
Multi-objective Software Architecture Refactoring
driven by Quality Attributes

Daniele Di Pompeo
University of L’Aquila

L’Aquila, Italy
daniele.dipompeo@univaq.it

Michele Tucci
Charles University

Prague, Czech Republic
tucci@d3s.mff.cuni.cz

Abstract—Architecture optimization is the process of automat-
ically generating design options, typically to enhance software’s
quantifiable quality attributes, such as performance and relia-
bility. Multi-objective optimization approaches have been used
in this situation to assist the designer in selecting appropriate
trade-offs between a number of non-functional features. Through
automated refactoring, design alternatives can be produced in
this process, and assessed using non-functional models.

This type of optimization tasks are hard and time- and
resource-intensive, which frequently hampers their use in soft-
ware engineering procedures.

In this paper, we present our optimization framework where
we examined the performance of various genetic algorithms. We
also exercised our framework with two case studies with various
levels of size, complexity, and domain served as our test subjects.

Index Terms—refactoring, multi-objective optimization, soft-
ware architecture, performance

I. INTRODUCTION

Different factors, such as the addition of new requirements,
the adaption to new execution contexts, or the deterioration
of non-functional features, can lead to software refactoring.
The challenge of identifying the best refactoring operations is
challenging because there is a wide range of potential solutions
and no automated assistance is currently available.

In this situation, search-based approaches have been widely
used [1, 2, 3, 4, 5].

Multi-objective optimization approaches, which are search-
based, have lately been used to solve model refactoring
optimization issues [6, 7]. Searching among design alternatives
(for example, through architectural tactics) is a typical feature
of multi-objective optimization methodologies used to solve
model-based software restructuring challenges [8, 7].

In this study, we describe a many-objective evolutionary
framework that automatically searches and applies sequences
of refactoring actions leading to the optimization of four
objectives: i) performance variation (analyzed through Layered
Queueing Networks [9]), ii) reliability (analyzed through a
closed-form model [10]), iii) number of performance an-
tipatterns (automatically detected [11]), and iv) architectural
distance [12].

In particular, our framework automatically applies refac-
toring actions to the initial architecture, and we analyze the
contribution of the architectural distance to the generation
of Pareto frontiers [13]. Furthermore, we study the impact

of performance antipatterns on the quality of refactoring
solutions. Since it has been shown that removing performance
antipatterns leads to systems that show better performance than
the ones affected by them [11], we aim at studying if this result
persists in the context of many-objective optimization, where
performance improvement is not the only objective.

Our approach applies to UML augmented by MARTE [14]
and DAM [15] profiles that allow to embed performance and
reliability properties. However, UML does not provide native
support for performance analysis, thus we introduce a model-
to-model transformation that generates Layered Queueing Net-
works (LQN) from annotated UML artifacts. The solution of
LQN models feeds the performance variation objective.

Here, we consider refactoring actions that are designed
to improve performance in most cases [16, 17]. Since such
actions may also have an impact on other non-functional
properties, we introduce the reliability among the optimization
objectives to study whether satisfactory levels of performance
and reliability can be kept at the same time. In order to quan-
tify the reliability objective, we adopt an existing model for
component-based software systems [10] that can be generated
from UML.

We also minimize the distance between the initial architec-
ture and the ones resulting from applying refactoring actions.
Indeed, without an objective that minimizes such distance, the
proposed solutions could be impractical because they could
require to completely disassemble and re-assemble the initial
architecture.

In a recent work [18], we extended the approach in [12,
6], by investigating architecture optimization, thus widening
the scope of eligible models. We analyze the sensitivity of
the search process to configuration variations. We refine the
cost model of refactoring actions and we investigate how it
contributes to the generation of Pareto frontiers.

The experimentation lasted several hours and generated
thousands of model alternatives. Generally, multi-objective
optimization is beneficial when the solution space is so large
that an exhaustive search is impractical. Hence, due to the
search of the solution space, multi-objective optimization
requires a lot of time and resources.

Finally, to encourage reproducibility, we publicly share the

ar
X

iv
:2

30
1.

07
50

0v
1 

 [
cs

.S
E

] 
 1

8 
Ja

n 
20

23



implementation of the approach 1, as well as the data gathered
during the experimentation 2.

