

Delft University of Technology

Development and Integration of Self-Adaptation Strategies for Robotics Software

Alberts, E.G.

DOI
10.1109/ICSA-C57050.2023.00038
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the IEEE 20th International Conference on Software Architecture Companion, ICSA-C 2023

Citation (APA)
Alberts, E. G. (2023). Development and Integration of Self-Adaptation Strategies for Robotics Software. In
Proceedings of the IEEE 20th International Conference on Software Architecture Companion, ICSA-C 2023
(pp. 131-136). IEEE. https://doi.org/10.1109/ICSA-C57050.2023.00038

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICSA-C57050.2023.00038
https://doi.org/10.1109/ICSA-C57050.2023.00038

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Development and Integration of Self-Adaptation
Strategies for Robotics Software

Elvin Alberts
Vrije Universiteit Amsterdam & Technical University of Delft

Amsterdam & Delft, The Netherlands

e.g.alberts@vu.nl

Abstract—Robots are becoming more prevalent in industry
and society as a whole. Alongside this growth their application
domain is also broadening. Each application brings with it a host
of potential uncertainties that the robots should be able to handle
at runtime. To tackle this, the doctoral thesis outlined in this
paper proposes to address three main problems. First, the current
ad-hoc state of robotics software which impedes its evolution.
Second, the inability to imagine every possible uncertainty at
design time leading to unexpected scenarios at runtime. Third,
unexpected scenarios resulting from the reality gap between the
simulated environments in which robots are developed versus
the real world. These unexpected scenarios may cause a system
to violate its requirements, especially in our case non-functional
requirements. In an attempt to solve these problems, we plan to
implement a variety of self-adaptation strategies. These strategies
allow systems to change their composition to handle the afore-
mentioned unexpected events during operation autonomously. To
accomplish this we will need to reason about how best to integrate
these strategies into the software of existing robots, as well as
how existing information available to designers regarding the
robots can best be utilized to improve the strategies. Lastly, these
strategies and the process through which they are integrated will
be assessed in their impact across different robotic case studies.
Preliminary results from the work towards the thesis are also
presented, alongside a consideration of its potential industrial
impact.

Index Terms—robotics, runtime uncertainty, self-*, reinforce-
ment learning, non-functional requirements

I. INTRODUCTION

As the prevalence of robots increases in industry and society

as a whole, so too does their application domain expand. For

broader applications, expectations of robots, and by extension

the software which drives them increase. To meet these

expectations one dimension to improve the functioning of

robotics software is endowing it with self-adaptive capabilities.

Self-adaptivity here entails the ability to handle scenarios not

accounted for at design time which may cause a violation

of system requirements. This runtime uncertainty should be

addressed inherently by the software controlling the robots

to outright prevent or mitigate failures. More specifically,

Weyns [1] defines a self-adaptive system as having two key

principles, the external principle which is to handle changes

and uncertainties autonomously, and the internal principle

that this should comprise of a managed system responsible

for domain concerns and a managing system responsible for

adaptation concerns. The external principle is not new to

robotics as software components exist which allow robots to

handle uncertainties to accomplish some goal e.g. avoiding

obstacles during navigation. The challenge we focus on is how

to realize the internal principle in a reproducible and extensible

way across different robots.

Particularly, the managing system requires architectural self-

adaptation strategies to reason through for the system at

runtime. By architectural self-adaptation we mean the runtime

configuration of available components and their parameter-

ization, in alignment with the work by Camara et al. [2].

Devising these strategies to choose between the alternative

parameterizations and configurations and their implementation

in a way non-specific to any one system and its application

domain is necessary. Furthermore, of interest is the ability

of these strategies to handle unpredictable uncertainties. This

entails that the uncertainties are unanticipated and cannot be

comprehensively accounted for at design time. Thus, self-

adaptation strategies must be able to adapt to runtime uncer-

tainty in an online fashion, determining which adaptations are

most beneficial at execution. Through these mechanisms the

possibility of a system’s requirements being met over time is

increased in turn contributing to the likelihood of success in

a robot’s mission. For example, by meeting a non-functional

requirement of energy efficiency during execution, a robot may

buy itself extra time to complete its mission if due to some

external reason it is delayed during it despite a designer’s

expectation being that its large battery would be able to handle

the mission while running at full capacity.

