source code. Coupling between
teams such as the need to wait or to synchronize with other
service teams before committing is not captured by such
metrics. Previous works addressed the problem of coupling in
monolithic systems thoroughly. Also, the concept of logical
coupling was introduced, i.e., coupling, which is not based on
a dependency in source code, but on the implicit dependency
between artifacts that are often changed together. In particular,
[14] extends the logical coupling metric, originally proposed
by [15] to capture whether changes made in a predefined time
window are logically coupled.

In this work, we propose the Microservice Logical Coupling
(MLC) as extension of the logical coupling metric [14], [15]
to microservices, and we validate it on 145 open-source (OSS)
projects. The advantage of measuring microservice logical
coupling is that teams can calculate it by accessing their
source code repositories, without accessing other systems or
instrumenting their code. In this paper, we present our emerg-
ing results, which will be further extended and empirically
validated.

Paper structure: Section V describes the related work.
Section II introduces existing logical coupling metrics and the
proposed approach, while Section III reports the preliminary
validation. Section IV discusses the results, Section VI illus-
trates the future plans while Section VII draws conclusions.

II. MICROSERVICE LOGICAL COUPLING (MLC)
Complex software systems, due to a myriad of reasons,

are not always developed by zealous practitioners. Devel-
opers constantly deal with project constraints and pressure.
Consequently, developers risk committing software changes
outside their domain of experience, task assignment, or—of
interest to us—microservice. To recognize tangled changes in
versioning systems, logical coupling exploits the development
history of a software system to find change patterns among
code units that are modified together. D’Ambros et al. [14]
leveraged a metric introduced by Robbes et al. [15] that
captures whether changes made in a predefined time window
are logically coupled. Similarly to [14], but with a focus on
microservices, we study how to capture logical coupling in
a microservice-based development process. In particular, we
aim to investigate changes involving multiple microservices
committed atomically in the same working unit. By looking at
atomic working units, we can identify two levels of granularity
pull requests and commits. Since good practices in software
engineering [16] discourage developers from submitting pull
requests of untangled changes, we focus on the commit
level. To this purpose, we extended the definition of logical
coupling [15] to microservices to identify the logical coupling
at the Microservice level. In other words, we consider two
microservices logically coupled if at least one file of both
services are modified in the same commit.

Therefore, we defined Microservice Logical Coupling

(MLC) as follows:
Let’s m1, m2 two microservices and f1, f2 two files related,

respectively, to m1 and m2, then:

m1
MLC(===) m2

def
=

(
1 if f1 and f2 changed in same commit
0 otherwise

Due to a different goal—we aim at detecting the logical
coupling in microservices—our definition differs from the one
proposed by [15] in terms of boundaries. In particular, while
[15], for a less structured workflow, needed to identify a time
window in which two consecutive changes are considered
coupled, we relied on the definition of microservice to identify
the natural boundaries in which two changes are coupled. In
other words, we consider two microservices logically coupled
if at least change in a file of both services is committed in the
same commit. Indeed, in our definition, we consider m1 and
m2 as microservices instead of files/components.

Finally, [15] advised, we rely on a threshold to select
relevant changes and filter out occasional coupled ones that lie
in, for example, massive refactoring. Specifically, we consider
logically coupled two microservices that have been committed
together for several times greater than or equal to the threshold;
the threshold chosen is five times as suggested by [15] [17].

III. MLC AT WORK: A PRELIMINARY VALIDATION

To allow the replication of our study, we published the raw
data in the replication package1.

1https://figshare.com/articles/software/MS_Logical_Coupling/21953456

A. Study Design
Our goal is to understand the applicability of MLC and to

understand how frequent MLC is in OSS projects.
We defined the following research questions (RQ):

RQ1 How high is the logical coupling between microser-
vices in OSS projects?

More specifically, in RQ1, we conducted a preliminary anal-
ysis aimed at understanding the distribution of logical coupling
within the selected projects. An improved understanding of
this aspect allowed us to start assessing whether logical cou-
pling could be actually treated as an interesting phenomenon
that could negatively impact maintainability, agility, and code
understandability. Answering RQ1 allowed us to determine
if the magnitude of the phenomenon is such to justify the
following part of the work.