II. RELATED WORK

In the past ten years, studies on software architecture multi-
objective optimization have been developed to optimize vari-
ous quality attributes (such as reliability and energy) [19, 20,
21, 22, 6]; with various degrees of freedom in the modification
of architectures (such as service selection [23].

Recent research analyzes the capacity of two distinct multi-
objective optimization algorithms to enhance non-functional
features inside a particular architecture notation (i.e., Palladio
Component Model) [7, 24, 25]. The authors use architectural
approaches to find the best solutions, which primarily include
changing system parameters (such as hardware settings or
operation requirements). On the other hand, in this work, we
employ refactoring techniques that alter the basic architecture
structure while keeping the original behavior. The architecture
notation is another difference; rather than using a unique
Domain Specific Language, we use UML with the intention
of experimenting with a standard notation.

Menasce et al. have provided a framework for architectural
design and quality optimization, [26]. This framework makes
use of architectural patterns to help the search process (such
as load balancing and fault tolerance). The approach has two
drawbacks: performance indices are computed using equation-
based analytical models, which may be too simple to capture
architectural details and resource contention; the architecture
must be designed in a tool-specific notation rather than in a
standard modeling language (as we do in this paper).

A method for modeling and analyzing AADL architectures
has been given by Aleti et al.[27]. A tool that may be used to
optimize various quality attributes while adjusting architecture
deployment and component redundancy has also been intro-
duced. Our framework, instead, makes use of UML and takes
into account more intricate refactoring procedures as well as
various goal attributes for the fitness function. In addition,
we look into the function of performance antipatterns in the
context of optimizing many-objective architecture refactoring.

III. APPROACH

The process that we describe in this research is illustrated
in Figure 1.

An Initial Architecture and a list of refactoring actions are
supplied into the process. The Create Combined Population
step, where mating operations (i.e., selection, mutation, and
crossover) are implemented to create Architecture Alternatives
involves the Initial Architecture and the Refactoring Actions.
The refactoring activities are randomly and automatically
applied by the mating operations, producing alternatives that
are functionally comparable to the initial architecture.

Therefore, each architecture alternative is given the Evalu-
ation step. The model options are then sorted (Sorting step)
based on the following four goals: perfQ, reliability, #changes,

1https://github.com/SEALABQualityGroup/EASIER
2https://github.com/SEALABQualityGroup/2022-ist-replication-package

[are the stopping criteria 
met?]

#performance antipatterns

Initial Architecture

Architecture Alternatives

Refactoring Actions

Fig. 1. Our multi-objective evolutionary approach

and performance antipatterns. Throughout the process, these
qualities are appraised and taken into consideration to select
the optimal candidates.

Recently, we investigated how performance antipatterns
affect the effectiveness of refactoring methods [18]. We aim
to investigate whether this phenomenon also holds in the
context of multi-objective optimization, where performance
improvement is not the only goal, given that it has been
demonstrated that removing performance antipatterns results
in systems that show better performance than those affected
by them [28, 29, 11].

Furthermore, we looked into whether adding a time budget
could shorten the amount of time an evolutionary algorithm
requires [30]. The purpose of setting such a time constraint
is to determine the extent to which, in a model-based multi-
objective refactoring optimization scenario, the imposition of
a time-based search budget can degrade the quality of the
resultant Pareto fronts. Furthermore, we are curious about how
various algorithms respond to various search budgets. In order
to test this, we chose two case studies and ran the optimization
with search budgets of 15, 30, and 60 minutes.

Currently, our framework supports three genetic algorithms,
NSGA-II [31], SPEA2 [32], PESA2 [33]. We selected these
algorithms with respect their different searching policies. Thus,
our results cover evolutionary algorithms of different charac-
teristics.

IV. CONCLUSION AND FUTURE WORK

We have developed a framework for multi-objective archi-
tecture optimization that takes into account quality attributes.
In the context of architecture optimization, we concentrated
our investigation on the potential effects of evolutionary algo-
rithms on the quality of optimal refactoring solutions.