In this paper the foundation and planning for the author’s

doctoral thesis is described. In order to establish the state of

the art the related work is discussed in Section II. Section III

describes the problems that will be tackled and motivates them.

Section IV builds on this by describing the research questions

that will answered to address the problems. Preliminary work

done within this plan on thus far is described in Section V,

and the envisioned industrial impact of the work is described

in Section VI. Lastly, we conclude the paper in Section VII.

II. RELATED WORK

A. Robotics Software Architecture

Ultimately, the concern of this thesis is having software

architectures which enable self-adaptation with the goal of

meeting non-functional requirements at runtime despite po-

tential unexpected scenarios. Related, Robot Quality Met-

rics (RoQME) which is an integrated technical project of

131

2023 IEEE 20th International Conference on Software Architecture Companion (ICSA-C)

2768-4288/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSA-C57050.2023.00038

20
23

 IE
EE

 2
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
A

rc
hi

te
ct

ur
e

C
om

pa
ni

on
 (I

C
SA

-C
) |

 9
78

-1
-6

65
4-

64
59

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

SA
-C

57
05

0.
20

23
.0

00
38

Authorized licensed use limited to: TU Delft Library. Downloaded on May 23,2023 at 06:42:09 UTC from IEEE Xplore. Restrictions apply.

RobMoSys [3], provides a meta-model which models non-

functional properties with contextual information and pro-

vides Quality of Service (QoS) metrics on the basis of these

properties measured using generated components. This allows

for self-adaptation as choices can be made based on non-

functional properties via QoS metrics such as safety using

decision-making algorithms e.g. reinforcement learning [4].

RoQME is promising but not fully realized as it has not

been applied to real-world application of robotics systems

as of yet. Software development of robotic systems is as a

whole not a uniform process. However, one uniformity that

is present is that robotic software frameworks tend to take

the form of component-based systems. Prominent component-

based frameworks are ROS [5], Orocos [6], OpenRTM [7],

and OPRoS [8]. For this thesis we currently choose to focus

primarily on ROS due to its high adoption [9]. Regarding

robotics software architecture, Malavolta et al. [10] have

done a survey to determine SoTA of architecting ROS-based

systems and derive guidelines for doing so. They conclude that

a focus on reusable architectures is lacking among the software

projects they considered. Besides reusability, the Best Practice

in Robotics (BRICS) [11] and its associated component model

advocates for the use of model-driven engineering for the

development of robotics software to achieve separation of con-

cerns which is concluded to be absent when using frameworks

such as ROS in isolation.

B. Self-adaptation Approaches

There has been research in the self-adaptive systems com-

munity on providing robotics systems with self-adaptation ca-

pabilities. We describe their adaptations loops and approaches

to introduce self-adaptation to a robotic system. Cheng et

al. authored a paper about the AC-ROS robotic system [12].

This system adapts to meet safety and energy non-functional

requirements while it patrols. Assurance cases are used to

implement a self-adaptation loop, utility functions are used

to evaluate if goals are met, and if not adaptations are made

to assure they are. Camara et al. [2] consider enabling self-

adaptation in mobile service robots. In this scenario, the com-

pletion of a mission is traded off against energy consumption,

safety, and speed. Their self-adaptation approach is formalized,

available configurations of all components are considered and

validated through probabilistic model checking, quantitative

analysis is then used to determine which configuration to adapt

to. Body Sensor Network [13] as the name suggests is different

from the previous related work in that it concerns a network

of sensors with an e-health applications powered by ROS. A

managing system monitors the tradeoff between QoS metrics,

and use control theory to keep these within desired thresholds.

Aguado et al. [14] consider an underwater robot, this dealing

with thruster failures. They accomplish self-adaptation using

an ontological reasoner, based on a knowledge representation

of the system and its requirements. The reasoner analyzes

the system state and should this be invalid adapts to another

configuration based on design-time estimations. The extension

of this work features in the preliminary results of this thesis in

Section V. From the works detailed above and other relevant

ones [15]–[17] we note that there is a lack of reuse in the ap-

proaches for enabling self-adaptation for robotics. Therefore,

new work risks unnecessarily re-inventing the wheel, with a

potentially worse result.