RQ2 Does the degree of logical coupling change over time
in OSS projects, and if so, how much?

Once we had characterized MLC, we focused on its evo-
lution over time and the related magnitude. Answering RQ2

allowed us to understand if there are significant changes
between the beginning of a project, or the introduction of
a new microservice, and the logical coupling. We expected
a microservice to have a high logical coupling while they
are introduced, because they are often introduced as clones
of other projects, and because we expected that the owner of
a microservice might commit to multiple services together at
the beginning of the service life for simplicity reasons. While
we were aware that this should not be performed, this practice
was commonly reported in our previous industrial survey [9].
However, we suspected that developers might also introduce
logical coupling later when they are in hurry.

Context. We selected a manually validated dataset [18] in
which the authors developed, validated, and released a tool to
recognize microservices in a given project automatically. In
addition, the authors provided a list of 145 projects that have
been manually validated as non-toy projects using microser-
vices. The set includes projects whose source code is publicly
available on GitHub2 and is augmented with additional infor-
mation, such as the microservice list and their relative paths.

We selected all projects having at least 10 commits, 5
contributors, and not being forks (to reduce the chance of
mining duplicated code). The minimum number of commits
and contributors aims at discarding non-representative outliers
such as single-user projects. Moreover, we did not exclude any
programming languages because our analysis did not rely on
a particular subset of them. All the 145 projects fulfilled our
criteria, and therefore we considered them all.

Data Collection. In order to analyze the selected projects,
we created a Python script to collect development process met-
rics that systematically traverses all project commits. For each

2https://github.com

2

4

6

8

10

12

14

16

18

25 50 75 1000

#
 p

ro
je

c
ts

couples of logically coupled microservices

Fig. 1: Logically coupled microservices among projects (RQ1)

commit, we collected the timestamp, the author identity, and
the absolute change locations. The latter is used to associate
a change to a microservice. In particular, we implemented a
heuristic that matches if the path of the changed file falls into
the project’s microservice list. If yes, we updated the list of
microservices changes in this commit by the given author.

Data Analysis. To answer RQ1, we analyzed the Microser-
vices logical coupling distribution over all the projects. We
analyzed the number of microservices and the number of
couples logically coupled in each project to have a clear idea
about the magnitude of the problem in the projects analyzed.

Regarding RQ2, we compared the first and the last commit
to have an idea about how the logical coupling evolved in
the project life. A hypothesis is that during the first month
when developers start to commit, they introduce a high amount
of logical coupling since they are creating new services as
clones of existing ones; then, we analyzed the difference of
microservices logically coupled in the first month and in the
last commit; finally, we selected three interesting projects to
compare the logical coupling introduction with the number of
commits and developers per month.

B. Results
To answer RQ1 we chose the number of couples of

microservices logically coupled instead the number of mi-
croservices. For instance: let’s A, B, C microservices and
(A,B) and (B,C) couples logically coupled, the result is 3
microservices logically coupled and 2 couples of microser-
vices logically coupled; now let’s A, B, C microservices and
(A,B),(B,C),(A,C) couples logically coupled, the result is
3 microservices logically coupled and 3 couples of microser-
vices logically coupled, so the number of couples increased
but the number of microservices (logically coupled) is still the
same. The couples of microservices logically coupled indicate
how much coupling exists in a project.

Figure 1 shows the number of microservices couples log-
ically coupled among the projects. The x � axis represents
the number of couples logically coupled and the y� axis the
number of projects. In 48 projects (50%), out of 82 projects
analyzed, there is a logical coupling between microservices.
As it possible to see many projects has a number of couples
logically coupled between one and five. There are 4 outliers
that has more than 85 couples logically coupled.