We learned some interesting things from our experimen-
tation concerning the effectiveness of the created solutions
and the use of performance antipatterns as an algorithmic

https://github.com/SEALABQualityGroup/EASIER
https://github.com/SEALABQualityGroup/2022-ist-replication-package


objective. In this regard, we demonstrated that we may achieve
superior solutions in terms of performance and reliability by
incorporating the detection of performance antipatterns into
the optimization process. Making sure that our strategy did not
decrease the reliability of the basic architecture was another
crucial component of our investigation. Our tests revealed that,
in most instances, we were able to boost the reliability of
alternatives in comparison to the original architecture.

Future research will examine how settings (experiment and
algorithm setups) affect the effectiveness of Pareto frontiers.
We will examine the effects of denser populations, for in-
stance, on calculation time and the accuracy of computed
Pareto frontiers. Our research focuses on the impact of pre-
dicting the baseline refactoring factor using a more complex
cost model, such as COCOMO-II [34], on the combination of
refactoring activities. We are also interested in the influence
that changes play. We want to expand the portfolio of refactor-
ing activities, for instance by adding fault tolerance refactoring
actions [35], and a fruitful inquiry will focus on the length of
the sequence of refactoring actions, which is presently fixed
to four refactoring actions. We will incorporate additional
evolutionary algorithms into our approach to examine the role
that various optimization methods play in the architecture
refactoring.

ACKNOWLEDGMENT

Daniele Di Pompeo is supported by the Centre of EXcel-
lence on Connected, Geo-Localized and Cybersecure Vehicle
(EX-Emerge), funded by the Italian Government under CIPE
resolution n. 70/2017 (Aug. 7, 2017).

Michele Tucci is supported by the OP RDE project No.
CZ.02.2.69/0.0/0.0/18 053/0016976 “International mobility of
research, technical and administrative staff at the Charles
University”.

REFERENCES

[1] T. Mariani and S. R. Vergilio, “A systematic review on
search-based refactoring,” JIST, vol. 83, pp. 14–34, Mar.
2017.

[2] A. Ouni, M. Kessentini, K. Inoue, and M. Ó Cinnéide,
“Search-Based Web Service Antipatterns Detection,”
TSC, vol. 10, no. 4, pp. 603–617, 2017.

[3] A. Ramı́rez, J. R. Romero, and S. Ventura, “A survey
of many-objective optimisation in search-based software
engineering,” JSS, vol. 149, pp. 382–395, 2019.

[4] M. Ray and D. P. Mohapatra, “Multi-objective test
prioritization via a genetic algorithm,” Innov. Syst. Softw.
Eng., vol. 10, no. 4, pp. 261–270, 2014. [Online].
Available: https://doi.org/10.1007/s11334-014-0234-2

[5] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek,
and I. Meedeniya, “Software architecture optimization
methods: A systematic literature review,” IEEE Trans.
Software Eng., vol. 39, no. 5, pp. 658–683, 2013.
[Online]. Available: https://doi.org/10.1109/TSE.2012.64

[6] V. Cortellessa and D. Di Pompeo, “Analyzing the sen-
sitivity of multi-objective software architecture refactor-

ing to configuration characteristics,” JIST, vol. 135, p.
106568, 2021.

[7] Y. Ni, X. Du, P. Ye, L. L. Minku, X. Yao, M. Harman, and
R. Xiao, “Multi-objective software performance optimi-
sation at the architecture level using randomised search
rules,” JIST, vol. 135, p. 106565, 2021.

[8] A. Koziolek, H. Koziolek, and R. H. Reussner,
“Peropteryx: automated application of tactics in multi-
objective software architecture optimization,” in 7th
International Conference on the Quality of Software
Architectures, QoSA 2011 and 2nd International
Symposium on Architecting Critical Systems, ISARCS
2011. Boulder, CO, USA, June 20-24, 2011, Proceedings,
I. Crnkovic, J. A. Stafford, D. C. Petriu, J. Happe, and
P. Inverardi, Eds. ACM, 2011, pp. 33–42. [Online].
Available: https://doi.org/10.1145/2000259.2000267

[9] J. E. Neilson, C. M. Woodside, D. C. Petriu,
and S. Majumdar, “Software bootlenecking in client-
server systems and rendezvous networks,” IEEE Trans.
Software Eng., vol. 21, no. 9, pp. 776–782, 1995.
[Online]. Available: https://doi.org/10.1109/32.464543

[10] V. Cortellessa, H. Singh, and B. Cukic, “Early relia-
bility assessment of UML based software models,” in
WOSP@ISSTA, 2002, pp. 302–309.