C. Dealing with Unexpected Adaptation Scenarios

To handle unexpected adaptation scenarios, one approach is

the use of online planning. This entails that online learning

algorithms are used in the planning phase (deciding on a

particular adaptation) of self-adaptation once the need for

adaptation has been determined. There are numerous examples

of the usage of online learning within self-adaptation, not

only for planning [18]. A prominent approach is reinforcement

learning, which allows an system to learn the benefit associated

with particular adaptations at runtime. In our previous work

[19], [20] as well as that of Porter et al. [21] a subset of

reinforcement learning algorithms, multi-armed bandits, are

used to accomplish this for a self-adaptive web application.

This approach will be covered further in the preliminary

results in Section V. Kim and Park [22] also use reinforce-

ment learning, this time the popular algorithm Q-learning

to create self-adaptive agents for a robot battle simulator.

These agents uncover winning combat strategies at runtime,

faced with unpredictable environments due to the acts of

other autonomous agents. Therefore a system can explore

choices and then exploit the best one when encountering

an unexpected adaptation scenario. Outside of reinforcement

learning, Kinneer et al. use genetic algorithms to enable the

re-use of plans to handle unexpected adaptation scenarios [23].

III. PROBLEM STATEMENT AND MOTIVATION

The main problem is that there is an emerging need

for robotics systems to deal with unanticipated prob-

lems/uncertainties, yet no consolidated approach for doing so

exists. This is due to the different dimensions that need to

be considered such as a specific robot’s mission, its existing

software, the functionalities it provides, the strengths and

weaknesses of differing self-adaptation strategies, and how

these interplay. In the problems to follow, we motivate how

the uncertainties self-adaptation should handle come about

in robotics systems, while also considering how the state of

existing robotics software hinders the integration of extensions

such as self-adaptation.

P1 Ad-hoc state of robotics software There is a discon-

nect between software engineering/architecture and robotics

software. Existing robotics software is ad-hoc in its design

and implementation [24]. This impedes its evolution which

is necessary to accommodate self-adaptation. Software is not

developed as a first-class concern for robotics but rather as

a tool to facilitate the mission at hand. Instead there is a

default of developing architectures to suit the mission at hand

without extensibility or reusability being a priority [10]. There

are some standards in robotics software that can be relied on.

A prominent one is the Robot Operating System (ROS), ROS

describes itself as “a set of software libraries and tools that

132

Authorized licensed use limited to: TU Delft Library. Downloaded on May 23,2023 at 06:42:09 UTC from IEEE Xplore. Restrictions apply.

help you build robot applications” [5]. Practically speaking,

ROS provides a framework of reusable software components

to control robots. Architecturally, it consists of ‘nodes’ or

components which communicate with one another based on

variations of the client-server model. Whether this imposed

architecture will prove limiting for adding self-adaptive capa-

bilities remains to be seen. The absence of a unified process

underlying development of robotics software hampers this

thesis’ aim of having a general solution for self-adaptation

in robotic systems. Simply put, there is less potential for re-

use of existing robotic software.

P2 Failure of Imagination at Design Time By virtue of

the complex operating environments associated with robotics,

dealing with unpredictable uncertainties becomes a must as

applications broaden. While robotic systems tend to have

missions and controllers defined in great detail, there are (at

least) two issues which still see them ‘lose’ control. The first

of which, a ‘failure of imagination’ at design time constitutes

P2, while the second forms the basis for P3. When designing

a system, developers have some idea, possibly formulated as

requirements which provide the scope for its functionality.

However, it is infeasible to imagine every single possible

obstacle faced or requirement needed of a system at runtime,

prior to runtime creating the potential for failures. A clear-cut

example would be an unexpected environmental change, such

as a rare weather event affecting the deployment conditions

of a robot (e.g. rendering a robot’s sensor unusable). It is

somewhat inevitable then that even in a system performing

unaffected by (unexpected) uncertainties, as will be covered

in P3, the potential for unknown scenarios increases as its

applications do. For any system in which it is desirable

to maintain long-term and sustainable execution through its

various applications, the ability to adapt to new scenarios

increases its chances to fulfill this.