To answer RQ2 we, first of all, measured the difference
between the first month of commits and the last commits (at

the time of writing). The results are summarized in Figure 2a.
As with RQ1, we used the number of logically coupled pairs
of microservices. In 48 projects the couples of microservices
logically coupled increase during the evolution of the project,
and in four projects the number of couples logically coupled is
constant. Among the 45 projects that present logical coupling,
in nine projects the logical coupling has been introduced
during the first month of commits, instead in the remaining
projects the logical coupling has been introduced after the
first month during the life of the project. In Figure 2b we
can observe the difference of microservices logical coupled
in the first month and in the last commit over the projects.
We used a symmetric log scale to handle the 0-values. The
result is that in all but four projects the logical coupling
increases, in some projects it increases by about tenfold, and in
most projects, it increases by a value between 0 and 10. We
selected three projects with different progressions of logical
coupling and analyze the introduction of the logical coupling
per month in relation to the number of commits and the
number of developers per month (Figure 3). The introduction
of a pair (e.g, (A, B)) of microservices logically coupled in a
specific month means that in that month the two microservices
(belonging to the couple, thus: A, B) has been committed for
the fifth time in the same commit. Analyzing Figure 3, is it
possible to see that the number of developers and the number
of commits are not correlated with the number of introduced
logically coupled couples. For example, in Figure 3a the
number of couples logically coupled is around zero also when
the number of commits is high. In the three projects example
analyzed in Figure 3 we can observe three different situations:
in Figure 3a the logical coupling is introduced constantly over
the life of projects; in Figure 3b logical coupling is introduced
in the first months, but after ten months is constantly zero
(even if the number of commits increases); finally, Figure 3c
shows a very different situation where the logical coupling is
introduced after some months and then increases also when
the number of commits decreases.

IV. DISCUSSION

MLC exists and can be observed when developers commit
multiple microservices at the same time. On one hand, the
causes of MLC and its correlation between the numbers of
commits or developers are not yet clear. On the other hand,
it is clear that MLC often increases over time, but how,
when, and why this occurs, needs more explanation. Our first
hypothesis was that, when developers start developing a new
project, particularly in OSS projects, the developers make a
lot of copy-and-paste that produce in a short time a huge
amount of MLC, but observing our results this hypothesis
has been unconfirmed. This is also confirmed by [19] where
code clones between services seem very high in the early
life of microservices. It is surprising that sometimes MLC is
introduced at the end of the life of the project, an explanation
could be that at a certain point, the developers make a
refactoring of the system and this leads to the introduction of
MLC. Is interesting to note that, the number of commits has

2 33 6 29 9 21 11 20 19 16 15 23 39 46 34 31 47 22 25 26 30 38 10 32 44 3 27 45 35 41 37 8 43 14 18 4 0 12 1 17 28 7 5 13 40 24 42 36

project IDs

1

10

100

1000

#
 c

ou
pl

es
 o

f
lo

gi
ca

lly
 c

ou
pl

ed
 m

ic
ro

se
rv

ic
es

first month
last commit

(a)

0

1

10

100

1000

Va
ri
at

io
n

#
 c

ou
pl

es
 o

f
lo

gi
ca

lly
 c

ou
pl

ed
 m

ic
ro

se
rv

ic
es

(b)

Fig. 2: a) Number of couples of logically coupled microservices between the first month and the last commit in log scale
(RQ2), b) distribution of the overall variation of the number of couples of logically coupled microservices between the first
month and the last commit in symlog scale (RQ2)

(a) project “3” (b) project “6” (c) project “61”

Fig. 3: Logical coupling per month in three projects with different progressions of logical coupling (RQ2). The line
#couples_lc_introduced describes the number of couples of logically coupled microservices that were introduced per month.

an implicit impact on MLC, simply because without commits
it is not possible to introduce it. However, the results show that
MLC is not related to the number of developers (Figure 3c).

Another interesting aspect that needs more clarification and
work is understanding when we could consider not coupled
anymore two microservices.