[11] D. Arcelli, V. Cortellessa, and D. Di Pompeo,
“Performance-driven software model refactoring,” Inf.
Softw. Technol., vol. 95, pp. 366–397, 2018. [Online].
Available: https://doi.org/10.1016/j.infsof.2017.09.006

[12] D. Arcelli, V. Cortellessa, M. D’Emidio, and D. Di
Pompeo, “EASIER: an Evolutionary Approach for multi-
objective Software archItecturE Refactoring,” in ICSA,
2018, pp. 1–10.

[13] D. Arcelli, V. Cortellessa, and D. Di Pompeo,
“Automating performance antipattern detection and
software refactoring in UML models,” in 26th
IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2019, Hangzhou,
China, February 24-27, 2019, X. Wang, D. Lo, and
E. Shihab, Eds. IEEE, 2019, pp. 639–643. [Online].
Available: https://doi.org/10.1109/SANER.2019.8667967

[14] O. M. Group, “A UML profile for MARTE: modeling
and analysis of real-time embedded systems,” Object
Management Group, 2008. [Online]. Available: http:
//www.omg.org/omgmarte/

[15] S. Bernardi, J. Merseguer, and D. C. Petriu, “A
dependability profile within MARTE,” Softw. Syst.
Model., vol. 10, no. 3, pp. 313–336, 2011. [Online].
Available: https://doi.org/10.1007/s10270-009-0128-1

[16] D. Arcelli, V. Cortellessa, D. Di Pompeo, R. Eramo,
and M. Tucci, “Exploiting architecture/runtime model-
driven traceability for performance improvement,” in
IEEE International Conference on Software Architecture,
ICSA 2019, Hamburg, Germany, March 25-29, 2019.
IEEE, 2019, pp. 81–90. [Online]. Available: https:
//doi.org/10.1109/ICSA.2019.00017

[17] V. Cortellessa, D. Di Pompeo, R. Eramo, and M. Tucci,

https://doi.org/10.1007/s11334-014-0234-2
https://doi.org/10.1109/TSE.2012.64
https://doi.org/10.1145/2000259.2000267
https://doi.org/10.1109/32.464543
https://doi.org/10.1016/j.infsof.2017.09.006
https://doi.org/10.1109/SANER.2019.8667967
http://www.omg.org/omgmarte/
http://www.omg.org/omgmarte/
https://doi.org/10.1007/s10270-009-0128-1
https://doi.org/10.1109/ICSA.2019.00017
https://doi.org/10.1109/ICSA.2019.00017


“A model-driven approach for continuous performance
engineering in microservice-based systems,” J. Syst.
Softw., vol. 183, p. 111084, 2022. [Online]. Available:
https://doi.org/10.1016/j.jss.2021.111084

[18] V. Cortellessa, D. Di Pompeo, V. Stoico, and M. Tucci,
“On the impact of performance antipatterns in multi-
objective software model refactoring optimization,”
in 2021 47th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE,
2021, p. 224–233. [Online]. Available: https://ieeexplore.
ieee.org/document/9582578/

[19] A. Martens, H. Koziolek, S. Becker, and R. H. Reussner,
“Automatically improve software architecture models
for performance, reliability, and cost using evolutionary
algorithms,” in ICPE 2010 - Proceedings of the 1st
ACM/SPEC International Conference on Performance
Engineering. New York, New York, USA: ACM Press,
2010, pp. 105–116.

[20] R. Li, R. Etemaadi, M. T. M. Emmerich, and M. R. V.
Chaudron, “An evolutionary multiobjective optimization
approach to component-based software architecture de-
sign,” in CEC. IEEE, 2011, pp. 432–439.

[21] I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske,
“Architecture-Driven Reliability and Energy Optimiza-
tion for Complex Embedded Systems,” in QoSA.
Springer, 2010, pp. 52–67.