P3 Uncertainties crawling out of the Reality Gap There is

a gap between robot simulation software and the real world

known as the reality gap. It is clear from robotics research

[25] that there are persistent issues when migrating robotics

solutions from the simulated environments in which they

are developed to reality. A form of ‘overfitting’, solutions

are designed while (possibly unintentionally) relying on the

idiosyncrasies of the simulation software used. Additionally,

sources of uncertainty which are not or cannot be simulated

affect performance, possibly without being measurable during

operation. Take for example the effect of temperature on

the robot’s hardware in real life, which is not simulated

during development. It is not realistic either to strive towards

simulating every single facet of the real world. Even if one

were to recreate every factor in a particular mission, this

arduous task would need to be repeated for every application

of a robotic system.

IV. RESEARCH PLAN

To attempt to solve the problems as described in Section

III we propose the following research question: (RQ) How to

build robotics software that may meet its non-functional re-

quirements despite the uncertainty present in complex runtime

environments? To answer this broader research question, we

divide it into four smaller prompts.

RQ1: Which architectural self-adaptation strategies can
be used for runtime adaptation in unexpected scenarios in
robotics software? We use the term self-adaptation strategy

in accordance with our earlier work [26]. There it is defined as

algorithms and mechanisms that allow self-adaptive software

systems to “change their behavior and structure at runtime to

accommodate changes in their operational environment and

maintain or even improve their functionalities and qualities

without human intervention”. These changes stem from un-

certainties, therefore this research question addresses P2 and

P3 as these strategies allow a system to handle uncertainties.

To deal with the changes the strategy plans out one or more

adaptation tactics. Our definition of an adaptation tactic aligns

with that of an architectural tactic as defined by Bass et al. [27]

as a reusable design decision that influences the achievement

of a quality attribute. Specifically, the strategies that will be

researched need to be endowed with the ability to plan online.

Planning here refers to the choice in adaptation tactic to

execute in response to a need for adaptation. This planning

being online implies that the system decides which tactics

are an appropriate response to stimuli at runtime and not
preemptively at design time. One clear approach to accomplish

this is machine learning, as the algorithms ‘learn’ correct

tactics at runtime.

We plan to apply such algorithms, specifically from Rein-

forcement Learning in building on our previous work [19],

as well as ontological reasoning [14] which has already

successfully been applied to robotics software. Both of these

are detailed further in Section V. Additionally we will itera-

tively develop these strategies by both attempting to improve

existing ones and implementing new solutions. This, with the

aim of maximizing the ability of robotics systems to handle

uncertainties, especially those which are harder to predict.

RQ2: How to integrate architectural self-adaptation
strategies in the development and operation of robotics
software? Building on RQ1, this research question addresses

P2 and P3 but also P1 as it concerns the integration of the

planned solutions from RQ1 into existing robotics systems.

Realizing runtime adaptation in (existing) robotics software is

not technically straightforward. This especially considering the

traditional focus of robotics systems on control and certainties.

From the related work in Section II it is clear that various

solutions for self-adaptation in robotic systems exist. What

these solutions lack is a common reusable approach for

extending robotics systems with this capability with generality.

We plan to create a framework which clarifies what the

SoTA is when it comes to adaptive software architectures for

robotics systems. This framework is planned to be based on

a systematic review of different architectures used, building

on their work. This should provide the basis for the approach

we adopt in this thesis to introduce self-adaptation to existing

robotic systems. As we apply this approach iteratively to

more existing robotic systems the hope is that it becomes

133

Authorized licensed use limited to: TU Delft Library. Downloaded on May 23,2023 at 06:42:09 UTC from IEEE Xplore. Restrictions apply.

more refined and nuanced while prioritizing extensibility and

reusability.

RQ3: How to incorporate models of the robotic runtime
uncertainty in architectural self-adaptation strategies? The

self-adaptation strategies from RQ1 are inextricably reliant on

an abstract knowledge of the system at hand. It is necessary

then to define models to represent this knowledge for use at

runtime. This can be aided by design time specifications such

as ontologies from knowledge representation, which provide

the guidelines for incorporating potential runtime observations.

To accomplish ‘online’ planning, it also becomes necessary to

have a concrete representation of state to associate with tactics

to apply. For example, measuring the density of obstacles in

the immediate surroundings of a robot [28]. This knowledge

can then be exploited by the adaptation strategy to reason

which tactics best meet a non-functional requirement of safety.