We are aware that our work is subject to threats to validity.
First, although the selected projects might not represent the
complete panorama of OSS microservices, we selected one
of the most heterogeneous and recent datasets (for number of
microservices, age of the projects, and number of developers).
Second, industrial projects might consider coupling differently,
especially because of the important message on low coupling
reported by practitioner talks. Nonetheless, understanding the
project’s MLC could reveal inefficient teams and workflow
organizations, allowing for an organization’s renewal. Last, the
MLC is only considering microservice co-changes in the same
commit. Consequent changes due to the need for synchroniz-
ing services are not captured. A possible solution could be the
introduction of a time window to consider co-changes. Another
possible solution is to consider issues reported in the issue
trackers, to verify if developers are requesting other services

to synchronize with their change.
The MLC definition considers only the coupling between

service and not its order of magnitude. As an example, if a
large number of files for two microservices are modified in
the same commit, the MLC will consider them as coupled as
if only one file per microservice is modified. Moreover, we
are aware that results can be biased by false-positive coupling
scenarios. As an example, if two microservices that are not
actually coupled are committed together more than three times,
then we will consider them as Logically Coupled, obtaining a
false positive coupling.

V. RELATED WORK

A number of coupling metrics have been proposed for
monolithic systems (see e.g., [1]), some of them have been
highlighted for service-based systems, and especially for mi-
croservices. Bogner et al. [6] conducted a systematic literature
review regarding maintenance metrics of microservices focus-
ing on service-based systems instead of metrics designed for
object-oriented systems. The results show that the majority
of metrics explicitly designed for monolithic systems and
for Service Oriented Architectures are also applicable in the

microservices context. Based on this work, which we consider
to be the first one focusing on microservices, other similar
works investigated the topic adding knowledge on top of their
results. Apolinaro et al. [20] presented a theoretical use case
proposing a roadmap to apply four metrics defined by [6]:

• Absolute Importance of the Service (AIS): number of
consumers invoking at least one operation from a service

• Absolute Dependence of the Service (ADS): number of
services on which the a service depends

• Service Coupling Factor (SCF) as density of a graph’s
connectivity. SCF=SC /N2-N where SC is the sum of calls
between services, and N is the total number of services.

• Average Number of Directly Connected Services(ADCS):
the average of ADS metric of all services.

Taibi et al. [8] proposed four measures (coupling between
microservices, number of classes per microservice, number
of duplicated classes, and frequency of external calls) to be
considered when decomposing an object-oriented monolithic
system into microservices. Panichella et al. [21] proposed a
structural coupling metric and validated it within 17 OSS
microservice-based projects [22]. The metric is based on the
inbound and outbound calls between services and measures
the coupling of services at runtime.

VI. FUTURE PLAN

We plan to extend our work into these directions:
1. Expiration of coupling: We intend to explore if there are
events that trigger a decoupling or a decay of the MLC. This
would also alleviate the problem of false-positive coupling sce-
narios since over time services will not be coupled anymore.
2. Metric validity: This step is composed by two tasks:

a) Number of considered commits: We want to investigate if
the used threshold of five commits respects the representational
theory of measurement [1] in contemporary projects, i.e., if
MLC corresponds to what we want to measure.

b) Code changes: We want to investigate how to include the
actual code changes to understand the evolution of coupling.
3. Identification of coupling patterns: Fig. 3 shows that we
observed different progressions of logical coupling over time
in different project. We intend to study if we can observe
common patterns in such progression.

VII. CONCLUSION

In this paper, we propose the metric MLC, to identify
coupling between microservices based on their co-occurring
changes. We performed a preliminary validation with 145 OSS
projects developed with a microservices-based architecture, to
demonstrate its applicability, and to understand how common
MLC is in OSS projects. The results show that MLC affects
all systems and increases over time. The introduction of MLC
seems not to be correlated with the number of developers and
the number of commits, thus the causes of the introduction
of MLC need more in-depth investigations. The application
of the here proposed metric will enable companies to early
discover possible issues in their team allocation, or in their
microservice decomposition.

ACKNOWLEDGEMENT

This work was supported by a grant from the Ulla Tuominen
Foundation (Finland), a grant from the Academy of Finland
(grant n. 349488 - MuFAno).

REFERENCES

[1] N. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, 2nd ed. London, UK: International Thomson
Computer Press, 1997.

[2] S. Newman, Building Microservices. O’Reilly Media, 2021.
[3] S. Hastie, “Kent Beck: Software Design is an Exercise in

Human Relationships,” 2022, https://www.infoq.com/news/2022/10/
beck-design-human-relationships.