[22] A. Martens, D. Ardagna, H. Koziolek, R. Mirandola, and
R. H. Reussner, “A Hybrid Approach for Multi-attribute
QoS Optimisation in Component Based Software Sys-
tems,” in Research into Practice – Reality and Gaps,
2010, pp. 84–101.

[23] V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti,
and R. Mirandola, “QoS-driven Runtime Adaptation of
Service Oriented Architectures,” in ESEC/FSE, 2009, pp.
131–140.

[24] A. Rago, S. A. Vidal, J. A. Diaz-Pace, S. Frank, and
A. van Hoorn, “Distributed quality-attribute optimization
of software architectures,” in Proceedings of the
11th Brazilian Symposium on Software Components,
Architectures and Reuse, SBCARS 2017, Fortaleza, CE,
Brazil, September 18 - 19, 2017. ACM, 2017, pp.
7:1–7:10. [Online]. Available: https://doi.org/10.1145/
3132498.3132509

[25] S. Becker, H. Koziolek, and R. H. Reussner, “The
Palladio component model for model-driven performance
prediction,” Systems and Software, vol. 82, no. 1, pp. 3–
22, Jan. 2009.

[26] D. A. Menascé, J. M. Ewing, H. Gomaa, S. Malek,
and J. P. Sousa, “A framework for utility-based service
oriented design in SASSY,” in WOSP/SIPEW, 2010, pp.
27–36.

[27] P. H. Feiler and D. P. Gluch, Model-Based Engineering
with AADL - An Introduction to the SAE Architecture
Analysis and Design Language, ser. SEI series in soft-
ware engineering. Addison-Wesley, 2012.

[28] C. U. Smith and L. G. Williams, “Software performance

antipatterns; common performance problems and their
solutions,” in 27th International Computer Measurement
Group Conference, Anaheim, CA, USA, December 2-7,
2001. Computer Measurement Group, 2001, pp. 797–
806.

[29] ——, “More New Software Performance Antipatterns:
Even More Ways to Shoot Yourself in the Foot,” in 29th
International Computer Measurement Group Conference,
2003, pp. 717–725.

[30] D. Di Pompeo and M. Tucci, “Search budget in multi-
objective refactoring optimization: a model-based empir-
ical study,” in 48th Euromicro Conference on Software
Engineering and Advanced Applications, SEAA 2022.
IEEE, 2022, pp. 406–413, to appear. [Online]. Available:
https://doi.org/10.1109/SEAA56994.2022.00070

[31] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A
fast and elitist multiobjective genetic algorithm: NSGA-
II,” TEVC, vol. 6, no. 2, pp. 182–197, Apr. 2002.

[32] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improv-
ing the strength pareto evolutionary algorithm,” Swiss
Federal Institute of Technology (ETH) Zurich, TIK-
report 103, 2001.

[33] D. W. Corne, N. R. Jerram, J. D. Knowles, and M. J.
Oates, “Pesa-ii: Region-based selection in evolutionary
multiobjective optimization,” in Proceedings of the 3rd
Annual Conference on Genetic and Evolutionary Compu-
tation, ser. GECCO’01. Morgan Kaufmann Publishers
Inc., 2001, p. 283–290, event-place: San Francisco, Cal-
ifornia.

[34] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani,
B. K. Clark, E. Horowitz, R. Madachy, D. J. Reifer, and
B. Steece, Software cost estimation with COCOMO II.
Prentice Hall Press, 2009.

[35] V. Cortellessa, R. Eramo, and M. Tucci, “From soft-
ware architecture to analysis models and back: Model-
driven refactoring aimed at availability improvement,”
Inf. Softw. Technol., vol. 127, p. 106362, 2020.

https://doi.org/10.1016/j.jss.2021.111084
https://ieeexplore.ieee.org/document/9582578/
https://ieeexplore.ieee.org/document/9582578/
https://doi.org/10.1145/3132498.3132509
https://doi.org/10.1145/3132498.3132509
https://doi.org/10.1109/SEAA56994.2022.00070

	I Introduction
	II Related Work
	III Approach
	IV Conclusion and Future Work