These tactics would manifest as different re-configuration of

the (possibly component-based) architecture to one which has

a higher level of safety e.g. using parameterizations or alter-

natives to components which cause slower movement when

the density of obstacles is high. In the paper by Hernandez

et al. [29] the authors describe there being differing levels of

automation possible in robotics depending on the assumptions

made. Each specific system a self-adaptation strategy is being

applied to has different assumptions that can be relied upon.

For this thesis, we plan to always explicitly outline when

particular solutions are reliant on assumptions, especially those

specific to system. By making their role clear, the allow for

more reusability as potential incompatibilities for new appli-

cations are clarified. What this means practically is that the

models used are informed as much as possible at runtime with

system-specific details rather than being hardcoded at design-

time. This allows broader usage of the same representations

with the different self-adaptation strategies stemming from

RQ1.

RQ4: How to assess the impact of the proposed develop-
ment process and the self-adaptation strategies in different
robotic cases studies? To combine the efforts RQ1-3, it is

ultimately planned to evaluate through comparison both the

strategies devised in RQ1 making use of RQ3, and the process

to implement them stemming from RQ2. For the former, direct

comparison can be done between adaptation strategies in how

well they meet non-functional requirements during controlled

execution scenarios. For the latter, the introduction of facets of

the development process from RQ2 is measured against their

absence and alternatives. As it is possible that choices made

in the development process will differ in impact on a case-by-

case basis it is necessary to isolate their effects on different

systems through careful evaluation. This ultimately serves to

evaluate the applicability of the development process and by

extension the self-adaptation strategies themselves. We plan

to consider at least two robotic case studies, with more being

added should there be time.

To summarize the aims and expected outcomes detailed

in each research questions, Figure 1 illustrates the cyclical

steps that are to be taken in fulfilment of the thesis. It

shows that while not dependent on the respective previous’

completion, the research questions are sequential. The self-

adaptation strategies of RQ1 are developed, then integrated in

RQ2 while making use of the models of RQ3, and then finally

evaluated. For the second iteration and onwards, a comparative

analysis of self-adaptation strategies and their impact becomes

possible within RQ4 as well.

V. PRELIMINARY RESULTS

In this section we describe the topics that are explored thus

far as part of fulfilling the thesis. This mainly revolves around

beginning to answer RQ1, leading into less work on RQ2 and

RQ3, followed by some potentially useful developments for

RQ4, in accordance with Figure 1.

A. Multi-Armed Bandits

As a potential adaptation strategy, this subsection addresses

RQ1. Multi-Armed Bandits or MABs are a subcategory of

Reinforcement Learning (RL) algorithms. These algorithms

or policies learn which action should be taken based on a

reward which is determined through a Monte Carlo method

of exploring an action, sampling its reward, and committing

this to knowledge for future exploitation. MABs differ from

other RL algorithms in that they consider a singular state when

formalized as a finite Markov decision process. This entails

that actions taken do not directly change the state of the

agent/system. Within MABs, contextual bandits exist which

learn to associate this state and its actions with a context or

side information. This extends the MDP formalism by adding

states or contexts to which the transitions are triggered due

to external causes. For example a website backend might

face different contexts of user load which imply different

rewards for having a number of servers active depending on

the load. If there are few users visiting then an MAB may

learn that having eight servers running is undesirable, but

if there is a high load then the ‘reward’ for having eight

servers would be much higher. In previous work [19] we have

implemented a library1 of MABs for use with self-adaptive

systems. For the domain of robotics we anticipate contextual

bandits to be necessary to associate learned adaptation actions

with the context a robot is in. This allows specific tactics to

be applied for those contexts rather than generally throughout

a mission. For example, adjusting a robots configuration to

reduce energy consumption by turning off a particular sensor

may be worthwhile while it is in the context of navigating,

but not in a context of scanning (using that sensor).

To learn to account for various contexts without prior

knowledge of them (as to make fewer assumptions) challenges

need to be overcome in deciding on the right parameterization

of MABs. We have published a paper [20] which looks at

this problem. We introduce the a metric called ‘convergence

inertia’ which quantifies the difficulty both contextual and non-

contextual yet flexible MABs have in dealing with a change

in context. There is a so-called inertia in overcoming previous

1https://github.com/EGAlberts/MASCed bandits

134

Authorized licensed use limited to: TU Delft Library. Downloaded on May 23,2023 at 06:42:09 UTC from IEEE Xplore. Restrictions apply.