[4] N. Ford, M. Richards, P. Sadalage, and Z. Dehghani, Software Archi-
tecture: the Hard Parts: Modern Trade-Off Analyses for Distributed
Architectures. O’Reilly Media, 2021.

[5] C. Richardson, “Minimizing Design Time Coupling a Microservice Ar-
chitecture,” 2022, https://www.youtube.com/watch?v=EGOYRuuf2nQ.

[6] J. Bogner, S. Wagner, and A. Zimmermann, “Automatically Measuring
the Maintainability of Service and Microservice-Based Systems: A
Literature Review,” in Int. Workshop on Software Measurement, 2017.

[7] T. Engel, M. Langermeier, B. Bauer, and A. Hofmann, “Evaluation of
Microservice Architectures: A Metric and Tool-Based Approach,” in
Information Systems in the Big Data Era, 2018, pp. 74–89.

[8] D. Taibi and K. Systä, “A Decomposition and Metric-Based Evaluation
Framework for Microservices,” in CLOSER, 2020, pp. 133–149.

[9] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, Motivations, and
Issues for Migrating to Microservices Architectures: An Empirical
Investigation,” IEEE Cloud Computing, vol. 4, no. 5, pp. 22–32, 2017.

[10] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel, “The pains and
gains of microservices: A Systematic grey literature review,” Journal of
Systems and Software, vol. 146, pp. 215–232, 2018.

[11] D. Gadler, M. Mairegger, A. Janes, and B. Russo, “Mining logs to model
the use of a system,” in International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2017, pp. 334–343.

[12] T. Cerny, A. S. Abdelfattah, V. Bushong, A. Al Maruf, and D. Taibi,
“Microservice architecture reconstruction and visualization techniques:
A review,” in International Conference on Service-Oriented System
Engineering (SOSE), 2022, pp. 39–48.

[13] M. E. Gortney, P. E. Harris, T. Cerny, A. A. Maruf, M. Bures, D. Taibi,
and P. Tisnovsky, “Visualizing microservice architecture in the dynamic
perspective: A systematic mapping study,” IEEE Access, vol. 10, pp.
119 999–120 012, 2022.

[14] M. D’Ambros, M. Lanza, and R. Robbes, “On the Relationship Between
Change Coupling and Software Defects,” in Working Conference on
Reverse Engineering, 2009, pp. 135–144.

[15] R. Robbes, D. Pollet, and M. Lanza, “Logical coupling based on
fine-grained change information,” in Working Conference on Reverse
Engineering, 2008, pp. 42–46.

[16] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and
challenges in pull-based development: The contributor’s perspective,”
in International Conference on Software Engineering (ICSE), 2016.

[17] D. Zhou, Y. Wu, L. Xiao, Y. Cai, X. Peng, J. Fan, L. Huang, and
H. Chen, “Understanding evolutionary coupling by fine-grained co-
change relationship analysis,” in International Conference on Program
Comprehension (ICPC), 2019, pp. 271–282.

[18] L. Baresi, G. Quattrocchi, and D. A. Tamburri, “Microservice
architecture practices and experience: a focused look on docker
configuration files,” 2022. [Online]. Available: https://arxiv.org/abs/
2212.03107

[19] R. Mo, Y. Zhao, Q. Feng, and Z. Li, “The Existence and Co-
Modifications of Code Clones within or across Microservices,” in Int.
Symp. on Empirical Software Engineering and Measurement, 2021.

[20] D. R. de Freitas Apolinário and B. B. N. de França, “Towards a method
for monitoring the coupling evolution of microservice-based architec-
tures,” in Brazilian Symposium on Software Components, Architectures,
and Reuse, 2020, p. 71–80.

[21] S. Panichella, M. I. Rahman, and D. Taibi, “Structural Coupling for
Microservices,” in CLOSER, 2020.

[22] M. Imranur, S. Panichella, and D. Taibi, “A curated Dataset of
Microservices-Based Systems,” in CEUR-WS, 09 2019.

View publication stats

https://www.researchgate.net/publication/367390985

