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Abstract—Architecture optimization is the process of automat-
ically generating design options, typically to enhance software’s
quantifiable quality attributes, such as performance and relia-
bility. Multi-objective optimization approaches have been used
in this situation to assist the designer in selecting appropriate
trade-offs between a number of non-functional features. Through
automated refactoring, design alternatives can be produced in
this process, and assessed using non-functional models.

This type of optimization tasks are hard and time- and
resource-intensive, which frequently hampers their use in soft-
ware engineering procedures.

In this paper, we present our optimization framework where
we examined the performance of various genetic algorithms. We
also exercised our framework with two case studies with various
levels of size, complexity, and domain served as our test subjects.

Index Terms—refactoring, multi-objective optimization, soft-
ware architecture, performance

I. INTRODUCTION

Different factors, such as the addition of new requirements,
the adaption to new execution contexts, or the deterioration
of non-functional features, can lead to software refactoring.
The challenge of identifying the best refactoring operations is
challenging because there is a wide range of potential solutions
and no automated assistance is currently available.

In this situation, search-based approaches have been widely
used [1, 2, 3, 4, 5].

Multi-objective optimization approaches, which are search-
based, have lately been used to solve model refactoring
optimization issues [6, 7]. Searching among design alternatives
(for example, through architectural tactics) is a typical feature
of multi-objective optimization methodologies used to solve
model-based software restructuring challenges [8, 7].

In this study, we describe a many-objective evolutionary
framework that automatically searches and applies sequences
of refactoring actions leading to the optimization of four
objectives: i) performance variation (analyzed through Layered
Queueing Networks [9]), ii) reliability (analyzed through a
closed-form model [10]), iii) number of performance an-
tipatterns (automatically detected [11]), and iv) architectural
distance [12].

In particular, our framework automatically applies refac-
toring actions to the initial architecture, and we analyze the
contribution of the architectural distance to the generation
of Pareto frontiers [13]. Furthermore, we study the impact

of performance antipatterns on the quality of refactoring
solutions. Since it has been shown that removing performance
antipatterns leads to systems that show better performance than
the ones affected by them [11], we aim at studying if this result
persists in the context of many-objective optimization, where
performance improvement is not the only objective.

Our approach applies to UML augmented by MARTE [14]
and DAM [15] profiles that allow to embed performance and
reliability properties. However, UML does not provide native
support for performance analysis, thus we introduce a model-
to-model transformation that generates Layered Queueing Net-
works (LQN) from annotated UML artifacts. The solution of
LQN models feeds the performance variation objective.

Here, we consider refactoring actions that are designed
to improve performance in most cases [16, 17]. Since such
actions may also have an impact on other non-functional
properties, we introduce the reliability among the optimization
objectives to study whether satisfactory levels of performance
and reliability can be kept at the same time. In order to quan-
tify the reliability objective, we adopt an existing model for
component-based software systems [10] that can be generated
from UML.

We also minimize the distance between the initial architec-
ture and the ones resulting from applying refactoring actions.
Indeed, without an objective that minimizes such distance, the
proposed solutions could be impractical because they could
require to completely disassemble and re-assemble the initial
architecture.

In a recent work [18], we extended the approach in [12,
6], by investigating architecture optimization, thus widening
the scope of eligible models. We analyze the sensitivity of
the search process to configuration variations. We refine the
cost model of refactoring actions and we investigate how it
contributes to the generation of Pareto frontiers.

The experimentation lasted several hours and generated
thousands of model alternatives. Generally, multi-objective
optimization is beneficial when the solution space is so large
that an exhaustive search is impractical. Hence, due to the
search of the solution space, multi-objective optimization
requires a lot of time and resources.

Finally, to encourage reproducibility, we publicly share the
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implementation of the approach 1, as well as the data gathered
during the experimentation 2.

II. RELATED WORK

In the past ten years, studies on software architecture multi-
objective optimization have been developed to optimize vari-
ous quality attributes (such as reliability and energy) [19, 20,
21, 22, 6]; with various degrees of freedom in the modification
of architectures (such as service selection [23].

Recent research analyzes the capacity of two distinct multi-
objective optimization algorithms to enhance non-functional
features inside a particular architecture notation (i.e., Palladio
Component Model) [7, 24, 25]. The authors use architectural
approaches to find the best solutions, which primarily include
changing system parameters (such as hardware settings or
operation requirements). On the other hand, in this work, we
employ refactoring techniques that alter the basic architecture
structure while keeping the original behavior. The architecture
notation is another difference; rather than using a unique
Domain Specific Language, we use UML with the intention
of experimenting with a standard notation.