Development of an architectural
self-adaptation strategy to
handle uncertainties during

robot application

Integration of RQ1RQ1

 architectural
self-adaptation strategy in an

existing robotic system

Model of runtime uncertainty is
extended and utilized to inform

self-adaptation strategy at
runtime

Empirically evaluate the applicability
and effectiveness of RQ2-3RQ2-3

 process.
2nd Iteration onwards:

 Comparative analysis of impact

RQ1RQ1

RQ2RQ2

RQ3RQ3

RQ4RQ4

>1x

Fig. 1. Planned Research Process

knowledge to learn about the new context. This metric makes

it possible to compare solutions depending on the application.

For one application it may be more desirable to maintain

knowledge of every context encountered and attempt to realize

the re-occurrence of a context, while for others it may be

desirable to forget previous knowledge and quickly commit to

new contexts with a short memory.

B. Metacontrol

As a potential adaptation strategy, this subsection addresses

RQ1; additionally, it is being integrated into a robotic system

using knowledge representation and so addressed RQ2 and

RQ3 as well. Metacontrol concerns using an ontology written

in OWL to analyze the state of a self-adaptive robotic sys-

tem. Through this ontology it can be reasoned whether the

current state is untenable with regards to the non-functional

requirements (NFRs) to be met, and an adaptation may be

necessary. A selection is then made between adaptation tactics

and applied to resolve the invalid state based on their known

potential to meet the non-functional requirement. For example,

if a robot is using too much energy to meet an energy-

conscious non-functional requirement then the reasoning trig-

gers an adaptation of re-parameterizating the components of

the robot to use less energy. Currently we are working on a

self-adaptive exemplar surrounding applying the metacontrol

to an underwater robot. The underwater robot needs to make

adaptations due to uncertainties that arise from a mission to

discover an underwater pipeline. Adaptations include choosing

different search patterns, as well as dealing with potential

thruster failures and communicating these to the autopilot

system onboard at runtime.

C. Evaluating Self-Adaptive Systems

With regards to RQ4, we have published a paper [30] which

introduces a Python library to comparatively evaluate adapta-

tion strategies without the need to invoke the real system. This

allows evaluations to be done quicker and therefore with more

intricacy. Additionally should a profile be detailed enough new

scenarios can be extrapolated without any involvement of the

real system. Profiles of the system in question are devised.

Such a profile specifies the potential adaptation tactics of a

system and how the context of a system may affect these.

Adaptation strategies such as the aforementioned MABs may

then be used with a simulation of these system conditions.

Different paramerization of MABs can then be compared

with the exact same conditions. The conditions can also be

extrapolated (although in limited fashion) to consider system

states otherwise more difficult to recreate in a real deployment.

Besides comparing instances of strategies in the same group,

the hope is that comparison can be done across strategies e.g.

MABs vs. another form of reinforcement learning.

VI. INDUSTRIAL IMPACT

The rate of installation of robots in the world is at an all-

time high2. These robots to varying degrees require software

to operate, as mentioned in the introduction. We intend to

participate in events such as the ROS-Industrial conference to

discuss the work done as a part of this PhD as well as be

informed of developments in the robotics industry. The work

in this PhD is planned to see us collaborate with the Horizon

Europe CoreSense3 project. Work done for the CoreSense

project and other parts of this thesis will be released open-

source, where relevant through the ROS suite or otherwise.

The different systems that will be selected in answering RQ4

will be chosen with realistic use cases as a priority. At the

time of writing these include an underwater remote vehicle, a

mobile manipulator, and a terrestrial robot. These applications

of these systems will likely mirror those found in industry, as

is also often the case with self-adaptive exemplars.

2https://ifr.org/ifr-press-releases/news/wr-report-all-time-high-with-half-a-
million-robots-installed

3http://www.coresense.eu

135

Authorized licensed use limited to: TU Delft Library. Downloaded on May 23,2023 at 06:42:09 UTC from IEEE Xplore. Restrictions apply.