Menasce et al. have provided a framework for architectural
design and quality optimization, [26]. This framework makes
use of architectural patterns to help the search process (such
as load balancing and fault tolerance). The approach has two
drawbacks: performance indices are computed using equation-
based analytical models, which may be too simple to capture
architectural details and resource contention; the architecture
must be designed in a tool-specific notation rather than in a
standard modeling language (as we do in this paper).

A method for modeling and analyzing AADL architectures
has been given by Aleti et al.[27]. A tool that may be used to
optimize various quality attributes while adjusting architecture
deployment and component redundancy has also been intro-
duced. Our framework, instead, makes use of UML and takes
into account more intricate refactoring procedures as well as
various goal attributes for the fitness function. In addition,
we look into the function of performance antipatterns in the
context of optimizing many-objective architecture refactoring.

III. APPROACH

The process that we describe in this research is illustrated
in Figure 1.

An Initial Architecture and a list of refactoring actions are
supplied into the process. The Create Combined Population
step, where mating operations (i.e., selection, mutation, and
crossover) are implemented to create Architecture Alternatives
involves the Initial Architecture and the Refactoring Actions.
The refactoring activities are randomly and automatically
applied by the mating operations, producing alternatives that
are functionally comparable to the initial architecture.

Therefore, each architecture alternative is given the Evalu-
ation step. The model options are then sorted (Sorting step)
based on the following four goals: perfQ, reliability, #changes,

1https://github.com/SEALABQualityGroup/EASIER
2https://github.com/SEALABQualityGroup/2022-ist-replication-package

[are the stopping criteria 
met?]

#performance antipatterns

Initial Architecture

Architecture Alternatives

Refactoring Actions

Fig. 1. Our multi-objective evolutionary approach

and performance antipatterns. Throughout the process, these
qualities are appraised and taken into consideration to select
the optimal candidates.

Recently, we investigated how performance antipatterns
affect the effectiveness of refactoring methods [18]. We aim
to investigate whether this phenomenon also holds in the
context of multi-objective optimization, where performance
improvement is not the only goal, given that it has been
demonstrated that removing performance antipatterns results
in systems that show better performance than those affected
by them [28, 29, 11].

Furthermore, we looked into whether adding a time budget
could shorten the amount of time an evolutionary algorithm
requires [30]. The purpose of setting such a time constraint
is to determine the extent to which, in a model-based multi-
objective refactoring optimization scenario, the imposition of
a time-based search budget can degrade the quality of the
resultant Pareto fronts. Furthermore, we are curious about how
various algorithms respond to various search budgets. In order
to test this, we chose two case studies and ran the optimization
with search budgets of 15, 30, and 60 minutes.

Currently, our framework supports three genetic algorithms,
NSGA-II [31], SPEA2 [32], PESA2 [33]. We selected these
algorithms with respect their different searching policies. Thus,
our results cover evolutionary algorithms of different charac-
teristics.

IV. CONCLUSION AND FUTURE WORK

We have developed a framework for multi-objective archi-
tecture optimization that takes into account quality attributes.
In the context of architecture optimization, we concentrated
our investigation on the potential effects of evolutionary algo-
rithms on the quality of optimal refactoring solutions.

We learned some interesting things from our experimen-
tation concerning the effectiveness of the created solutions
and the use of performance antipatterns as an algorithmic

https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/2022-ist-replication-package


objective. In this regard, we demonstrated that we may achieve
superior solutions in terms of performance and reliability by
incorporating the detection of performance antipatterns into
the optimization process. Making sure that our strategy did not
decrease the reliability of the basic architecture was another
crucial component of our investigation. Our tests revealed that,
in most instances, we were able to boost the reliability of
alternatives in comparison to the original architecture.

Future research will examine how settings (experiment and
algorithm setups) affect the effectiveness of Pareto frontiers.
We will examine the effects of denser populations, for in-
stance, on calculation time and the accuracy of computed
Pareto frontiers. Our research focuses on the impact of pre-
dicting the baseline refactoring factor using a more complex
cost model, such as COCOMO-II [34], on the combination of
refactoring activities. We are also interested in the influence
that changes play. We want to expand the portfolio of refactor-
ing activities, for instance by adding fault tolerance refactoring
actions [35], and a fruitful inquiry will focus on the length of
the sequence of refactoring actions, which is presently fixed
to four refactoring actions. We will incorporate additional
evolutionary algorithms into our approach to examine the role
that various optimization methods play in the architecture
refactoring.
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