VII. CONCLUSION

This paper has outlined the foundation and planned work

for the doctoral thesis to be completed by the author. After

introducing the topic, we outline the SoTA in the related work,

describing the landscape of robotics software architecture,

different approaches to self-adaptation and research tackling

unpredictable uncertainties. We then state and motivate the

core problems which the thesis will try to address. These

entail the presence of unpredictable uncertainties at runtime

for robotic systems, and the ad-hoc nature of existing robotics

software. To address these problems we proposed a series of

research questions and outlined the planned process by which

these will be answered. This will see the development and

integration of self-adaptation strategies aided by runtime rep-

resentative models followed by evaluation as to the impact in

meeting non-functional requirements despite the uncertainties.

Lastly, we have outlined the preliminary work which has been

done towards the thesis thus far, and considered its potential

industrial impact.

REFERENCES

[1] D. Weyns, An Introduction to Self-adaptive Systems: A Contemporary
Software Engineering Perspective. John Wiley & Sons, 2020.

[2] J. Cámara, B. Schmerl, and D. Garlan, “Software architecture and task
plan co-adaptation for mobile service robots,” in Proceedings of the
IEEE/ACM 15th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, 2020, pp. 125–136.

[3] J. F. Inglés-Romero, J. Martı́nez, D. Stampfer, A. Lotz, M. Lutz, and
C. Schlegel, “A component-based and model-driven approach to deal
with non-functional properties through global qos metrics,” in MODELS
Workshops, 2018.

[4] J. F. Inglés-Romero, J. M. Espı́n, R. Jiménez-Andreu, R. Font, and
C. Vicente-Chicote, “Towards the use of quality-of-service metrics in
reinforcement learning: A robotics example.” in MoDELS (Workshops),
2018, pp. 465–474.

[5] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot operating system 2: Design, architecture, and uses in the wild,”
Science Robotics, vol. 7, no. 66, p. eabm6074, 2022. [Online]. Available:
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074

[6] H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time motion con-
trol core of the orocos project,” in 2003 IEEE international conference
on robotics and automation (Cat. No. 03CH37422). IEEE, 2003.

[7] N. Ando, T. Suehiro, and T. Kotoku, “A software platform for com-
ponent based rt-system development: Openrtm-aist,” in International
Conference on Simulation, Modeling, and Programming for Autonomous
Robots. Springer, 2008, pp. 87–98.

[8] B. Song, S. Jung, C. Jang, and S. Kim, “An introduction to robot
component model for opros (open platform for robotic services),”
in Proceedings of the International Conference Simulation, Modeling
Programming for Autonomous Robots Workshop, 2008, pp. 592–603.

[9] B. Wire, “The rise of ros,” May 2019. [Online]. Available:
https://www.businesswire.com/news/home/20190516005135/en/

[10] I. Malavolta, G. Lewis, B. Schmerl, P. Lago, and D. Garlan, “How
do you architect your robots? state of the practice and guidelines for
ros-based systems,” in 2020 IEEE/ACM 42nd international conference
on software engineering: software engineering in practice (ICSE-SEIP).
IEEE, 2020, pp. 31–40.

[11] H. Bruyninckx, M. Klotzbücher, N. Hochgeschwender, G. Kraetzschmar,
L. Gherardi, and D. Brugali, “The brics component model: a model-
based development paradigm for complex robotics software systems,” in
Proceedings of the 28th Annual ACM Symposium on Applied Computing,
2013.

[12] B. H. Cheng, R. J. Clark, J. E. Fleck, M. A. Langford, and P. K.
McKinley, “Ac-ros: assurance case driven adaptation for the robot
operating system,” in Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems,
2020, pp. 102–113.

[13] E. B. Gil, R. Caldas, A. Rodrigues, G. L. G. da Silva, G. N. Rodrigues,
and P. Pelliccione, “Body sensor network: A self-adaptive system
exemplar in the healthcare domain,” in 2021 International Symposium
on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2021, pp. 224–230.

[14] E. Aguado, Z. Milosevic, C. Hernández, R. Sanz, M. Garzon,
D. Bozhinoski, and C. Rossi, “Functional self-awareness and
metacontrol for underwater robot autonomy,” Sensors, vol. 21, no. 4,
2021. [Online]. Available: https://www.mdpi.com/1424-8220/21/4/1210

[15] D. De Leng and F. Heintz, “Dyknow: A dynamically reconfigurable
stream reasoning framework as an extension to the robot operating sys-
tem,” in 2016 IEEE International Conference on Simulation, Modeling,
and Programming for Autonomous Robots (SIMPAR). IEEE, 2016, pp.
55–60.

[16] G. Edwards, J. Garcia, H. Tajalli, D. Popescu, N. Medvidovic,
G. Sukhatme, and B. Petrus, “Architecture-driven self-adaptation and
self-management in robotics systems,” in 2009 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems. IEEE,
2009, pp. 142–151.

[17] S. Gerasimou, R. Calinescu, S. Shevtsov, and D. Weyns, “Undersea:
an exemplar for engineering self-adaptive unmanned underwater vehi-
cles,” in 2017 IEEE/ACM 12th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE,
2017, pp. 83–89.

[18] O. Gheibi, D. Weyns, and F. Quin, “Applying machine learning in self-
adaptive systems: A systematic literature review,” ACM Transactions on
Autonomous and Adaptive Systems (TAAS), vol. 15, no. 3, 2021.

[19] E. G. Alberts, “Adapting with regret: Using multi-armed bandits with
self-adaptive systems,” Master’s thesis, University of Amsterdam, 2022.
[Online]. Available: https://scripties.uba.uva.nl/search?id=727497

[20] E. Alberts and I. Gerostathopoulos, “Measuring convergence inertia: On-
line learning in self-adaptive systems with context shifts,” in Proceedings
of the 2022 International Symposium On Leveraging Applications of
Formal Methods, Verification and Validation, to appear, Oct. 2022.

[21] B. Porter and R. Rodrigues Filho, “Distributed emergent software:
Assembling, perceiving and learning systems at scale,” in 2019 IEEE
13th International Conference on Self-Adaptive and Self-Organizing
Systems (SASO). IEEE, 2019, pp. 127–136.

[22] D. Kim and S. Park, “Reinforcement learning-based dynamic adapta-
tion planning method for architecture-based self-managed software,” in
2009 ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems, 2009, pp. 76–85.

[23] C. Kinneer, Z. Coker, J. Wang, D. Garlan, and C. L. Goues, “Managing
uncertainty in self-adaptive systems with plan reuse and stochastic
search,” in Proceedings of the 13th International Conference on Software
Engineering for Adaptive and Self-Managing Systems, 2018, pp. 40–50.

[24] F. Ciccozzi, D. Di Ruscio, I. Malavolta, P. Pelliccione, and J. Tumova,
“Engineering the software of robotic systems,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-
C), 2017, pp. 507–508.

[25] J.-B. Mouret and K. Chatzilygeroudis, “20 years of reality gap: a few
thoughts about simulators in evolutionary robotics,” in Proceedings
of the Genetic and Evolutionary Computation Conference Companion,
2017, pp. 1121–1124.

[26] I. Gerostathopoulos, C. Raibulet, and E. Alberts, “Assessing self-
adaptation strategies using cost-benefit analysis,” in 2022 IEEE 19th
International Conference on Software Architecture Companion (ICSA-
C). IEEE, 2022, pp. 92–95.

[27] L. Bass, P. Clements, and R. Kazman, Software architecture in practice.
Addison-Wesley Professional, 2003.

[28] D. Bozhinoski and J. Wijkhuizen, “Context-based navigation for ground
mobile robot in semi-structured indoor environment,” in 2021 Fifth IEEE
International Conference on Robotic Computing (IRC). IEEE, 2021,
pp. 82–86.

[29] C. H. Corbato, M. Bharatheesha, J. Van Egmond, J. Ju, and M. Wisse,
“Integrating different levels of automation: Lessons from winning the
amazon robotics challenge 2016,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 11, 2018.

[30] E. Alberts, I. Gerostathopoulos, and T. Bures, “Mocksas: Facilitating the
evaluation of bandit algorithms in self-adaptive systems,” in Companion
Proceedings of the 2022 European Conference on Software Architecture,
to appear, Sep. 2022.

136

Authorized licensed use limited to: TU Delft Library. Downloaded on May 23,2023 at 06:42:09 UTC from IEEE Xplore. Restrictions apply.

